五年级数学专项练习(九)一元一次方程及其应用
一元一次方程应用题专项练习

一元一次方程应用题专项练习一、单选题1.学校需制作若干块标志牌,由一名工人做要50h 完成.现计划由一部分工人先做4h ,然后增加5人与他们一起做6h 完成这项工作.假设这些工人的工作效率一样,具体应先安排多少人工作?小华的解法如下:设先安排x 人做4h .所列方程为46(5)15050x x ++=,其中“450x ”表示的意思是“x 人先做4h 完成的工作量”,“6(5)50x +”表示的意思是“增加5人后(5)x +人再做6小时完成的工作量”.小军所列的方程如下:(46)5615050x +⨯+=,其中,“(46)50x +”表示的含义是()A .x 人先做4h 完成的工作量.B .先工作的x 人前4h 和后6h 一共完成的工作量.C .增加5人后,新增加的5人完成的工作量.D .增加5人后,(5)x +人再做6h 完成的工作量.2.某书店推出如下优惠方案:(1)一次性购书不超过100元不享受优惠;(2)一次性购书超过100元但不超过300元一律九折;(3)一次性购书超过300元一律八折.某同学两次购书分别付款80元、252元,如果他将这两次所购书籍一次性购买,则应付款()元.A .288B .306C .288或316D .288或3063.足球比赛的记分规则:胜一场得3分,平一场得1分,负一场得0分.某队打了14场,负5场,共得19分,那么这个队平了()A .3场B .4场C .5场D .6场4.如图,各正方形中的四个数之间都有相同的规律,根据此规律,x 的值为()A .242B .232C .220D .2525.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?设共有x 人,这个物品的价格是y 元.有下列四个等式:①8x +3=7x ﹣4;②3487y y -+=;③3487y y +-=;④8x ﹣3=7x +4,其中正确的是()A .①②B .②④C .②③D .③④二、填空题6.某学校8个班级进行足球友谊赛,比赛采用单循环赛制(参加比赛的队,每两队之间进行一场比赛),胜一场得3分,平一场得1分,负一场得0分,某班共得15分,并以不败成绩获得冠军,那么该班共胜______场比赛.7.下表是某市居民出行方式以及收费标准:(不足1千米按1千米算)打车方式出租车3千米以内8元;超过3千米的部分2.4元/千米滴滴快车路程:1.4元/千米;时间:0.6元/分钟说明打车的平均车速40千米/时假设乘坐8千米,耗时:8406012÷⨯=分钟;出租车收费:8(83) 2.420+-⨯=元;滴滴快车收费:8 1.4120.618.4⨯+⨯=元.为了提升市场竞争力,出租车公司推出行使里程超过10千米立减4.8元活动.小聪乘坐出租车从甲地到达乙地支付车费22.4元,若改乘滴滴快车从甲地到乙地,则需支付______元.8.我国古代数学名著《张丘建算经》中记载:“今有清酒一斗直粟十斗,醐洒一斗直粟三斗,今持粟三斛,得酒五斗,问清跴酒各几何?”大意是:现有一斗清酒价值10斗谷子,一斗醐洒酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清洒,醐洒酒各几斗?如果设清酒x 斗,那么可列方程为_________.9.明代数学家程大位的《算法统宗》中有这样一个问题:“隔墙听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”其大意为:有一群人分银子,如果每人分七两,则剩余四两,如果每人分九两,则还差半斤(注:明代时1斤=16两,故有“半斤八两”这个成语).这个问题中共有_____两银子.10.《九章算术》中记载这样一道题:今有牛、马、羊食人苗.苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”大意是:现在有一头牛、一匹马、一只羊吃了别人家的禾苗.禾苗的主人要求这些动物的主人共计赔偿五斗粟米.羊的主人说:“我家羊只吃了马吃的禾苗的一半.”马的主人说:“我家马只吃了牛吃的禾苗的一半."按此说法,羊的主人应当赔偿给禾苗的主人多少斗粟米?设羊的主人赔x 斗,根据题意,可列方程为________.三、解答题11.一套精密仪器由一个A 部件和两个B 部件构成,用31m 钢材可以做40个A 部件或240个B 部件,现在要用34m 钢材制作这种仪器.