七年级数学平方差公式
北师大版数学七年级下册1.5《平方差公式》说课稿1

北师大版数学七年级下册1.5《平方差公式》说课稿1一. 教材分析《平方差公式》是北师大版数学七年级下册第1章第5节的内容。
这一节主要介绍平方差公式的概念、推导过程及其应用。
平方差公式是初等数学中的一个重要公式,它不仅在代数学习中占有重要地位,而且在解决实际问题中也有着广泛的应用。
本节课的内容为后续学习完全平方公式、二次方程等知识打下基础。
二. 学情分析七年级的学生已经掌握了有理数的乘法运算,对因式分解有一定的了解。
但是,对于平方差公式的推导过程和应用,他们可能还比较陌生。
因此,在教学过程中,我需要从学生的实际出发,引导他们通过观察、分析、归纳等方法,自主探索并掌握平方差公式。
三. 说教学目标1.知识与技能目标:让学生掌握平方差公式的概念和推导过程,能够运用平方差公式进行简单的计算和问题求解。
2.过程与方法目标:通过观察、分析、归纳等方法,培养学生自主探索和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于挑战、积极进取的精神。
四. 说教学重难点1.教学重点:平方差公式的推导过程和应用。
2.教学难点:平方差公式的推导过程,以及如何运用平方差公式解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动、启发式教学法,引导学生通过观察、分析、归纳等方法,自主探索平方差公式。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学工具,结合几何画板等软件,直观展示平方差公式的推导过程。
六. 说教学过程1.导入:通过一个实际问题,引发学生对平方差公式的思考,激发他们的学习兴趣。
2.自主探索:引导学生观察、分析实际问题,鼓励他们尝试用自己的方法解决。
3.小组讨论:学生分组讨论,分享各自的方法和思路,互相学习,共同进步。
4.讲解与示范:教师对学生的方法进行点评,并进行平方差公式的讲解和示范。
5.练习与反馈:学生进行课堂练习,教师及时给予反馈,巩固所学知识。
6.拓展与应用:引导学生运用平方差公式解决实际问题,提高他们的应用能力。
七年级数学乘法公式-教案

1欢迎。
下载乘法公式【知识梳理】 (一)平方差公式1.平方差公式: a b a b a 2 b 2 2.平方差公式的特点:( 1) 左边是两个项式相乘,两项中有一项完全相同,另一项互为相反数 ( 2) 右边是乘式中两项的平方差(相同项的平方减去相反项的平方) (3) 公式中的a,b 可以是具体的数,也可是单项式或多项式表达式3. 平方差公式 语言叙述用于计算 逆用公式二)完全平方公式22ab b 22.完全平方公式的特点:号内而像是种每一项的平方,中间一项为左边二项式中两项乘积的 式可由语言表述为:首平方,尾平方,两项乘积在中央 . 3.公式的恒等变形及推广:222( 1) a b b a a b22( 2)a b a b4.完全平方公式的几种常见变形:2 2 2 2 ( 1) a 2 b 2a b 2ab a b 2ab在公式 a b a 2 2abb 2中, 左边是一个二项式的完全平方,右边是一个二次三项式 . 其中有两项是左边括 应用1.完全平方公式: a2b 22ab b 22 倍,其符号由左边括号内的符号决定 . 本公a b 2 a b a b a b2(2) ab2 2(3) a b 2a b 2 4ab(4) 2 2a b a b 4ab(5) a 2b c 2 a b2c22ab 2ac 2bc5•其他:(拓展内容)a b 3, a b 3 ,a3b3, a3b3完全平方公式的表示完全平方公式的结构特征完全平方公式的应用完全平方公式的变形【典型例题分析】(一)平方差公式题型一:【例1】请根据下图图形的面积关系来说明平方差公式【例2】判断下列各式能否用平方差公式计算,如果不能,应怎样改变才能使平方差公式适用?1 1(1) 2a b a 2b ( 2) 2a 3b 2b 3a ( 3) 3m 2 3m 23 3【分析】应用公式时,应首先判断能不能运用公式,必须是两个二项式相乘;这两个二项式要符合公式特征,公式中的“ a”,“b”与位置、自身的符号无关,观察的要点是“两因式中的两对数是否有一对完全相同,另一对相反” •不能盲目套用公式6.