燃料电池的基本工作原理
燃料电池汽车工作原理

燃料电池汽车工作原理燃料电池汽车是一种新型的环保型交通工具,其工作原理基于燃料电池的电化学反应,将氢气与氧气通过电化学反应产生电能驱动电动机,推动汽车运行。
在燃料电池汽车中,主要包括燃料电池、电动机、电池组、氢气储罐等组成部分,下面将详细介绍燃料电池汽车的工作原理。
1. 燃料电池的工作原理燃料电池是燃料电池汽车的核心部件,其工作原理类似于电池。
燃料电池有多种类型,常见的是质子交换膜燃料电池(PEMFC)。
在燃料电池中,氢气经过阴极,氧气经过阳极,在电解质膜中发生电化学反应。
反应式如下:在阳极:2H2→4H++4e-在阴极:O2+4H++4e-→2H2O综合反应:2H2+O2→2H2O这些反应释放出能量,转化为电能,从而驱动电动机工作,推动汽车前进。
2. 电动机的工作原理电动机是燃料电池汽车的动力来源,接收来自燃料电池的电能,通过电磁感应原理将电能转化为机械能,驱动车辆运行。
电动机具有高效率、无排放、无噪音等优点,是燃料电池汽车的核心部件之一。
3. 电池组的作用电池组是用来存储电能的装置,通常是锂电池,在燃料电池汽车中充当储能装置的作用。
电池组可以储存来自燃料电池的电能,同时也可以通过回收制动能量实现能量回馈,提高能量利用效率。
4. 氢气储罐的原理燃料电池汽车需要氢气作为燃料,氢气储罐是存放氢气的设备。
氢气储罐通常采用高压氢气罐或液态氢气罐,确保氢气的稳定储存和供给。
氢气作为清洁能源的一种,可以通过水电解或氢气提取等方式制备。
总结:燃料电池汽车通过燃料电池产生电能驱动电动机工作,实现零排放、高效能的特点。
随着新能源汽车的不断发展,燃料电池汽车将成为未来交通运输的重要发展方向,助力构建绿色低碳的车辆出行环境。
燃料电池的基本工作原理及主要用途

简述燃料电池的基本工作原理及主要用途1.燃料电池的工作原理燃料电池是一种按电化学原理,即原电池的工作原理,等温地把贮存在燃料和氧化剂中的化学能直接转化为电能的能量转换装置。
其单体电池是由电池的正极(即氧化剂发生还原反应的阴极)、负极(即还原剂或燃料发生氧化反应的阳极)和电解质构成,燃料电池与常规电池的不同之处在于,它的燃料和氧化剂不是贮存在电池内,而是贮存在电池外部的贮罐内,不受电池容量的限制,工作时燃料和氧化剂连续不断地输入电池内部,并同时排放出反应产物。
以磷酸型燃料电池为例,其反应式为:燃料极(阳极) H2→2H++2e-空气极(阴极) 1/2O2+2H++2e-→H2O综合反应式H2+1/2O2→H2O以上反应式表示:燃料电池工作时向负极供给燃料(氢),向正极供给氧化剂(空气),燃料(氢)在阳极被分解成带正电的氢离子(H+)和带负电的电子(e-),氢离子(H+)在电解质中移动与空气极侧提供的O2发生反应,而电子(e-)通过外部的负荷电路返回到空气极侧参与反应,连续的反应促成了电子(e-)连续地流动,形成直流电,这就是燃料电池的发电过程,也是电解反应的逆过程。
2. 燃料电池的应用2.1能源发电燃料电池电站的每一套设备都包括了一整套采用天然气发电的电力系统。
分为以下几个分单元:①燃料电池组②燃气制备③空气压缩机④水再生利用⑤逆变器⑥测量与控制系统。
燃料电池组产生的直流电通过逆变器转换成电力系统所需的交流电。
各国工业界人士普遍对于燃料电池在发电站的应用前景看好。
2.2汽车动力目前,各国的汽车时用量均在不断增加,其排放的尾气已成为城市环境的主要污染源之一,特别是发展中国家,由于环境治理的力度不够,这一问题更加突出。
于是人们要求开发新型的清洁、高效的能源来解决这一问题。