(1)请问用多少钢材做A 部件,多少钢材做B 部件,可以恰好制成整套的仪器?(2)可以制成仪器套.(3)现在某公司要租赁这批仪器a 套,每天的付费方案有两种选择:方案一:当a 不超过50套时,每套支付租金100元;当a 超过50套时,超过的套数每套支付租金打八折;方案二:不论租赁多少套,每套支付租金90元.当a >50时,请回答下列问题:①若按照方案一租赁,公司每天需支付租金元(用含a 代数式表示);若按照方案二租赁,公司每天需支付租金元(用含a 代数式表示).②假如你是公司负责人,请你谋划一下,选择哪种租赁方案更合算?并说明理由.12.我市是蔬菜水果生产大县.去年秋季,我市某果树基地安排26名工人将采摘的水果包装成果篮,每个工人每小时可包装 200 个苹果或者 300 个梨,每个果篮中放 3 个苹果和 2 个梨,为了使包装的水果刚好完整配成果篮,应该安排多少名工人包装苹果,多少名工人包装梨?(1)若设安排x 名工人包装苹果,y 名工人包装梨,请求出x ,y 的值;(2)若每个果篮可卖25元,每名工人每天工作8个小时,问该果树基地一天可以卖得多少钱?13.小敏和小强假期到某厂参加社会实践,该工厂用白板纸做包装盒,设计每张白板纸做盒身3个或者盒盖5个,且一个盒身和两个盒盖恰好做成一个包装盒.设裁成盒身的白板纸有x 张,回答下列问题:(1)若有11张白板纸.①请完成下表:x 张白板纸裁成盒身()张白板纸裁成盒盖盒身的个数()0盒盖的个数0()②若盒身与盒盖全部配套用完,求可做多少个包装盒.(2)若仓库中已有5个盒身,4个盒盖和21张白板纸,现把白板纸分成两部分,一部分裁成盒身,一部分裁成盒盖,当盒身与盒盖全部配套用完,可做多少个包装盒?(3)若有n 张(5060)n ≤≤白板纸,先把一张纸适当裁成3个盒身和1个盒盖,余下白板纸分成两部分,一部分裁成盒身,一部分裁成盒盖,当盒身与盒盖全部配套用完,求n 的可能值.14.接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每人每小时生产疫苗500剂,但受某些因素影响,某车间有10名工人不能按时到厂.为了应对疫情,该车间其余工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天能完成预定任务.(1)求该车间当前参加生产的工人有多少人;(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该车间共780万剂的生产任务,问该车间还需要多少天才能完成任务.15.某水果店以5元/千克的价格购进一批橙子,很快售罄,该店又再次购进,第二次进货价格比第一次每千克便宜了2元,两次一共购进600千克,且第二次进货的花费是第一次进货花费的1.2倍.(1)该水果店两次分别购进了多少千克的橙子?(2)售卖中,第一批橙子在其进价的基础上加价%a 进行定价,第二批橙子因为进价便宜,因此以第一批橙子的定价再打八折进行销售.销售时,在第一批橙子中有5%的橙子变质不能出售,在第二批橙子中有10%的橙子变质不能出售,该水果店售完两批橙子能获利2102元,求a 的值.16.某超市第一次用3600元购进了甲、乙两种商品,其中甲种商品80件,乙种商品120件.已知乙种商品每件进价比甲种商品每件进价贵5元.甲种商品售价为20元/件,乙种商品售价为30元/件.(注:获利=售价﹣进价)(1)该超市第一次购进甲、乙两种商品每件各多少元?(2)该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得多少利润?(3)该超市第二次又购进同样数量的甲、乙两种商品.其中甲种商品每件的进价不变,乙种商品进价每件少3元;甲种商品按原售价提价a%销售,乙种商品按原售价降价a%销售,如果第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多260元,那么a的值是多少?17.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房都住7人,那么有7人无房可住;如果每一间客房都住9人,那么就空出一间房.求该店有客房多少间?该批住店房客多少人?18.某校计划购买20张书柜和一批书架(书架不少于20只),现从A、B两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每只70元,A超市的优惠政策为每买一张书柜赠送一只书架,B超市的优惠政策为所有商品八折,设购买书架a只.