实践与探索2
九年级下册数学二次函数实践与探索(2)导学案及练习

九年级下册数学二次函数实践与探索(2)导学案及练习[本课知识重点]让学生进一步体验把实际问题转化为有关二次函数知识的过程.[创新思维]二次函数的有关知识在经济生活中的应用更为广阔,我们来看这样一个生活中常见的问题:某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形一边长为x 米,面积为S 平方米.请你设计一个方案,使获得的设计费最多,并求出这个费用.你能解决它吗?类似的问题,我们都可以通过建立二次函数的数学模型来解决.[实践与探索]例1.某化工材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元。
物价部门规定其销售单价不得高于每千克70元,也不得低于30元。
市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千克。
在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算)。
设销售单价为x 元,日均获利为y 元。
(1)求y 关于x 的二次函数关系式,并注明x 的取值范围;(2)将(1)中所求出的二次函数配方成ab ac a b x a y 44)2(22-++=的形式,写出顶点坐标;在直角坐标系画出草图;观察图象,指出单价定为多少元时日均获利最多,是多少? 分析 若销售单价为x 元,则每千克降低(70-x )元,日均多售出2(70-x )千克,日均销售量为[60+2(70-x )]千克,每千克获利为(x-30)元,从而可列出函数关系式。
解 (1)根据题意,得500)]70(260)[30(--+-=x x y650026022-+-=x x (30≤x ≤70)。
(2)y 650026022-+-=x x 1950)65(22+--=x 。
顶点坐标为(65,1950)。
二次函数草图略。
经观察可知,当单价定为65元时,日均获利最多,是1950元。
例2。
某公司生产的某种产品,它的成本是2元,售价是3元,年销售量为100万件.为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x (十它们的关系如下表:(2)如果把利润看作是销售总额减去成本费和广告费,试写出年利润S (十万元)与广告费x (十万元)的函数关系式;(3)如果投入的年广告费为10~30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大?解 (1)设二次函数关系式为c bx ax y ++=2。
八年级数学实践与探索2

住院病历书写质量评估标准中有项单项否决。A.30B.31C.32D.33E.34 矿井涌水的大小,通常以每或每涌入矿井多少立方米/水计算。 一个独立光伏系统,已知系统电压48V,蓄电池的标称电压为12V,那么需串联的蓄电池数量为。A.1B.2C.3D.4 [配伍题]具有化生气血功能的脏是。</br>具有朝百脉功能的脏是。</br>具有运化水液功能的脏是。A.肝B.心C.脾D.肺E.肾 用万用表测得某晶体二极管的正反向电阻值相差很大,则说明该管子。A.很好B.已失去单向导电性C.已经击穿D.内部已断路 下列有关赔偿的说法正确的是A、行政机关、司法机关的工作人员是赔偿责任主体B、行政机关、司法机关的工作人员是履行赔偿义务的主体C、行政机关、司法机关的工作人员是原则上侵权主体D、行政机关、司法机关的工作人员是有追偿权 下列哪一种情况是造成铸件冷隔的原因A.