质子交换膜燃料电池的出现,解决了燃料电池在汽车动力成本和技术方面存在的若干问题,使燃料电池电动车的开发和使用成为可能。
这种电池具有室温快速启动、无电解液流失、水易排出、寿命长、比功率与比能量高等特点,适合做汽车动力,是目前世界各国积极开发的运输用燃料电池。
生物燃料电池工作原理

生物燃料电池工作原理生物燃料电池是一种能够将生物质燃料转化为电能的装置,其工作原理基于化学反应和电化学过程。
本文将介绍生物燃料电池的基本构成和工作原理,并探讨其在可再生能源领域的应用潜力。
一、生物燃料电池的基本构成1. 双电极体系生物燃料电池一般由两个电极组成,分别为阳极(负极)和阴极(正极)。
阳极是生物燃料的氧化反应发生的位置,阴极是还原反应发生的位置。
2. 电解质电解质在生物燃料电池中起到导电作用,将阳极和阴极连接起来,同时阻止阳极和阴极之间的直接电子传输。
3. 酶或微生物催化剂为了促进生物燃料的氧化反应和还原反应,在阳极和阴极上通常使用酶或微生物催化剂。
酶或微生物催化剂能够加速反应速率,提高电池的产电性能。
二、生物燃料电池的工作原理生物燃料电池的工作原理可以分为两个步骤:氧化反应和还原反应。
1. 氧化反应在阳极上,生物燃料(如葡萄糖或乙醇)被氧化成电子、质子和相应的产物。
这一反应通常由酶催化,产生的电子通过外部电路流向阴极。
2. 还原反应在阴极上,氧气和流经电解质的质子参与还原反应,与从阳极传输过来的电子结合,生成水。
这一反应同样由酶催化。
三、生物燃料电池的应用潜力生物燃料电池作为一种可再生能源装置,具有以下几个优点,使其在能源领域具有广阔的应用潜力。
1. 高能量转化效率生物燃料电池能够将生物质燃料中的化学能高效地转化为电能,转化效率较高。
与传统能源转化方式相比,生物燃料电池具有更高的能源利用率。
2. 低环境污染生物燃料电池的反应产物主要为水和二氧化碳,相比燃烧过程中产生的有害气体和颗粒物,其环境污染程度较低。
3. 多样的生物质燃料来源生物燃料电池可以利用多种生物质燃料作为能源,如葡萄糖、乙醇、脂肪酸等。
这些生物质燃料多来自可再生资源,具有可持续供应的特点。
尽管生物燃料电池有诸多优点,但在实际应用中还存在一些挑战和限制。
例如,反应速率较慢、催化剂的失活、电极的稳定性等问题需要进一步解决。
然而,随着科技的不断进步和研究的深入,相信这些问题将会得到解决,生物燃料电池有望成为未来可再生能源领域的重要组成部分。
丁烷燃料电池工作原理

丁烷燃料电池工作原理
丁烷燃料电池是一种利用丁烷作为燃料的直接氧化物燃料电池。
其工作原理如下:
1. 燃料供应:丁烷燃料通过燃料管道注入燃料电池系统中。
在电池中,丁烷会与空气中的氧气发生反应。
2. 电解质导电:丁烷燃料电池中的电解质是固体氧化物,如氧化锆等。
电解质具有良好的离子传导性,允许氧离子在电解质中移动。
3. 氧化反应:在阴极侧,空气中的氧气与电解质中的氧离子发生反应,生成氧化物离子。
O2 + 4e- → 2O2-
4. 导电材料:电子在电解质中无法自由移动,因此需要导电材料在电解质和阳极之间传递电子,以维持电流的流动。
5. 丁烷氧化反应:在阳极侧,丁烷与电解质中的氧化物离子发生反应,生成二氧化碳和水。
C4H10 + 12O2- → 4CO2 + 5H2O + 24e-
6. 电子流动:电子从阳极通过外部电路流向阴极。
这个电子流动产生了电流,可以用来做功或驱动电子设备。
7. 电化学反应:整个过程是通过一系列电化学反应来完成的,
丁烷作为燃料被氧气氧化,产生能量和水和二氧化碳。
反应的排放物比较环保,不会产生有害气体。