(1)若该校到同一家超市选购所有商品,则到A超市要准备_____元货款,到B超市要准备_____元货款(用含a的式子表示);(2)在(1)的情况下,当购买多少只书架时,无论到哪一家超市所付货款都一样?(3)假如你是本次购买的负责人,学校想购买20张书柜和100只书架,且可到两家超市自由选购,请你设计一种购买方案,使付款额最少,最少付款额是多少?19.甲、乙两家超市新年期间推出优惠活动,推出如表购物优惠方案:甲超市乙超市消费金额(元)优惠活动消费金额(元)优惠活动0~100(包含100)无优惠0~200(包含200)无优惠100~350(包含350)一律享受九折优惠超过200元的部分享受大于200八折优惠大于350一律享受八折优惠(1)小王需要购买价格为240元的商品,去哪家店更划算?(2)小李带了252元去购物、为了买到最多的商品,应选择哪家超市?最多能买到原价为多少元的商品?(3)小刘在甲超市购物、两次购物分别付了80元和288元,如果小刘把这两次购物改为一次性购物,付款多少元?20.相传大禹治水时,“洛水”中出现了一个神龟,其背上有美妙的图案,史称“洛书”.用现在的数字翻译出来,就是三阶幻方.三阶幻方是最简单的幻方,又叫九宫格,其对角线、横行、纵向的数字之和均相等,这个和叫做幻和,正中间那个数叫中心数,且幻和恰好等于中心数的3倍.如图1,是由1、2、3、4、5、6、7、8、9所组成的一个三阶幻方,其幻和为15,中心数为5.(1)如图2所示,则幻和=;(2)若4b =,6c =,求a 的值;(3)由三阶幻方可以衍生出许多有特定规律的新幻方.在如图3所示的“幻方”中,每个小三角形的三个顶点上的数字之和都与中间正方形四个顶点上的数字之和相等,当2x =,=3y -时,则a b c d --+的值为多少?21.数轴是一个非常重要的数学工具,它把数和数轴上的点建立了对应关系,形象地揭示了数与数轴上的点之间的内在联系,是数形结合的基础.小明在一条长方形纸带上画了一条数轴,进行如下操作探究:(1)操作1:折叠纸带,使数轴上表示3的点与表示1-的点重合,则表示数23a +的点与表示数___________(用含a 的式子)的点重合;(2)操作2:若点A 、B 表示的数分别是1-、4,点P 从点A 出发,沿数轴以每秒2个单位长度的速度向左匀速运动;同时,点Q 从点B 出发,沿数轴以每秒4个单位长度的速度向左匀速运动.设运动时间为t 秒,在运动过程中,当t 为何值时,点P 与点Q 之间的距离为2;(3)操作3:在数轴上剪下6个单位长度(从1-到5)的一条线段,并把这条线段沿某点向左对折,然后在重叠部分的某处剪一刀得到三条线段(如图),若这三条线段的长度之比为1:2:3,则折痕处对应的点表示的数可能是___________.22.如图,在数轴上,点O 为原点,点A 表示的数为a ,点B 表示的数为b ,且a ,b 满足29(05)a b +-+=.(1)a =;b =;(2)动点P ,Q 分别从点A ,点B 同时出发,沿着数轴向右匀速运动,点P 的速度为每秒3个单位长度,点Q 的速度为每秒1个单位长度.①几秒时,点P 与点Q 距离2个单位长度?②动点P ,Q 分别从点A ,点B 出发的同时,动点R 也从原点O 出发,沿着数轴向右匀速运动,速度为每秒()3n n >个单位长度.记点P 与点R 之间的距离为PR ,点A 与点Q 之间的距离为AQ ,点O 与点R 之间的距离为OR .设运动时间为t 秒,请问:是否存在n 的值,使得在运动过程中,743PR OR AQ -+的值是定值?若存在,请求出此n 值和这个定值;若不存在,请说明理由.23.为了节约用水,某市决定调整居民用水收费方法,规定如果每户每月用水不超过20吨,每吨水收费2元,如果每户每月用水超过20吨,则超过部分每吨水收费2.5元;小红看到这种收费方法后,想算算她家每月的水费,但她不清楚家里每月用水是否超过20吨.(1)如果小红家每月用水15吨,则水费是元;如果小红家每月用水23吨,则水费是元.(2)如果字母x 表示小红家每月用水的吨数,那么小红家每月的水费该如何用x 的代数式表示.当020x ≤≤时,每个月的水费为:(用含x 的代数式表示);当20x >时,每个月的水费为:(用含x 的代数式表示);(3)小红家第二季度交纳水费的情况如下:月份四月份五月份六月份交费金额(单位:元)263450.5小红家这个季度共用水多少吨?24.