铸型反复多次焙烧B.铸造温度过高C.铸金量过多D.包埋材料透气性不良E.铸金量不足 12岁女孩,外院诊断为"先天性心脏病",近因头昏、失眠来诊。体检:肺动脉瓣区有Ⅱ级收缩期杂音,柔和,不传导,肺动脉瓣区第2音正常,无分裂。心电图及超声心动图正常。此时处理应是A.通知家属来院面谈B.请班主任来院联系C.建议每半年随访一次D.解释为生理性杂音,消除顾虑E.作心 世界卫生组织推荐的预防接种的4种疫苗是。A、卡介苗麻疹疫苗百白破混合疫苗脊髓灰质炎疫苗B、卡介苗流感疫苗白喉疫苗脊髓灰质炎疫苗C、卡介苗麻疹疫苗伤寒疫苗霍乱疫苗D、卡介苗麻疹疫苗风疹疫苗脊髓灰质炎疫E、麻疹疫苗流感疫苗天花疫苗脊髓灰质炎疫苗 肠梗阻诊断明确后,最重要的是确定。A.梗阻的原因B.梗阻的部位C.梗阻的程度D.梗阻的性质E.有无发生肠绞窄 下列哪种血液病的诊断需要求助于五官科医师会诊()A.骨髓瘤B.巨幼细胞性贫血C.轻型血友病D.皮肤性淋巴瘤E.粒细胞缺乏症 下列不是引起急性心肌梗死的原因有A.休克B.脱水C.冠脉血栓形成D.妊娠E.严重心律失常 水中少量硫酸盐对人体无影响,但过量时有致写作用,饮用水中硫酸盐的含量不应超过mg/L。 关于限仓制度,以下说法正确是。A、限制投资者最多可持有的期权合约数量B、限制投资者最多可持有的股票数量C、限制投资者单笔最小买入期权合约数量D、限制投资者每个交易日最多可买入期权合约数量 相啮合的一对齿轮旋转方向,每经一齿轮传动副传动,其输出轴变改变旋转方向。A.相反一次B.相同一次C.相反二次D.相同二次 卢梭以小说体裁反映自然主义教育思想的代表作是。A.社会契约论B.忏悔录C.新爱洛绮丝D.爱弥儿 灭火基本方法分隔离法、窒息法、冷却法、抑制法四种.A.正确B.错误 失认症左侧忽略患者常将"标"读作A.标B.木C.示D.二E.小 非溶血性发热反应除表现寒战、高热外,可能还具有下列何种表现A.血压降低,恶心、呕吐,腹泻B.血压升高,头痛、呕吐,腰痛C.血压正常,头痛、呕吐D.皮肤潮红,全身痛E.全身潮红,手脚发麻 二氧化碳是一种不助燃、不导电、无腐蚀性的惰性气体,不空气重.A.正确B.错误 某建筑设计注册执业人员在施工图纸设计过程中,严重违反民用建筑节能强制性标准的规定,造成严重后果,按照《民用建筑节能条例》的规定,可由颁发资格证书的部门吊销执业资格证书,()内不予注册。A.1年B.2年C.3年D.5年 假定KM不变,当少量装货的重心高于船舶的重心时,则装货后船舶的初稳性高度值将。A.减小B.不变C.增大D.变化趋势不定 男性,30岁。自15岁起反复中至大量咯血,有时痰呈脓性。近日咯血50ml就诊。体检:右下肺固定性湿啰音。X线胸片示两肺纹粗乱。临床诊断支气管扩张症。患者要求手术治疗,医生告之要进一步检查,对于该患者能否手术的决定性因素是A.病变范围B.病变部位C.肺功能D.临床症状E.有无继发 下列选项不属于拱桥支架施工控制要点的是。A.预制拼装B.混凝土压注质量控制C.墩顶实心段混凝土裂缝控制D.支架沉降控制E.拱架加载控制 以经营方式租入的固定资产改良支出属于。A、修理费用B、固定资产C、长期待摊费用D、流动性资产 以神经毒素致病的细菌是A.霍乱弧菌B.肉毒梭菌C.伤寒沙门菌D.脑膜炎奈氏菌E.乙型溶血性链球菌 肺吸虫病的临床症状哪项是错误的A.不可能侵犯脑部B.血中嗜酸性粒细胞可增加C.可无明显症状D.可出现肝型E.急性期可出现低热、荨麻疹 影响神经系统发育最重要的激素A.生长素B.甲状腺激素C.糖皮质激素D.胰岛素E.性激素 近年来对痢疾杆菌较为敏感的抗菌药物是A.