完全平方公式【答案】(1)不能,若改为2b ^a ^a 2b就可以应用公式3 3(2)不能,若改为2a 3b 3b 2a就可以应用公式【例4】类型2: abbab 2 a 2(1) (2xy+1 ) (1-2xy ) (2) (3x-4a ) (4a+3x ) (3) (3 2a)( 32a)(4) (b 2 2a 3)(2a 3 b 2)(3)不能,若改为 3m 2 3m 2就可以应用公式【借题发挥】1 •试判断下列两图阴影部分的面积是否相等【答案】相等2 •下列计算中可以用平方差公式的是()11 (A ) a2 a 2(B )abba 22(C )x y x y(D ) x 2 y x y 2【答案】B题型二:平方差公式的计算及简单应用【例3】类型1: a b a b a 2 b 2 (1)1 2a 1 2a(2) (1 5y)(15y)(3) (3m 2n)(3m2n)1 21 12 1x — x — 2 3 2 3【答案】 (1)原式=1 4a 2; (2)原式=125y 2; 2 2(3)原式=9m 4n ;(4)原式」X 2-4 9(4)【答案】(1)原式=1 4x2y2;(2)原式=9x216a2;(3)原式=4a29 ; (4)原式=4a6b4(1) ( 2x25)( 2x25)(2) ( 2a 3)(2a 3)(3) (-5xy+4z ) (-5xy-4z )(4) 2x2y 3z 2x2y 3z【答案】4 2 2 2 2 2 42 2 (1)原式=4x y 25 ; (2)原式=9 4a ; (3)原式=25x y 16z ; (4)原式=4x y 9z【例6】类型4:ma mb a b m a2 b2(xy+xz) (y-z )【答案】原式=xy2 xz2【方法总结】为了避免错误,初学时,可将结果用“括号”的平方差表示,再往括号内填上这两个数如:(a + b) (a - b)= a2 -b2J计算:(1 + 2x)(1 - 2x)= ( 1 ) 2- ( 2x ) =1-4x【例7】___________ m 2 4 m2.【借题发挥】1. ,括号内应填入下式中的(A.攵―令2 B . 4八拧C .■圧D .須+ 4于【答案】A【例8】运用平方差公式化简:(1) abab a 3b a 3b(2) x2 2 x2 2 x 2 x 2精品文档25欢迎下载(3) 1 x 1 x 1x 2 (4)【例8】用简便方法计算下列各式 2 1 (1) 91 89(2)59.8 60.2(3)-0 39 3 3【答案】(1) 原式= =901 90 1902 128099(2) 原式= =60 0.2 600.2602 0.223599.96【方法总结】 用乘法公式计算,首先要把需要计算的算式写成乘法公式的形式,一般地,给出的算式是可以写成 公式所要求的形式的,利用乘法公式能简化计算。
七年级数学平方差公式

(a+b)(a-b)
∴ a2-b2 = (a+b)(a-b)
想一想:
随堂练习:
计算:
1. (a+2)(a-2) 2. (3a+2b)(3a-2b) 3. (-x+1)(-x-1) 4. (-4k+3)(-4k-3)
=a2-4 =9a2-4b2 =x2-1
=16k2-9
小结:
作业:P10习题1.11
平方差公式(2)
平方
复习平方差公式
请回答: 1. 复述平方差公式 2. 公式的语言描述 3. 字母a,b的含义
平方差公式(1)
平方
计算下列各题:
1. (x+2)(x-2) =x2-4 2. (1+3a)(1-3a) =1-9a2 3. (x+5y)(x-5y) =x2-25y2 4. (y+3z)(y-3z) =y2-9z2
平方差公式
(a+b)(a-b)=a2-b2
两数和与这两数差的积,等于它们的平方差。
;
把自已的理想告诉同伴时,立刻招来同伴们的嘲笑:“瞧瞧,什么叫心比天高,这就是啊!”“真是异想天开!”┅┅这块石头不去理会同伴们的闲言碎语,仍然怀抱理想等时机。有一天,一个叫庄子的人路过这里,它知道这个人有非凡的智慧,就把自已的梦想告诉了他,庄子说:“我可以帮助你 实现,但你必须先长成一座大山,这可是要吃不少苦的。”石头说:“我不怕。”于是,石头拼命地吸取天地灵气,承接雨露惠泽,不知经过多少年,受了多少风雨的洗礼,它终于长成了一座大山。于是,庄子招来大鹏以翅膀击山,一时间天摇地动,一声巨响后,山炸开了,无数块石头飞向天空, 就在飞的一刹那,石头会心地笑了。但是不久,它从空中摔了下来,仍旧变成了当初的模样,落在原来的地方。庄子问:“你后
初中七年级数学平方差公式

●内容全解
1.平方差公式
(1)公式:(a+b)(a-b)=a2-b2
两数和与这两数差的积,等于它们的平方差.
(2)特征:
①左边:二项式乘以二项式,两数(a与b)的和与它们差的乘积.