探究与发现:a b -表示a 与b 之差的绝对值,实际上也可理解为a 与b 两数在数轴上所对应的两点之间的距离.如3x -的几何意义是数轴上表示有理数x 的点与表示有理数3的点之间的距离.(1)如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且20AB =,则数轴上点B 表示的数;(2)若82x -=,则x =.(3)拓展与延伸:在(1)的基础上,解决下列问题:动点P 从O 点出发,以每秒5个单位长度的速度沿数轴向右匀速运动,设运动时间为()0t t >秒.求当t 为多少秒时?A ,P 两点之间的距离为2;(4)数轴上还有一点C 所对应的数为30,动点P 和Q 同时从点O 和点B 出发分别以每秒5个单位长度和每秒10个单位长度的速度向C 点运动,点Q 到达C 点后,再立即以同样的速度返回,点P 到达点C 后,运动停止.设运动时间为()0t t >秒.问当t 为多少秒时?P ,Q 之间的距离为425.如图1是2022年2月的日历表:(1)在图1中用优美的“”U 形框框住五个数,其中最小的数为1,则U 形框中的五个数字之和为_________;(2)在图1中将U 形框上下左右移动,框住日历表中的5个数字,设最小的数字为x ,用代数式表示U 形框框住的五个数字之和为_________;(3)在图1中移动U 形框的位置,若U 形框框住的五个数字之和为53,则这五个数字从小到大依次为_________;(4)在图1日历表的基础上,继续将连续的自然数排列成如图2的数表,在图2中U 形框框住的5个数字之和能等于2023吗?若能,分别写出U 形框框住的5个数字;若不能,请说明理由.26.小颖在国庆期间用五天时间看完了一本课外阅读书,第一天看了全书的15,第二天看的页数比第一天多14,第三天看的页数比第二天多了13,第四天看了52页,第五天看了第三天余下的13,这本课外阅读书共有多少页?27.我们规定:对于数轴上不同的三个点M ,N ,P ,当点M 在点N 左侧时,若点P 到点M 的距离恰好为点P 到点N 的距离的k 倍,且k 为正整数,(即PM kPN =),则称点P 是“[]M N ,整k 关联点”如图,已知在数轴上,原点为O ,点A ,点B 表示的数分别为24A B x x =-=,.(1)原点O ________(填“是”或“不是”)“[]A B ,整k 关联点”;(2)若点C 是“[]A B ,整2关联点”,则点C 所表示的数C x =_______;(3)若点A 沿数轴向左运动,每秒运动2个单位长度,同时点B 沿数轴向右运动,每秒运动1个单位长度,则运动时间为________秒时,原点O 恰好是“[]A B ,整k 关联点”,此时k 的值为_______.(4)点Q 在A ,B 之间运动,且不与A ,B 两点重合,作“[]A Q ,整2关联点”,记为A ',作“[]Q B ,整3关联点”,记为B ',且满足A ',B '分别在线段AQ 和BQ 上.当点Q 运动时,若存在整数m ,n ,使得式子mQA nQB ''+为定值,求出m ,n 满足的数量关系.28.已知M 、N 两点在数轴上所装示的数分别为m 、n ,且m 、n 满足()21020m n -++=:(1)则m =_________,n =_________;(2)①情境:有一个玩具汽车AB 如图所示,放置在数轴上,将汽车沿数轴左右水平移动,当点A 移动到点B 时,点B 所对应的数为m ,当点B 移动到点A 时,点A 所对应的数为n .则玩具汽车的长为_________个单位长度;②应用:一天,小阳问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生呢;若是我现在这么大,我已是老寿星,116 岁了!”小阳心想:爷爷的年龄到底是多少岁呢?聪明的你能帮小阳求出来吗?(3)在(2)①的条件下,当汽车AB 以每秒2个单位长度的速度向右运动,同时点P 和点Q 从N 、M 出发,分别以每秒1个单位长度和3个单位长度的速度向左和向右运动.记汽车AB 运动后对应的位置为A B ''.是否存在常数k 使得2PQ kB A '-的值与它们的运动时间无关?若存在,请直接写出k 的值;若不存在,请说明理由.29.如图,点A 表示的数是a ,点B 表示的数是b ,满足210(8)0a b -++=,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为(0)t t >秒,动点P 表示的数是p .