总的来说,丁烷燃料电池通过直接氧化丁烷和氧气来产生电能,同时产生的是二氧化碳和水,充分利用了丁烷的能量,具有高效能源转化和环保的优势。
燃料电池的结构与工作原理分析

燃料电池的结构与工作原理分析燃料电池(Fuel Cell)是一种新型能源转换技术,它可以将化学能转化为电能,在工业和家庭等各个领域得到了广泛应用。
那么,它的结构和工作原理是什么呢?一、燃料电池的结构燃料电池由多个部件组成,包括阴极、阳极、电解质和集流板等。
在这些部件中,电解质是最关键的组成部分,它分离了阴阳两极,并在其中提供离子传输通道。
电解质也被称为“质子交换膜”,通常使用聚合物膜,如聚四氟乙烯(PTFE)或氟化聚合物膜。
在此基础上,燃料电池可以分为不同的类型,如质子交换膜燃料电池(PEMFC)、碱性燃料电池(AFC)和直接甲醇燃料电池(DMFC)等。
阴极和阳极分别位于电解质两侧,它们通过电解质连接起来,构成一个电池。
电路连接两个集流板,一个获得电子而另一个获得离子。
燃料供应系统将燃气提供给阳极侧,氧气供应系统将氧气提供给阴极侧。
燃料和氧气在阳极和阴极处发生氧化还原反应,產生出电子和离子,并在电路中流动,最终输出电能。
整个系统应该是一个紧密的结构,以确保燃气和氧气传递的有效性和连续性。
所有这些部件都应该严密相连,并彼此协调,确保燃料电池的正常运行。
二、燃料电池的工作原理燃料电池的工作原理基于氧化还原反应,其主要过程如下:1.燃料供给燃料电池需要氢气或类似氢气的化合物,如甲烷、丙烷或乙醇等。
这些气体会在燃料供应系统中进行气体净化和处理。
处理完成后,燃料会通过阴极电极并流向电解质的一侧。
2.氧气供给氧气也是燃料电池必不可少的元素。
氧气从空气中提取,流入燃料电池的散热器中进行预处理并得到压缩。
在流入电解质的另一侧时,氧气与燃料在电解质的表面相遇,反应并放出能量。
3.反应发生在发生反应之前,电解质会将燃料侧的氢原子分解为质子和电子。
质子向电解质中传递,电子向外流动并传递到阳极侧。
电子与在氧气侧的质子重新相遇,生成H2O并放出电子,从而产生电能。
4.输出电能电能通过电极板输送出去,供给终端设备使用。
在使用过程中,燃料电池会不断地从燃料和氧气中获取能量,并将其转化为电能。
燃料电池的应用领域

燃料电池的应用领域一、燃料电池的基本原理燃料电池是一种将化学能直接转化为电能的设备,其基本原理是利用氢气和氧气在催化剂的作用下发生氧化还原反应,产生水和电能。
燃料电池具有高效、清洁、静音等特点,是一种新型的能源转换设备。
二、燃料电池的分类根据不同的工作原理和使用场景,燃料电池可以分为以下几类:1.质子交换膜燃料电池(PEMFC):主要用于车辆动力系统、舰船动力系统等领域。
2.固体氧化物燃料电池(SOFC):主要用于发电、工业加热等领域。
3.碱性燃料电池(AFC):主要用于空间站、卫星等领域。
4.直接甲醇燃料电池(DMFC):主要用于便携式设备、无人机等领域。
三、燃料电池的应用领域随着技术的不断进步和环保意识的提高,燃料电池在各个领域得到了广泛的应用,以下是燃料电池的主要应用领域:1.交通运输领域燃料电池汽车是目前最为成熟的应用领域之一。
由于其具有零排放、高效、静音等特点,被视为未来汽车发展的方向。
目前,世界各大汽车厂商均在积极开发燃料电池汽车,并推出了相关产品。
2.能源领域燃料电池可以直接将化学能转化为电能,因此被广泛应用于发电和工业加热等领域。
固体氧化物燃料电池是其中最为常见的一种类型,可用于发电站、工业加热等场景。
3.便携式设备领域直接甲醇燃料电池是一种便携式设备常用的能源来源。