②右边:这两数的平方差.
(3)找a与b的简便方法
由于(a+b)(a-b)可看作(a+b)[a+(-b)],所以在这两个多项式中,a是相同的,而b与-b 是互为相反数,那么a2-b2就可看作是符号相同的项(a)的平方减去符号相反的项(b与-b)的平方.
因此,运用平方差公式进行运算,关键
..是找出两个相乘的二项式中相同的项作为a,互为相反的项作为b.
如(3-m)(3+m)中,“3”与“3”相同,作为a,而“-m”与“m”相反,任选其一作为b,那么
(4)平方差公式中的a和b可以代表一个字母,一个数字或单项式.
注意:当a或b代表单项式时,进行平方时底数一定要打括号.
2.用拼图解释平方差公式
图1-4
左图阴影面积是a2-b2,而右图的阴影部分是长方形,长为(a+b),宽(a-b),阴影面积为(a+b)(a-b),由于左右两图的阴影部分面积相同,所以a2-b2=(a+b)(a-b),再次验证了平方差公式.。
北师大版七年级下册数学教学设计:1.5.1《平方差公式》

北师大版七年级下册数学教学设计:1.5.1《平方差公式》一. 教材分析《平方差公式》是北师大版七年级下册数学的第二章第三节的内容,本节内容是在学生已经掌握了有理数的乘法、完全平方公式的基础上进行学习的。
平方差公式是代数中的一个重要公式,它不仅涉及到平方差公式的推导,还涉及到平方差公式的应用,以及在此基础上进一步推导出完全平方公式的过程。
二. 学情分析学生在学习本节内容之前,已经掌握了有理数的乘法、完全平方公式等基础知识,具备了一定的代数运算能力。
但是,对于平方差公式的推导过程,以及如何灵活运用平方差公式解决实际问题,对学生来说还是有一定的挑战性的。
因此,在教学过程中,需要关注学生的学习情况,引导学生积极参与,突破重难点。
三. 教学目标1.知识与技能:使学生掌握平方差公式的推导过程,理解平方差公式的含义,能够灵活运用平方差公式解决实际问题。
2.过程与方法:通过小组合作、探究学习,培养学生的合作意识,提高学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自主学习能力,使学生感受到数学的乐趣。
四. 教学重难点1.重点:平方差公式的推导过程,以及平方差公式的应用。
2.难点:平方差公式的灵活运用,以及在此基础上推导出完全平方公式。
五. 教学方法1.采用问题驱动法,引导学生主动探究,发现规律。
2.运用小组合作学习,培养学生的团队协作能力。
3.通过实例讲解,使学生能够将理论知识与实际问题相结合,提高学生的应用能力。
六. 教学准备1.准备相关的教学PPT,包括平方差公式的推导过程、应用实例等。
2.准备一些实际问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生复习有理数的乘法,为新课的学习做好铺垫。
2.呈现(10分钟)呈现平方差公式的推导过程,引导学生观察、分析,发现其中的规律。
3.操练(10分钟)让学生独立完成一些平方差公式的练习题,巩固所学知识。
湘教版七年级数学下册课件2.平方差公式

(2)(3+2a)(-3+2a); =(2a+3)(2a-3) =(2a)2-32 =4a2-9.
(4)(-2x2-y)(-2x2+y);
=(-2x2 )2-y2
=4x4-y2.
=2499. (5)(3x+4)(3x-4)-(2x+3)(3x-2).
课堂小测
4.利用平方差公式计算: (a-2)(a+2)(a2 + 4) 解:原式=(a2-4)(a2+4)
=a4-16.
课堂小测
5.化简: (x-y)(x+y)(x2+y2)(x4+y4). 解:原式=(x2-y2)(x2+y2)(x4+y4) =(x4-y4)(x4+y4) =x8-y8.
③(2m+ 1)( 2m-1)=4m2 - 1 ④(5y + z)(5y-z)= 25y2 - z2
(2m)2 - 12 (5y)2 - z2
想一想:这些计算结果有什么特点?
新知探究
归纳总结 平方差公式 (a+b)(a−b)= a2−b2 两数和与这两数差的积,等于这两数的平方差. 公式变形: 1.(a – b ) ( a + b) = a2 - b2 2.(b + a )( -b + a ) = a2 - b2
新知探究
算一算:看谁算得又快又准. 计算下列多项式的积,你能发现什么规律? ①(x + 1)( x-1); ②(m + 2)( m-2); ③(2m+ 1)(2m-1); ④(5y + z)(5y-z).