(1)直接写=a ______,b =______,p =______(用含t 的代数式表示);(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,①问点P 运动多少秒时追上点Q ?②问点P 运动多少秒时与点Q 相距4个单位长度?并求出此时点P 表示的数;(3)点P 、Q 以(2)中的速度同时分别从点A 、B 向右运动,同时点R 从原点O 以每秒7个单位的速度向右运动,是否存在常数m ,使得23QR OP mOR +-的值为定值,若存在请求出m 值以及这个定值;若不存在,请说明理由.30.学校为了让学生积极参加体育锻炼强健体魄,做好大课间活动,计划购买体育用品,价格如下表:备选体育用品篮球排球羽毛球拍价格60元/个35元/个25元/支(1)若用2550元全部用来购买篮球、排球和羽毛球拍,篮球和排球的数量比2:3,排球与羽毛球拍数量的比为4:5,求篮球、排球和羽毛球拍的购买数量各为多少?(2)初一学年计划购买篮球,初二学年计划购买排球,商场的优惠促销活动如下:打折前一次性购物总金额优惠措施不超过500元不优惠超过500元且不超过600元售价打九折超过600元售价打八折按上述优惠条件,若初一年级一次性付款420元,初二年级一次性付款504元,那么这两个年级购买两种体育用品的数量一共是多少?。
小学五年级奥数练习题一元一次方程

五年级奥数练习题--一元一次方程1、算式:把数用运算符号与运算顺序符号连接起来是算式2、等式:表示相等关系的式子3、方程:含有未知数的等式4、方程命名:未知数的个数代表元,未知数的次数:n 元a 次方程就是含有n 个未知数,且含未知数项最高次数是a 的方程例如:一元一次方程:含有一个未知数,并且未知数的指数是1的方程;如:37x +=,71539q +=,222468m ⨯+=(),一元一次方程的能使一元一次方程左右两边相等的未知数的值;如:4x =是方程37x +=的解,3q =是方程81539q +=的解,5、解方程:求方程的解的过程叫解方程。
所以我们做方程的题时要先写“解”字,表示求方程的解的过程开始,也就是开始“解方程”。
6、方程的能使方程左右两断相等的未知数的值叫方程的解四、解方程的步骤1、解方程的一般步骤是:去分母、去括号、移项、合并同类项、化未知数系数为1。
2、移项变号:根据等式的基本性质可以把方程的某一项从等号的一边移到另一边,但一定要注意改变原来的符号。
我们常说“移项变号”。
3、移项的目的:是为了把含有x 的未知项和数字项分别放在等号的两端,使“未知项=数字项”,从而求出方程的解。
4、怎样检验方程的解的正确性?判断一个数是不是方程的解,就要把这个数代入原方程,看方程两边结果是否相同。
模块一、简单的一元一次方程 解下列一元一次方程:⑴ 38x +=;⑵ 83x -=;⑶ 39x ÷=;⑷ 39x =.【巩固】 (1)解方程:38x +=(2)解方程:96x -=(3)解方程:39x =(4)解方程42x ÷=例题精讲【巩固】 解方程:138142x x +=+解方程:4631x x -=-【巩固】 解方程:12432x x -=-解下列一元一次方程:⑴ 41563x x +=+;⑵ 123718x x -=-.【巩固】 解下列一元一次方程:⑴ 204322x x +=-;⑵ 153194x x -=-.解方程:()6318x +=【巩固】 解方程:12(3)7x x +-=+【巩固】 解方程3(21)4(3)x x -=-解方程:()1234x x --=【巩固】 解方程:()1530639x x +-=解方程:()15233x x --=【巩固】 解方程:()232692x x +-=-【巩固】 解方程12(3)7x x +-=+【巩固】 解下列一元一次方程:⑴ 6324x +=(); ⑵ 1836x x --=().解方程:()()413123x x x +--=+解方程132(23)5(2)x x --=--【巩固】 解下列一元一次方程:⑴ 3221x x -+=();⑵ 6417x x --=().【巩固】 解下列一元一次方程:⑴ 73222x x -+=();⑵ 55103x x +=-().模块二、含有分数的一元一次方程 解方程22240(40)56555x x x x ++--⨯+=解下列一元一次方程:⑴ 316727321x x x +÷++÷=+()();⑵ 53423968x x x +÷-=+÷()()解方程:213148y y --=-【巩固】 解方程100100255060x x ---=+【巩固】 解方程247623x x +-=解方程0.30.60.030.0210.10.02x x -+=-解方程1375x x +=+解方程(32):(23)4:7x x -+=【巩固】 解方程:(30.5):(43)4:9x x -+=解方程321275x +=-。