磺胺药B.庆大霉素C.喹诺酮类D.氨苄西林E.四环素 我们一般使用以下哪个软件用于编制项目实施计划?A.MS-VISIOB.MS-PROJECTC.EXCELD.WORD 可以导致心力衰竭加重的因素A.情绪激动B.感染C.回心血量不足D.不恰当使用β受体阻滞剂E.以上均可 股骨头血液供给的主要来源是。A.腹壁浅动脉的分支B.腹壁下动脉的分支C.旋股内、外侧动脉的分支D.肌骨头圆韧带的小凹动脉E.股骨干的滋养动脉升支 坐高/身高的比值最小是出现在A.婴儿期B.童年期C.青春发育早期D.青春发育中期E.青春发育晚期 安宫牛黄丸的证治要点中不包括()A.神昏谵语B.高热烦躁C.口干舌燥D.舌红或绛E.脉数 关于臀位,哪项错误A.为最常见的异常胎位B.胎儿病死率比枕前位高3~8倍C.多见于经产妇D.必须在妊娠28周左右行外转胎位术E.后出头困难时需产钳助产 高压加热器为防止停用后的氧化腐蚀,规定停用时间小于h可将水侧充满给水A.20B.40C.60D.80 引起副溶血性弧菌食物中毒的好发食品是A.奶制品B.海产品C.豆制品D.剩饭E.肉制品 支票是出票人签发的,委托办理支票存款业务的银行或者其他金融机构在见票时无条件支付确定的金额给收款人或者的票据。 某网点在贷款发放时,操作员执行交易录入相关要素后,系统将会计人员录入要素与电子准贷证有关要素作一致性检查。 局麻药的不良反应有和
§6.3 实践与探索(2)

§6.3 实践与探索(2)科目:七年级数学备课人:王淑轶导学目标:1、理解商品利润和储蓄问题中的数量关系,并能根据数量关系列出一元一次方程进行解答,并检验结果是否合理;2、进一步体会方程是刻画现实世界的有效数学模型,培养分析问题和用方程解决实际问题的能力;3、感受数学在实际生活中的应用价值。
内容分析:学习重点:分析问题中的等量关系,建立方程解决问题。
学习难点:确定题目中的等量关系。
导学过程:一、复习回顾,导入新课:1、王叔叔将a元钱存2年的定期储蓄。
已知年利率为p%,那么到期后王叔叔一共可以得到元。
2、某件商品标价a元,进价b元。
在促销活动期间打八折销售后,可获得利润元。
二、合作探究:1、小明爸爸前年存了年利率为2.43%的二年期定期储蓄。
今年到期后,所得利息正好为小明买了一只价值48.60元的计算器。
问小明爸爸前年存了多少元?2、某银行设立大学生助学贷款,分3~4年期和5~7年期两种。
贷款年利率分别为6.03%、6.21%,贷款利息的50%由国家财政贴补。
某大学生预计6年后能一次性偿还1.8万元,问他现在大约可以贷款多少元?(结果精确到0.1万元)思考:根据“预计6年后能一次性偿还1.8万元”,他应选择年期贷款,并由此可知贷款年利率为。
题中的等量关系为,列方程为。
解:3、学校准备添置一批课桌椅,原订购60套,每套100元。
店方表示:如果多购,可以优惠。
结果校方购了72套,每套减价3元,但商店获得同样多的利润。
求每套课桌椅的成本。
思考:设每套课桌椅成本为x元,那么“原订购60套,每套100元”时,售价为元,成本为元,利润为元;实际“购了72套,每套减价3元”,售价为元,成本为元,利润为元。
根据“获得同样多的利润”,可列方程为。
解:三、巩固练习:某商场将每台彩电按进价提高40%标价,然后在广告宣传中以八折的优惠价出售,实质上商场仍可每台获利300元。
这种彩电的进价和标价各是多少元?四、拓展延伸:实验中学去年为全体教职工投保了团体人身意外伤害保险,向保险公司缴纳了1200元保险费。
2022年华师大版《实践与探索2》公开课教案