相对于传统锂离子电池,其具有更长的续航时间和更快的充电速度,因此被广泛应用于无人机、便携式充电器等场景。
4.航空航天领域由于空间站和卫星等设备需要长期运行而无法进行加油换气等操作,因此燃料电池被广泛应用于航空航天领域。
碱性燃料电池是其中最为常见的一种类型。
四、燃料电池的优势相对于传统的化石能源和锂离子电池,燃料电池具有以下优势:1.高效:燃料电池直接将化学能转化为电能,效率高达50%以上,远高于传统发动机和锂离子电池。
2.清洁:燃料电池只产生水和少量氧气,不会产生任何有害气体和颗粒物,因此对环境无任何影响。
3.静音:由于没有内燃机的噪音和振动,燃料电池汽车非常静音。
燃料电池的工作原理及应用
燃料电池的工作原理及应用燃料电池是一种新型的绿色能源技术,其工作原理是利用电化学反应将化学能转换为电能,而不像传统的燃烧发电方式一样产生废气和废水等污染物。
本文将介绍燃料电池的基本原理及其在不同领域的应用。
一、燃料电池的基本原理燃料电池的基本原理是通过化学反应将氢和氧转化为电能和水。
其由质子交换膜(PEM)、阴极和阳极三部分组成。
在阳极,燃料(通常是氢气)通过催化剂(如白金)的作用分解为电子和质子。
电子从阳极流出形成电流,而质子则穿过PEM向阴极传递。
在阴极处,氧通过催化剂与质子结合生成水,同时释放出电子。
这些电子与从阳极流出的电子共同构成了燃料电池的输出电流。
燃料电池有多种不同的类型,包括质子交换膜燃料电池(PEMFC)、碱性燃料电池(AFC)和固体氧化物燃料电池(SOFC)等。
其中PEMFC最为常见,因其能够在常温下工作,并且具有高效率和低排放等优点,被广泛应用于交通运输、航空航天和家庭电力等领域。
二、燃料电池在交通运输领域的应用燃料电池作为一种高效、环保、低噪音的新能源技术,具有广阔的应用空间。
特别是在交通运输领域,它可以提供更为清洁和可持续的能源解决方案。
目前,燃料电池汽车已经进入商业化阶段,如日本的丰田Mirai、韩国的现代Nexo和欧洲的戴姆勒GLC F-CELL等。
燃料电池汽车与传统燃油汽车相比,能够大幅减少车辆尾气排放、降低噪音和振动等,并且具有更长的续航里程和更短的加油时间。
此外,燃料电池还可以应用于公共交通系统、物流车辆和电动自行车等领域。
三、燃料电池在能源领域的应用燃料电池不仅适用于交通运输领域,还可以被广泛应用于能源供应领域。
例如,燃料电池可以与太阳能板、风电和生物质等可再生能源相结合,构成全球范围内的可再生能源系统。
燃料电池也可以被应用于独立供能系统,如街道灯、监控摄像头和移动通信基站等。
此外,燃料电池还可以为日益增长的数据中心提供可靠的备用电源,确保用户数据的安全。
在农业领域,燃料电池也可以被用于灌溉和农业机械等方面,促进农业现代化和可持续发展。
燃料电池工作原理原理
燃料电池工作原理原理
燃料电池是一种通过化学反应将燃料直接转化为电能的设备。
其基本工作原理可以简单概括为以下几个步骤:
1. 燃料输入:燃料电池系统通常使用氢气作为燃料。
燃料通过燃料供应系统输入电池。
2. 氢气分解:燃料电池中的阳极(负极)通常使用铂等催化剂,将输入的氢气(H2)分解成质子(H+)和电子(e-)。
3. 电化学反应:质子通过电解质(通常为聚合物电解质膜)传递到阴极(正极)一侧,而电子则通过外部电路流动,形成电流。
4. 氧气进入:阴极通常使用氧气(O2)作为氧化剂,氧气通
过外部供气系统输入电池。
5. 化学反应:在阴极一侧,氧气与质子和电子发生化学反应,生成水(H2O)。