一元一次方程的应用练习题运用一元一次方程解决实际问题

一元一次方程的应用练习题运用一元一次方程解决实际问题一元一次方程是初中数学中的一种基本的代数方程,它可以用来解决很多实际问题。
在本文中,我们将通过一些具体的练习题来展示一元一次方程的应用,并探讨如何使用它来解决实际问题。
问题一:小明和小红一起去超市购物,他们共花费了45元。
如果小明付了35元,那么小红付了多少元?解答:设小红付的钱数为x元。
根据题意,可以得到一元一次方程35 + x = 45。
我们可以通过解这个方程来找到小红付的钱数。
解方程35 + x = 45得到 x = 45 - 35,化简得到x = 10。
所以小红付了10元。
问题二:甲乙两个工人同时开始修建一段公路,甲工人每天能完成2km,乙工人每天能完成3km。
如果他们共同修建了8天,公路的总长度是多少?解答:设公路的总长度为x km。
根据题意,可以得到一元一次方程2x + 3x = 8,表示甲乙两人修建公路的总长度等于8。
解方程2x + 3x = 8得到5x = 8,化简得到x = 8 / 5。
所以公路的总长度为8 / 5 km。
问题三:苹果店正在举行促销活动,每个顾客购买3个苹果可以享受9折优惠,小明购买了n个苹果,他付了18元,请问n的值是多少?解答:设小明购买的苹果数量为n个。
根据题意,可以得到一元一次方程3n * 0.9 = 18,表示小明购买苹果付的钱数等于18。
解方程3n * 0.9 = 18得到2.7n = 18,化简得到n = 18 / 2.7。
所以n的值是18 / 2.7。
以上是几个应用一元一次方程解决实际问题的例子。
通过解题过程可以看出,在遇到具体问题时,我们可以设定一个未知数,并通过一元一次方程来建立数学模型,进而解决问题。
一元一次方程在实际生活中的应用非常广泛,通过掌握这种解题方法,我们可以更好地理解和应用数学知识。
值得注意的是,在解题过程中,我们需要始终保持逻辑的严谨性,并确认我们所得出的解是否符合实际情况。
一元一次方程的实际应用题(含详细答案)

一元一次方程的实际应用题(含详细答案)一元一次方程的实际应用题(含详细答案)在数学学习中,一元一次方程是基础而重要的内容之一。
它不仅具有抽象的数学意义,更在我们的日常生活中有着广泛的实际应用。
本文将通过一些实际问题来展示一元一次方程的应用,解答这些问题并给出详细的答案。
问题一:莉莉去花店买鲜花,她买了x朵玫瑰花和3朵康乃馨,共花费了72元。
已知一朵玫瑰花的价格是8元,一朵康乃馨的价格是10元,求莉莉买了多少朵玫瑰花。
解答一:设莉莉买了x朵玫瑰花,则她买的康乃馨朵数为3朵。
根据所给条件可列出一元一次方程:8x + 10 × 3 = 72。
将方程化简得:8x + 30 = 72。
再继续化简得:8x = 72 - 30 = 42。
最后得到:x = 42 ÷ 8 = 5.25。
由于朵数不能为小数,所以莉莉一共买了5朵玫瑰花。
问题二:小明用某种运算规则将这个数x变为y,其中x = 5。
若x × y = 60,求y的值。
解答二:根据问题可列出一元一次方程:5 × y = 60。
将方程化简得:y = 60 ÷ 5 = 12。
所以小明用这种运算规则将5变为12。
问题三:小明爸爸今年的年龄是小明年龄的2倍加上20,两年后小明的年龄是25岁,求小明爸爸今年的年龄。
解答三:设小明爸爸今年的年龄为x岁,则小明爸爸年轻时的年龄为2x + 20岁。
根据题意,可列出一元一次方程:x + 2 = 25。
将方程化简得:x = 25 - 2 = 23。
所以小明爸爸今年的年龄是23岁。
通过以上实际应用题,可以看到一元一次方程在日常生活中的应用十分广泛。
无论是计算购物花费、解决变量关系还是预测未来年龄,一元一次方程都能为我们提供简便而准确的解决方法。
总结:本文围绕一元一次方程的实际应用题展开,通过详细解答问题,展示了一元一次方程在日常生活中的实用性。
在解题过程中,我们灵活运用了代数表达式和方程的化简,得出了准确的答案。