实践与探索第2课时(一)本课目标1.了解一次函数与一元一次方程、一元一次不等式之间的相互关系.2.学会用图象法解一元一次方程和一元一次不等式.(二)教学流程1.情境导入教师利用多媒体演示课本第60页图(上节课的例题图象).对照图象,请同学们答复以下问题.(1)当x取何值时,2x-5=-x+1?(2)当x取何值时,2x-5>-x+1?(3)当x取何值时,2x-5<-x+1?2.课前热身学生展示上节课课后收集的华氏温度与摄氏温度的相关资料和图片, 交流探讨-得出的两种温度之间的函数关系.3.合作探究(1)整体感知上节课我们学习了通过观察一次函数的图象, 答复提出的问题和用图象法解一元一次方程组的方法,本节课我们将着重探讨一次函数与一元一次方程、一元一次不等式之间的联系.(2)四边互动.互动1师:利用多媒体演示幻灯片4.问题2:画出函数y=32x+3的图象,根据图象,指出:(1)x取什么值时,函数值y 等于零?(2)x 取什么值时,函数值y始终大于零?生:动手操作,讨论交流解答的结果.师:由问题2,想想看,一元一次方程32x+3=0的解,不等式32x+3>0 的解集与函数y=32x+3的图象有什么关系?说说你的想法,并和同学讨论交流.生:分组讨论交流后,再在全班展开交流,让全体同学达成共识.明确教师利用多媒体演示画出的函数图象,如以下图.由图象可知: 当x=-2时,函数值等于零;当x>-2时,函数值始终大于零.归纳可得:从“数〞的角度来看,一次函数y=kx+b(k≠0)的函数值是0时,对应的x的值就是一元一次方程kx+b=0的解;当一次函数y=kx+b的值大于0时,对应局部x 的取值的集合,就是不等式kx+b>0的解集;当一次函数y=kx+b的值小于0时, 对应局部x的取值的集合,就是不等式kx+b<0的解集.从“形〞的角度看,直线y=kx+b(k≠0)与x轴交点的横坐标就是方程kx+b=0的解;直线y=kx+b位于x轴上方局部对应的x的值的集合,就是不等式kx+b>0的解集; 直线y=kx+b位于x轴下方局部对应的x的值的集合,就是不等式kx+b<0的解集.互动2师:在合作交流的根底上,请同学们从“数〞和“形〞的不同角度, 概括归纳本-节课开始提出的问题.生:讨论交流,达成共识.明确从“数〞的角度来看,当一次函数y=2x-5和y=-x+1的函数值相等时,对应的x的值就是方程2x-5=-x+1的解;当一次函数y=2x-5的函数值大于y=-x+1 的函数值时,对应的x的值的集合就是不等式2x-5>-x+1的解集;当一次函数y=2x-5的函数值小于y=-x+1的函数值时,对应的x的值的集合就是不等式2x-5<-x+1的解集.从“形〞的角度来看,直线y=2x-5和y=-x+1的交点的横坐标,就是方程2x-5=-x+1的解;直线y=2x-5位于直线y=-x+1上方局部对应的x的值的集合,就是不等式2x-5>-x+1的解集;直线y=2x-5位于直线y=-x+1下方局部对应的x的值的集合,就是不等式2x-5<-x+1的解集.互动3师:利用多媒体演示幻灯片.画出函数y=-2x+2的图象,观察图象并答复以下问题.(1)确定当0<y<2时,对应的自变量的取值范围;(2)确定当-1≤x<1时,对应的函数值的取值范围.生:动手画图,并答复以下问题,然后与相题.明确教师利用多媒体演示解答的过程和结果,验证学生的结论.依题意画出的函数图象如以下图,由图象观察可知:当0<y<2时,0<x<1;当-1<x<1时,0<y≤4.4.达标反响请解答课本第62页练习第1题和第2题.(教师在教室里来回巡视,进行必要的指点和帮助)5.学习小结(1)内容总结本课我们主要学习了哪些内容?