6. 产生电能:在化学反应的过程中,由于电子在外部电路中流动,所以产生了电流,从而转化为电能供应给外部设备。
总之,燃料电池通过氧化剂和燃料的化学反应,将化学能转化为电能,并以氢气和水作为唯一的排放物,实现了高效、清洁的能量转换。
燃料电池系统工作原理
燃料电池系统工作原理燃料电池系统是一种将化学能直接转换为电能的装置,它通过利用氢气和氧气的化学反应来产生电力。
燃料电池系统由燃料电池堆、氢气和氧气供应系统、电化学负载和控制系统组成。
下面将详细介绍燃料电池系统的工作原理。
我们来了解燃料电池堆的结构。
燃料电池堆由多个燃料电池单元组成,每个单元包括质子交换膜(PEM)、阳极、阴极和电解质。
质子交换膜是燃料电池堆的核心部分,它具有良好的质子传导性能,同时阻挡氢气和氧气之间的电子流动,确保电子通过外部电路流动以产生电能。
燃料电池系统的工作过程如下:首先,氢气从氢气供应系统进入阳极侧,氧气从氧气供应系统进入阴极侧。
在阳极侧,氢气分子被氧化成质子和电子。
质子可以通过质子交换膜传导到阴极侧,而电子则通过外部电路流动到阴极侧,这就产生了电流。
在阴极侧,氧气与质子和电子发生还原反应,生成水。
这个过程中释放出的能量被转化为电能,同时产生的水蒸气通过排气系统排出。
整个反应过程可以用如下方程式表示:2H2 + O2 → 2H2O这个方程式说明了氢气和氧气在燃料电池堆中的化学反应过程,氢气和氧气通过质子交换膜在阳极和阴极之间发生化学反应,最终生成水和电能。
燃料电池系统还包括氢气和氧气供应系统。
氢气供应系统负责储存和输送氢气到燃料电池堆的阳极侧,而氧气供应系统则负责将氧气输送到阴极侧。
为了确保燃料电池系统的安全性和稳定性,供氢系统和供氧系统需要具备高压、高纯度和自动控制等特点。
除了燃料电池堆和氢气、氧气供应系统,电化学负载也是燃料电池系统的重要组成部分。
电化学负载可以是电动机、发电机或储能装置等,它们通过连接到燃料电池系统的外部电路,可以利用燃料电池产生的电能进行工作或储存。
燃料电池系统还需要一个精确的控制系统来监测和调节燃料电池的工作状态。
控制系统可以根据电化学负载的需求,调整氢气和氧气的供应量,以保持燃料电池系统的稳定工作。
总结起来,燃料电池系统通过利用氢气和氧气的化学反应产生电能。
燃料电池工作原理分类与组成
燃料电池工作原理分类与组成燃料电池是一种利用氢气和氧气等氧化还原反应来产生电能的装置。
燃料电池的主要工作原理是通过在阳极处将氢气氧化生成正电荷和电子,并在阴极与氧气发生还原反应,最终生成水等产品。
这些正电荷和电子通过外部电路流动形成电流,从而产生电能。
燃料电池根据其工作原理和使用的燃料类型可以分为几类,如下所述:1.PEMFC(质子交换膜燃料电池):质子交换膜燃料电池是应用最广泛的燃料电池类型之一、它使用质子交换膜作为电解质,经过氢气在阳极侧的氧化反应和氧气在阴极侧的还原反应来产生电能。
2.SOFC(固体氧化物燃料电池):固体氧化物燃料电池使用固体氧化物作为电解质,能够直接使用多种燃料,如氢气、甲烷等。
它的工作温度较高,通常在600-1000摄氏度之间。
3.PAFC(酸性聚合物燃料电池):酸性聚合物燃料电池使用酸性聚合物作为电解质,通常使用磷酸作为载体。
它的工作温度较低,通常在100摄氏度左右,能够适应快速启动和负载变化。
4.AFC(碱性燃料电池):碱性燃料电池使用碱性溶液作为电解质,如氢氧化钾溶液等。
它的工作温度通常较低,可达到70-90摄氏度,但对于氧气的阻挡效果较差。
燃料电池通常包括以下基本组成部分:1.电解质:燃料电池的核心是电解质,它能够传导正电荷和阻挡负电荷,以实现电化学反应。