一元一次方程练习题

一元一次方程练习题一元一次方程是数学中的基础内容,对于我们理解数学的逻辑和解决实际问题都有着重要的作用。
接下来,让我们通过一些练习题来加深对一元一次方程的理解和掌握。
首先,来看这样一道题:小明去商店买文具,一支铅笔的价格是 2 元,一个笔记本的价格是 5 元。
小明买了 5 支铅笔和 x 个笔记本,一共花费了 35 元,请问小明买了几个笔记本?我们来设小明买了 x 个笔记本,根据已知条件,可以列出方程:5×2 + 5x = 35 。
接下来,我们解这个方程:先计算 5×2 = 10 ,方程就变成了 10 + 5x = 35 。
然后,将 10 移到等号右边,得到 5x = 35 10 ,即 5x = 25 。
最后,两边同时除以 5 ,得到 x = 5 。
所以,小明买了 5 个笔记本。
再看这道题:一辆汽车以每小时 60 千米的速度行驶,行驶了 x 小时后,距离目的地还有 100 千米,已知总路程为 500 千米,求汽车行驶了几个小时?设汽车行驶了 x 小时,根据路程=速度×时间,可列出方程:60x +100 = 500 。
解这个方程:首先,将 100 移到等号右边,得到 60x = 500 100 ,即 60x = 400 。
然后,两边同时除以 60 ,得到 x = 400÷60 = 20/3 。
所以,汽车行驶了 20/3 小时。
下面这道题有点不同:一个长方形的长比宽多 5 厘米,周长是 30厘米,求长方形的宽是多少?设长方形的宽为 x 厘米,那么长就是 x + 5 厘米。
因为长方形的周长= 2×(长+宽),所以可以列出方程:2×(x+ x + 5) = 30 。
化简方程:2×(2x + 5) = 304x + 10 = 30然后,将 10 移到等号右边,得到 4x = 30 10 ,即 4x = 20 。
最后,两边同时除以 4 ,得到 x = 5 。
一元一次方程应用题专题

一元一次方程应用题专题1.列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.2.和差倍分问题增长量=原有量×增长率现在量=原有量+增长量3.等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.2①圆柱体的体积公式V=底面积×高=S·h=rh②长方体的体积V=长×宽×高=abc4.数字问题一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程.5.市场经济问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润×100%商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.6.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.7.工程问题:工作量=工作效率×工作工夫完成某项任务的各工作量的和=总工作量=18.储蓄问题利率=每个期数内的利息×100%利息=本金×利率×期数本金经典例题基础练:1、列方程表示下列语句所表示的等量关系:①某校共有学生1049人,女生占男生的40%,求男生的人数。
小学五年级一元一次方程练习题及答案

小学五年级一元一次方程练习题及答案2=10 0.2+5=0.84=6418-3=010x-2x+x=11712.6x-9.7x=17.43-2=1973-3=70.62x+3=11-6x.4x-9.8=1.4x+9x-3+3x=6x-2+=71、甲、乙两人共存款2000元,后来甲又存入100元,乙取出自己款数的1/3,这时甲的存款数是乙的2倍。
现在两人共存款多少元?设:甲原存X元;乙原存Y元,则有X+Y=2000X+100=2Y X=1100元;Y=900元 1100+100=1200元00×=600元、六班图书馆的故事书和科技书共有100本,已知科技书的3/4比故事书的5/8少13本,两种书各有多少本?设:科技书有X本;故事书有Y本,则有X+Y=100/4X=5/8Y-1X=3Y=643、一个分数的分子和分母相加的和是72,如果将分子和分母都减少3后,则约简为5/6。