(一次函数与一元一次方程和不等式的关系;用图象法解一元一次方程和不等式)(2)方法归纳一次函数、一元一次方程、一元一次不等式可以相互转化, 利用一次函数的图象可以解决一元一次方程或不等式问题, 有时也可以利用一元一次方程或不等式解决一次函数问题.(三)延伸拓展1.链接生活如以下图,一次函数y=kx+b的图象与反比例函数y=mx的图象相交于点A( --2,1),B(1,n).①根据条件,求一次函数与反比例函数的解析式;②根据图象写出使一次函数值大于反比例函数值的x的取值范围.答案:①y=-x-1,y=-2x, ②x<-22.实践探索(1)实践活动自编一道利用一次函数图象解决一元一次方程与一元一次不等式的题目.(2)稳固练习课本第64页习题第1-3题.(四)板书设计第1课时代数式的用法教学目标1.体会代数式的意义,形成初步的符号感;2.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
实践与探索(2)教学设计说明

实践与探索(2)教学设计说明海口市第一中学陈佳琪“实践与探索(2)——探索一次函数与一元一次方程、一元一次不等式的联系”它是华东师大版九年义务教育八年级教科书下册第十八章第五节“实践与探索”的第2课时内容。
现对本课教案作如下说明:一、本节教学内容的本质、地位以及作用《义务教育数学课程标准》中提出:“应注重体现数学课程的基础性、普及性和发展性,使数学教育面向全体学生,提高他们的推理能力、抽象能力、想象力和创造力。
在教学中,应注重让学生在实际背景中理解基本的数量关系和变化规律,应加强方程、不等式、函数等内容的联系,介绍有关代数内容的几何背景。
”《实践与探索(2)》是建立在学生对一元一次方程、一元一次不等式以及一次函数的图象、性质等内容的认识上,对已有知识进行更深入的讨论和探索。
在本节课的前一节,教材已经利用实际问题引入,让学生探索了一次函数和二元一次方程组的联系,而本节课就是在此基础上,进一步探索一次函数和一元一次方程以及一元一次不等式之间的联系,是对一次函数及相关内容更深入更全面的学习,对前面的知识进行了延伸和拓展。
从函数的角度对一次方程、一次不等式重新进行分析,这种再认识不是原来水平的回顾复习,而是站在更高起点上的动态分析,是用函数将上述三个内容统一起来,从“数”和“形”两个角度加深了对一元一次方程的解以及一元一次不等式的解集的理解。
“实践与探索”这一内容也是华东师大版教材的一大特色之一,发挥学生的主动性,让学生亲身经历知识的探索过程,进而获得对数学的兴趣。
二、教学目标分析鉴于对教学内容的分析,结合我所教学生的特点和他们已有的认知水平,确定本节课的教学目标为:1.经历知识探究的过程,理解一次函数与一元一次方程以及一元一次不等式之间的联系;2.通过对比、联系,渗透数形结合思想,并能应用其方法解决简单问题;3.在合作学习的过程中培养其观察、分析能力,并应用所学知识解决问题的能力;4.通过实践与探索的过程,加强知识间横向和纵向的融会贯通,体会数学的魅力所在。
2实践与探索2PPT课件(华师大版)

画函数 y x2 2x 3的草图,根据图象 回答下列问题. (1)图象与x 轴交点的坐标是什么? (2)不看图象你能求出交点坐标吗?
这里x的取值与方程 x2 2x 3 0
有什么关系?
(3)当x 取何值时,y<0?当x取何值时, y>0? (4)能否用含有x的不等式来描述(3)
中的问题?
回顾与反思:二次函数的图象与x轴有无 交点问题,可以转化为一元二次方程有 无实数根的问题,可从计算根的判别式 入手
提高训练: 1、已知二次函数y=x2+mx+m-2.