电解质可以是质子交换膜、固体氧化物、酸性聚合物等。
2.阳极:阳极是氧化反应发生的地方。
在质子交换膜燃料电池中,阳极通常是由贵金属催化剂(如铂)覆盖的碳纳米管或碳纤维纸等。
3.阴极:阴极是还原反应发生的地方。
在质子交换膜燃料电池中,阴极通常也是由贵金属催化剂(如铂)覆盖的碳材料等。
4.电子导体:为了让电子能够负载流动,电子导体通常是由碳纤维、金属等材料制成。
5.燃料供应系统:燃料电池需要燃料供应系统来提供氢气或其他燃料。
这包括储氢罐、燃料处理系统等。
6.氧气供应系统:燃料电池还需要氧气供应系统来提供氧气。
这包括空气处理系统、气泵等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
燃料电池的基本工作原理燃料电池的基本工作原理我们在准备长途旅行之前,总是不会忘记检查是否随身携带了信用卡或者钱包,当然还有手机或者笔记本电脑的备用电池和充电器,它们的重要性伴随着人们对手机和笔记本电脑的依赖日益彰显。
其症结所在就是电池的有限的工作时间,目前便携式电子产品使用的锂离子电池已经无法应付长时间操作的需求。
一块手机普通的锂电池只能维持几天时间,笔记本电脑的电池也就几个小时。
而随着无线技术和音视频功能越来越受欢迎燃料电池的基本工作原理我们在准备长途旅行之前,总是不会忘记检查是否随身携带了信用卡或者钱包,当然还有手机或者笔记本电脑的备用电池和充电器,它们的重要性伴随着人们对手机和笔记本电脑的依赖日益彰显。
其症结所在就是电池的有限的工作时间,目前便携式电子产品使用的锂离子电池已经无法应付长时间操作的需求。
一块手机普通的锂电池只能维持几天时间,笔记本电脑的电池也就几个小时。
而随着无线技术和音视频功能越来越受欢迎,对电池的工作时间的要求与日俱增,传统二次电池(包括锂电池和镍电池)已经成为瓶颈,桎梏了便携式产品向更丰富功能的方向发展。
与传统二次电池相比,燃料电池的能量至少要高10倍。
一个锂离子电池能提供300 Whr/L的电量密度,而甲醇燃料电池的电量密度却高达4800 Whr/L,10ml的甲醇可以保证13.5小时的通话时间或者642小时的待机时间。
因此,东芝、IBM、NEC等许多国际著名的电子公司都倾注精力和财力研究燃料电池,目前世界前十大营收企业,除Walmart外,均有投资氢能或燃料电池产业。
专攻便携式应用的DMFC理论上,燃料电池(Fuel Cell)并不是电池,只是把燃料(例如氢气)和氧化剂通过电极反应直接生成电流的装置,由于它的生成物是水,因而具有相当的环保优势。
燃料电池的典型结构就是层迭电池单元的堆栈(Stack),一个堆栈可以包含多个单独的燃料单元(图1)。
而每个单元的基本结构与电解水装置相类似,包含2个正负电极(阳极和阴极),电解质以及催化剂。
阳极为氢电极,阴极为氧电极,阳极和阴极上都含有一定量的催化剂,目的是用来加速电极上发生的电化学反应。
以氢氧反应为例,在阴极催化剂的作用下,一个氢分子分解成2个氢离子,同时释放出2个电子,由于阻隔膜对电子的过滤作用,电子无法通过电解质只能绕行,从而形成电流。
而氢离子可以顺利通过电解质达到阴极和空气中的氧原子反应生成水(图2)。
图1 燃料电池的基本结构图2 燃料电池的基本工作原理从工作原理不难看出,催化剂、电极、隔膜和电解质是燃料电池的主要材料。
各种燃料电池工作原理基本相似,其分类是由电解质的材料决定的。
目前广泛研发的燃料电池有质子交换膜燃料电池(PEMFC)、直接甲醇燃料电池(DMFC)、碱性燃料电池(AFC)、磷酸盐型燃料电池(PAFC)、熔融碳酸盐型燃料电池(MCFC)、固体氧化物燃料电池(SOFC)等。