求这个分数是多少?设:分子为X;分母为Y,则有 X+Y=72/=5/X=3Y=394、如图,平行四边形ABCD周长为75厘米,以BC为底时高是14厘米,以CD为底时高是16厘米,那么平行四边形ABCD的面积是多少?ADFBEC设:BC长为X;CD长为Y,则有=714X=16YX=20;Y=17.14×20=2805、如图,在矩形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如图所示。
试求图中阴影部分的总面积。
设:长方体的长为X;宽为Y,则有 X+3Y=1X-2Y+Y=X=8;Y=214×-6×=446、从甲地到乙地的公路,只有上坡路和下坡路,没有平路,一辆汽车上坡时每小时行驶20千米,下坡时行驶35千米。
车从甲地开往乙地需9小时,从乙地到甲地需7.5小时。
问:甲、乙两地间的公路有多少千米?从甲地到乙地需行驶多少千米的上坡路?设:从甲到乙上坡路为X;下坡路为Y,则有X÷20+Y÷35=Y÷20+X÷35=7.5X=140千米;Y=70千米 140+70=210千米7、2个蟹将和4个虾兵能打扫龙宫的3/10,8个蟹将和10个虾兵就能打扫完全部龙宫。
一元一次方程练习题及解析

一元一次方程练习题及解析解析一元一次方程练习题一元一次方程是初中数学中的基础概念之一,也是代数学习的入门知识。
通过练习一元一次方程的题目,我们可以加深对这个概念的理解,同时也可以提高解题的能力。
本文将为大家提供一些一元一次方程的练习题,并给出详细的解析过程,帮助大家更好地掌握这个知识点。
例题1:求解方程5x + 3 = 18解析:首先我们需要将方程变形,将常数项移到方程的右边,得到5x = 18 - 3 = 15。
接下来我们要做的是将变量系数的倍数化为1,即将5x转化为x。
我们可以将方程两边都除以5,得到x = 15 ÷ 5 = 3。
所以方程的解为x = 3。
例题2:求解方程2(4x - 1) = 3(2x + 2)解析:首先我们需要展开方程,得到8x - 2 = 6x + 6。
接下来我们将常数项移到方程的右边,得到8x - 6x = 6 + 2,化简后得到2x = 8。
然后我们将变量系数的倍数化为1,即将2x转化为x,所以我们将方程两边都除以2,得到x = 8 ÷ 2 = 4。
所以方程的解为x = 4。
例题3:求解方程3x + 5 = 20 - 2x解析:首先我们需要将方程变形,将x的项移到方程的左边,常数项移到方程的右边,得到3x + 2x = 20 - 5,化简后得到5x = 15。
然后我们将变量系数的倍数化为1,即将5x转化为x,所以我们将方程两边都除以5,得到x = 15 ÷ 5 = 3。
所以方程的解为x = 3。
通过以上例题的解析,我们可以总结出解一元一次方程的一般步骤:1. 将方程变形,将常数项移到方程的一边,将变量项移到方程的另一边。
2. 将变量系数的倍数化为1,即将变量的系数化为1。
3. 将方程两边都除以相应的系数,得到方程的解。
需要注意的是,解一元一次方程时,我们需要进行各种运算,例如化简、合并同类项、移项等,确保每一步操作的准确性。
同时,我们还要注意检查所得的解是否符合原方程,避免出现解与原方程不符的情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级数学专项练习(九)一元一次方程及其应用
练习一:解方程
(1)8X-3(X-5)=6X+(X-1)(2)6(3X-4)=8(4X-9)-2(2X+1)(3)5X-X+7X-3X=0.72 (4)15(22-X)+2=68X
练习二:
(1)两数相除商3余10,被除数、除数、商和余数的和是143,求被除数。
(2)被除数与除数的和是98,如果被除数与除数都减去9,那么,被除数是除数的4倍。
(3)甲数是乙数的6倍,若两数各增加30,则甲数的乙数的3倍,求甲、乙两数。
(4)甲、乙、丙三个数的和是112,其中甲数是乙数的5倍,丙数比甲数多35,求甲数是多少?
练习三:
(1)兄弟二人的岁数加起来是55岁,曾有一年哥哥的岁数是弟弟今年的岁数,那时,哥哥的岁数正好是弟弟的岁数的2倍,问哥、弟俩今年各是多少岁?
(2)教室里有若干名学生,走了10个女生后,男生人数是女生人数的2倍,又起了9个男生后,女生是男生人数的5倍,问最初有多少名女生?
(3)甲书架上有书32本,乙书架上有书57本,甲书架每天增加4本书,乙书加架每天增加9本,那么多少天后,乙书架上书的本数是甲书架的2倍?
(4)甲种糖每千克8.4元,乙种糖每千克7.12元,用5千克乙种糖和若干千克甲种糖混合后,平均每千克混合糖是7.6元,甲种糖用了多少千克?。