求证:无论m取何值,抛物线总与x轴 有两个交点。
2、已知二次函数y=x2-2kx+k2+k-2. (1)当实数k为何值时,图象经过原 点? (2)当实数k在何范围取值时,函数 顶点在x轴下方? (3)当实数k在何范围取值时,函数 顶点在第四象限内?
4
3
2
1
x
-2
-1
o -1
1 2 34
5
-2
-3
-4
-5
1、二次函数y=ax2+bx+c的图象与x轴 的交点的横坐标为方程ax2+bx+c=0 的__解__。
2、根据图象可求出不等式 ax2+bx+c>0 或 ax2+bx+c<0的解,先 视察图象,找出抛物线与x轴的交点, 再根据__交_点__的_坐__标__写出不等式的解集。
如图,请编题求值。
4 3
(不少于2道)
2 1
-2 -1 1 2 3 4
△>0,抛物线与轴有2个交点.
△=0,抛物线与轴有1个交点.
△<0,抛物线与轴有0个交点.
26.3 实践与探索第2课时 二次函数与一元二次方程之间的关系 华师大版数学九年级下册 课件

2.二次函数y=ax2+bx+c(a、b、c为常数,a≠0)与x轴的交点情况是怎样 的?
答:当Δ=b2-4ac>0 时,有两个交点,即方程ax2+bx+c=0有两个不等实根; 当Δ=b2-4ac=0时,有唯一交点,即方程ax2+bx+c=0有两个相等实根; 当Δ=b2-4ac<0时,无交点,即方程ax2+bx+c=0无实根.
三 教学过程
1.探究新知 1.一次函数y=ax+b(a≠0)与一元一次方程、一元一次不等式有 何联系?
答:一元一次方程ax+b=0可以看成是当一次函数值等于0时,求相 应自变量的值,即直线y=ax+b(a≠0)与x轴交点的横坐标;一元一 次不等式ax+b>0或ax+b<0可以看成是当一次函数值大(小)于0 时,求自变量的取值范围.
2.例题精讲
4.巩固练习 完成教材课 后同步练习
5.课堂小结与反思
小结:二次函数y=ax2+bx+c的图象和横轴的交点的个数与一元二次方程的根 的个数之间的关系. 反思:进一步体会方程与函数之间互相转化的关系,能够用函数的观点看方 程.
26.3 实践与探索
第2课时 二次函数与一元二次方程 之间的关系
一 学习目标
1.理解二次函数的图象和横轴的交点的个数与一元二次方程的 根的个数之间的关系. 2.经历探索二次函数、一元二次方程、一元二次不等式之间的 关系,体会数形结合思想,培养学生观察能力.
二 重难点
重点:理解二次函数与一元二次方程的关系. 难点:结合二次函数图象与x轴交点坐标,求y>0或y<0时Байду номын сангаасx的取值范围.
23.3.2实践与探索(二)

23.3 .2《实践与探索》学案(二)教学目标:1、使学生利用一元二次方程的知识解决实际问题,学会将实际问题转化为数学模型。
2、让学生经历由实际问题转化为数学模型的过程,领悟数学建模思想,体会如何寻找实际问题中等量关系来建立一元二次方程。
3、通过合作交流进一步感知方程的应用价值,培养学生的创新意识和实践能力,通过交流互动,逐步培养合作的意识及严谨的治学精神。
重点难点:1、重点:列一元二次方程解决实际问题。
2、难点:寻找实际问题中的相等关系。
研讨过程:一、设疑自探1、有一个两位数,它的十位上的数学字比个位上的数字大3,这两个数位上的数字之积等于这两位数的27,求这个两位数。
2、如图,一个院子长10cm,宽8cm,要在它的里沿三边辟出宽度相等的花圃,使花圃的面积等于院子面积的30%,试求这花圃的宽度。
二、解疑合探:阳江市市政府考虑在两年后实现市财政净收入翻一番,那么这两年中财政净收入的平均年增长率应为多少?三、尝试探索,合作交流,解决问题1、翻一番,你是如何理解的?(翻一番,即为原净收入的2倍)2、“平均年增长率”你是如何理解的。
(“平均年增长率”指的是每一年净收入增长的百分数是一个相同的值。