新知探究
初一数学公式总结:平方公式口诀

初一数学公式总结:平方公式口诀
平方差公式两数和乘两数差,等于两数平方差。
积化和差变两项,完全平方不是它。
完全平方公式二数和或差平方,展开式它共三项。
首平方与末平方,首末二倍中间放。
和的平方加联结,先减后加差平方。
完全平方公式
首平方又末平方,二倍首末在中央。
和的平方加再加,先减后加差平方。
这篇初一数学公式总结:平方公式口诀就和大家分享到这里了。
小编提醒大家:单纯的记忆是不能解决实际问题的,我们必须学会灵活运用所学知识。
2013新编初一数学公式大全节选
初中数学公式大全(七年级)。
人教版数学七年级上册《平方差公式》教学设计

人教版数学七年级上册《平方差公式》教学设计一. 教材分析《平方差公式》是初中数学的重要内容,人教版七年级上册第17章第二节引入。
本节课主要让学生掌握平方差公式的推导过程、公式结构及应用。
平方差公式的推导有利于培养学生的逻辑思维能力,为后续学习完全平方公式、多项式乘法等知识打下基础。
二. 学情分析七年级的学生已经掌握了整式的乘法、因式分解等基础知识,具备一定的逻辑思维能力。
但在推导平方差公式、理解公式内涵等方面还需加强。
此外,学生对数学公式的记忆往往依赖于死记硬背,缺乏深入理解。
因此,在教学过程中,要注重引导学生通过观察、操作、思考、交流等方式,自主发现并掌握平方差公式。
三. 教学目标1.知识与技能:让学生掌握平方差公式的推导过程、公式结构及应用。
2.过程与方法:通过观察、操作、思考、交流等方式,培养学生自主学习、合作学习的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的逻辑思维能力。
四. 教学重难点1.重点:平方差公式的推导过程及应用。
2.难点:理解平方差公式的内涵,掌握公式的灵活运用。
五. 教学方法1.启发式教学:引导学生通过观察、操作、思考、交流等方式,自主发现并掌握平方差公式。
2.小组合作:学生进行小组讨论,培养学生的合作意识。
3.案例分析:选取典型例题,让学生学会运用平方差公式解决问题。
4.归纳总结:引导学生总结平方差公式的推导过程、公式结构及应用。
六. 教学准备1.教学课件:制作课件,展示平方差公式的推导过程、应用案例等。
2.练习题:准备适量练习题,用于巩固所学知识。
3.教学用具:黑板、粉笔、投影仪等。
七. 教学过程1.导入(5分钟)利用多媒体展示生活中的平方差现象,如正方形面积与边长的关系,引发学生对平方差公式的兴趣。
提问:你们能找出这些现象背后的规律吗?2.呈现(10分钟)展示平方差公式的推导过程,引导学生观察、思考并总结规律。
通过具体案例,让学生学会运用平方差公式解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平方
计算下列各题:
1. 2. 3. 4.
(x+2)(x-2) =x2-4 (1+3a)(1-3a) =1-9a2 (x+5y)(x-5y) =x2-25y2 (y+3z)(y-3z) =y2-9z2
平方差公式 2 2 (a+b)(a-b)=a -b
两数和与这两数差的积,等于它们的平方差。
解 : (1) a2(a+b)(a-b)+a2b2 = a2(a2-b2)+a2b2 = a4- a2 b2+a2b2 = a4 (2x-5)(2x+5)-2x(2x-3) = (2x)2-25)-(4x2-6x) = 4x2-25-4x2+6x = 6x-25
(2)
随堂练习:
计算: 1. 2. 3. 704×696
例2:利用平方差公式计算下列各题。
1 1 1. ( x y )( x y ) 4 4
2. (ab 8)(ab 8)
2 ( m n )( m n ) 3 n 3.
1 2 1 2 2 ( x) y x y 2 4 16
(ab) 2 64 a 2b 2 64
m2 n 2 3n 2 m 2 2n 2
随堂练习:
计算:
1. 2. 3. 4.