另外,由于工作温度和发电功率的不同(表1),燃料电池的应用领域也可以分为四种:便携式电子产品,包括笔记型计算机、数字相机、手机、PDA等;住宅发电,既是住宅或备用电源;运输交通工具,汽车、巴士等;大型发电大楼发电、小型及大型发电厂。
其中,PEMFC因其不经过燃烧直接以电化学反应连续地把燃料和氧化剂中的化学能直接转换成电能,具有能量转换效率高(一般都在40%~60%,而内燃机仅为18%~24%)的优点,成为应用非常广泛的技术,尤其是在汽车用燃料方面,PEMFC 的应用接近该市场的100%。
另外颇受关注的是DMFC,它同属于PEMFC,都是采用聚合物阻隔膜,但是DMFC以液态甲醇为燃料,与氢燃料电池相比,DMFC在电池系统构造、燃料来源等诸多方面均有一定的优势。
其阳极催化剂可以直接从液态甲醇中提取氢分子无需燃料重组器(Reformer),所以高纯度甲醇可以直接用作电池的燃料。
同时还能有效减少电池的尺寸,简化系统结构,因而更适合作为便携式电源用于民用工业和军事工业中,如可用于电动汽车、电动自行车、移动电话、笔记本电脑中。
和目前的二次电池相比,DMFC具备燃料电池的一贯优势。
DMFC的理论功率密度是4780 Whr/L,远高于镍氢的200 Whr/L、锂离子的310 Whr/L ,因而可以支持更长的工作时间。
另外有别于二次电池蓄电/放电的工作机制,燃料电池可以说是能源转换器,只要将燃料持续供应即可源源不绝的持续产生电力,不会有电力中断或更换电池的考虑。
并且DMFC公司也在考虑通过混合电源的方式逐步让人们接受燃料电池,这种方式混合动力汽车中已经得到积极的验证。
混合电源是将燃料电池和储能装置(如超级电容或电池)组合,燃料电池将提供恒定的功率,而靠电容或电池来满足峰值功率方面的要求。
燃料电池的产业链包括材料、组件、子系统和系统四部分,多数著名的电子消费品公司都在从事DMFC燃料电池系统的研究,以便保证自己的电子产品在未来的竞争力,例如日本的三洋、索尼、东芝和富士通韩国的三星和LG,中国的比亚迪。
也有一些专门从事系统开发的公司,包括美国的MTI Micro Fuel Cells、Angstrom Power、我国台湾的Antig公司、摩托罗拉投资的加拿大Tekion Inc 公司等等。
这类公司大都通过和大型电子公司合作的方式共同开发,像MTI Micro 就和韩国三星结成独家联盟,MTI Micro将利用名为“Mobion”的DMFC技术为三星的手机业务开发下一代燃料电池原型。
表1 各种燃料电池的性能比较资料来源:在产业链的上流是专门从事电解质膜这类材料开发的公司,像著名的杜邦公司和英特尔投资的PolyFuel公司等等。
在整个产业链的努力下,燃料电池正在从军用和航空等专业领域快步进入商业化规模应用的阶段。
北美、日本、欧洲和我国台湾地区已经走在前列,我国在燃料电池领域研究和开发虽然取得了一定进展,但是与上述国家和地区相比,在研发投入力度、技术研究深度等方面都存在着差距。
这一问题已经引起了我国的重视,现在它已是能源、电力行业最为重视课题之一,同时也是国家政策扶持的新兴能源行业。
DMFC亟需突破的障碍DMFC 的核心部件是由阴、阳电极和高分子电解质膜热压而成的层叠电池单元(Stack),其厚度不过1mm 。
这样可以使电极中的催化剂尽可能跟质子交换膜有效地接触,以提高转换效率和并减小电池的体积。
质子交换膜在其中起着隔离甲醇与氧气,防止它们直接发生反应以及交换质子和绝缘电子的作用,是一种选择透过性的聚合物膜,于电池中强酸强氧化性等苛刻环境下工作,所以需要极高的耐腐蚀性,另外,还要求具有电动性和热传导性等,材料特性要求很严格。
高分子电解质膜多年来一直是困扰DMFC发展的一大难题。
氢离子需要由水的携带穿过分隔阴阳极的高分子膜,然而过程中甲醇容易伴随,因为甲醇和水有相似的特性。
目前,研究人员正在从2种不同的角度尝试解决这一难题。
一是控制甲醇浓度,或增加隔离甲醇与高分子膜之触媒隔离层。
另一种方法,是依靠能减少甲醇和水互混的电解质膜,有几家公司都已开发出这类产品。
没有人认为会存在一种能完全隔离甲醇的薄膜。
而且在一些设计里,轻微的甲醇混溶是有益的,甲醇在阴极发生氧化,并发出少量的热,可以提高整个燃料电池的反应速率。
2002年,以色列特拉维夫大学首先开发成功了甲醇直接方式的手机燃料电池。
采用的电解质膜不同于的美国杜邦公司生产的“Nafion”,后者由碳氟化合物构成,前者主要是由聚偏二氟乙 (PVDF)和二氧化硅构成,把甲醇的穿透率降低到一位数。
而美国的PolyFuel公司利用碳氢化合物制作的新一代的电解质膜,把甲醇穿透率控制在具有代表性的氟类电解质膜—杜邦公司“Nafion 117”的1/2。
并且PolyFuel最新推出的PolyFuel 20mm 把最大功率密度提升到190 Ma/cm2。
PolyFuel的CEO Jim Balcom表示电解质膜功率密度的提高可以减小电池单元的体积。
此外PolyFuel 20mm还通过提高空气极产生的水向燃料极的逆扩散(Water Back Diffusion)减小系统的尺寸和复杂度。
富士通采用DFMC作燃料电池的笔记本电脑图片来源:另外从表1的对比可以看出,DMFC的功率密度是几中技术中最低的一种。
这是因为内部甲醇重组产氢无可避免地使原有燃料电池电力因内部消耗(Over Potential)而衰减其输出功率,例如PEMFC的功率密度可达250~1000mW/cm2(因燃料成分与操作条件而异),DMFC的功率密度却只有25~100mW/cm2左右,两者相差近达10倍,因此功耗越大的移动应用(例如:笔记本电脑)对DMFC越不利。
日立的PDA和使用的燃料电池图片来源:甲醇的使用面临另一个障碍是安全方面的法规。
目前,甲醇仍然被禁止带上商业航班,因为没有任何组织或者标准对对旅客携带甲醇进行管理。
但是2005年国际民航组织已经提出取消禁止旅客携带甲醇登机的规定。
最近,MTI Micro 的CEO Peng Lim向记者透露国际民航组织已经同意取消这一规定,并且美国交通部计划在明年1月开始执行。
Peng Lim表示一旦解禁,燃料电池的优势将在长途旅行中得到完全体现。
同时,消费者也无需担心燃料盒(Cartridge)的安全,因为燃料盒的设计和制作需要通过国际组织的认证。
结语和CDMA,GPS这些受到欢迎的技术一样,燃料电池同样经历了由军用或者航空转向民用的过程,并且燃料电池的发展历程已经超过100年,在技术和安全方面已经得到验证。
现在研究人员需要考虑的是,如何让它顺利地走进人们的日常生活中。
大多数从事燃料电池研发的公司都认为便携式消费电子是一个绝佳的突破口。
参考文献:1.http:///FuelCellToday/EducationCentre/EducationCentreExternal/EduCent reDisplay/0,3995,PressKitHome,00.html2. 颜贻乙,微型燃料电池新选择RMFC,台湾省“工研院”能环所 2006.83. http:///english/tech.html。