(a+2)(a-2) (3a+2b)(3a-2b) (-x+1)(-x-1) (-4k+3)(-4k-3)
=a2-4 =9a2-4b2 =x2-1 =16k2-9
小结:
作业:P10习题1.11
平方差公式(2)
( x 2 y)(x 2 y) ( x 1)(x 1) 1 1 x( x 1) ( x )( x ) 3 3
; / 大连网站制作
到屋里来,他几乎要惊叫失声:原来给额娘请安の居然是可望而不可及の小四嫂!好些次,他在永和宫向额娘请安の时候,都盼望着能再次 见到她。可是好些次,他都是失望而归。每壹次,雅思琦都是在说:回额娘,水清妹妹生病咯。好些次,他都想问壹问四嫂:小四嫂为啥啊 又生病咯?她是那么の娇弱,他担心,即使壹阵风,都会把她吹倒。可是,无论哪壹次,他都没有问出过口,即使对八小格,甚至是和自己 最要好の十小格,他都守口如瓶,他又怎么可能在四嫂面前露出壹丝破绽?他不担心自己会如何,他担心の是她,会因为他の鲁莽而遭受无 端の怀疑。哪壹各府里の后院都不是干净の,四哥の王府虽然府规最严,但是这种有辱门风の事情,会给她带来啥啊样の后果,他当然是最 清楚。她是他の女神,是他の仙子,他不能因为任何壹各小小の闪失而给她带来毁灭性の后果。他只要她好好地活着,他只需要自己能够远 远地注视,默默地祝福,足够咯。第壹卷 第225章 解围在永和宫再也不曾遇到の小四嫂,居然在行宫遇到咯,而且还要共处五、六各月の 时光,真是有心栽花花不发,无心插柳柳成荫。二十三小格为久别重逢而激动万分,为朝夕相见而欣喜若狂,只是,叔嫂之别要求他必须强 压下这份狂喜,小心地呵护住自己の这份感情。水清认错咯塔娜,他只是莞尔壹笑,可是小四嫂被额娘奚落,他却是焦急万分、心痛至极, 但是又不敢表现出来,于是急中生智の二十三小格脱口而出:“额娘,怎么晚膳还不送来,这壹天又累又乏,连晚膳都不能吃到,这帮奴才 们是怎么当差の。”他也从王爷那里学会咯这壹招:声东击西、围魏救赵。他要迅速地转移话题,他要救水清于危难水火。德妃被二十三小 格壹打岔,果然忘记咯对水清の穷追猛打。老二十三是她の心肝宝贝,她の心思全都放在咯小儿子の身上,其它の壹切全熟视无睹:“你怎 么又饿咯?下午の茶点你没有用吗?”“就那么壹点儿,哪儿够儿子塞牙缝儿の?勉强充充饥而已。”“唉,你呀,你怎么不早说,额娘没 有胃口,根本没有吃啥啊,就让奴才们端走咯。真是の,唉!”德妃壹脸追悔莫及の表情。二十三小格本来是为咯给水清解围,此时见额娘 这么着急上火、心急如焚の样子,非常不忍心让额娘为他操心费神,赶快说道:“没事儿,儿子就是随口提咯这么壹句,不碍事儿の。”二 十三小格话音刚落,就听外面传来零乱の脚步声,秋婵赶快出去查看,才走出房门,就只见是膳房の小太监来送晚膳。二十三小格壹见晚膳, 眉头皱成咯壹各黑疙瘩。他根本就不饿,不但不饿,因为壹天の劳顿,他也是壹点儿胃口都没有,可是刚刚他还跟额娘吵着要晚膳来着。德 妃壹见晚膳来咯,高兴得立即
平方
复习平方差公式
请回答: 1. 复述平方差公式 2. 公式的语言描述 3. 字母a,b的含义
a
如左图,边长为a的大正方形中有一个边长为b 的小正方形。
1. 请表示图中阴影(紫色)部分的面积。
b
图1
2. 小颖将阴影部分拼成了一个长方形,这个 长方形的长和宽分别是多少? 你能表示出它的面积吗?
FLASH动画演示
例3:用平方差公式进行计算。 (1) 103×97 (2) 118×122 解:(1) 103×97=(100+3)(100-3) =1002-32 =9991
(2) 118×122=(120+2)(120-2) =1202-22 =14396
例4:计算: (1) a2(a+b)(a-b)+a2b2 (2) (2x-5)(2x+5)-2x(2x-3)
a
3.
比较1、2的结果,你能验证平方差公式吗?
4.
图1
图2
a2-b2
(a+b)(a-b)#43;b)(a-b)
想一想:
1.
2. 3.
计算下列各组算式,并观察它们的共同特点。 7×9= 11×13= 79×81= 8×8= 12×12= 80×80= 从以上的过程中,你发现了什么规律? 请用字母表示这一规律,你能说明它的正确 性吗?
平方差公式
(a+b)(a-b)=a2-b2
例1:利用平方差公式计算下列各题。 1. (5+6x)(5-6x) =52-(6x)2=25-36x2 2. (x-2y)(x+2y) =x2-(2y)2=x2-4y2 3. (-m+n)(-m-n) =(-m)2-n2=m2-n2
平方差公式
(a+b)(a-b)=a2-b2