即每年按同样的百分数增加,而增长的绝对数是不相同的)解:设平均年增长率应为x,依题意,得2(1)2x+=因为增长率不能为负数所以增长率应为。
三、质疑再探:同学们还有什么问题或疑问?四、拓展运用若调整计划,两年后的财政净收入值为原值的1.5倍、1.2倍、…,那么两年中的平均年增长率相应地调整为多少?(2)又若第二年的增长率为第一年的2倍,那么第一年的增长率为多少时可以实现市财政净收入翻一番?五、巩固练习:1、某钢铁厂去年1月某种钢产量为5000吨,3月上升到7200吨,这两个月平均每月增长的百分率是多少?2、某种药品,原来每盒售价96元,由于两次降价;现在每盒售价54元。
平均每次降价百分之几?3.为执行“两免一补”政策,某地区2006年投入教育经费2500万元,预计2008年投入3600万元.求这两年投入教育经费的年平均增长率?六、课堂小结:谈谈你对本节所探讨的知识有何体会,你能否结合你的体会编制一道应用题,在小组内交流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18.5 《实践与探索》学案
一、知识梳理:
1、一个二元一次方程可以看作一个______函数,一个一次函数可以看作一个________方程;二元一次方程组的解就是其对应的两个一次函数的____________。
2、用图象法解二元一次方程组的步骤:①____________、②______________、③_____________④_____________
3、不等式ax+b>0(a≠0)的解集是直线y=_______________位于x轴_____的图象所对应的自变量x的取值范围;不等式ax+b<0(a≠0)的解集是直线y=_______________位于x轴_____的图象所对应的自变量x的取值范围;一元一次方程ax+b=0(a≠0)的解是直线y=______________与x轴的交点的_____
二、双基巩固:
1.如下左图所示,l1反映了某公司的销售收入与销售量的关系,l2反映了该公司产品的销售成本与销售量的关系,当该公司赢利(收入大于成本)时,销售量为()
A.小于3吨B.大于3吨C.小于4吨D.大于4吨
2.如上右图所示,OA,OB分别表示甲,•乙两名学生运动路程与时间的一次函数图象,图中s 和t分别表示运动路程和时间.根据图象可知,•快者的速度比慢者的速度每秒快()A.2.5米B.2米C.1.5米D.1米
3.若一次函数y=3x-5与y=2x+7图象的交点P的坐标为(12,31),则方程组
35, 27 x y
x y
-=
⎧
⎨
-=-⎩
的解为()
A.
12
31
x
y
=
⎧
⎨
=
⎩
B.
31
12
x
y
=
⎧
⎨
=
⎩
C.
24
62
x
y
=
⎧
⎨
=
⎩
D.以上答案都不对
4.二元一次方程组
24,
2312
x y
x y
+=
⎧
⎨
-=
⎩
的解即为一次函数______和_______的图象交点的坐标.
第6题
5.两直线y=2x-1和y=2x+3的位置关系为_________,由此可知方程组
21,
23
x y
x y
-=
⎧
⎨
-=-
⎩
的解的情
况为_______.
6.某公司市场营销部的营销人员的个人收入与其每月的销售量成一次函数关系,其图象如图所示,•由图中所给的信息可知,•营销人员没有销售时的收入是________元.7.利用图象解下列方程组:
(1)
1,
336;
x y
x y
=+
⎧
⎨
-=
⎩
(2)
742,
3624.
x y
x y
+=
⎧
⎨
-=
⎩
8.作出函数y=x-3的图象,并观察图象回答下列问题:(1)x取哪些值时,y>0?(2)x取哪些值时,y<0?
9、汽车由天津驶往相距120千米的北京,汽车离开天津的距离为s(千米),
汽车行驶的时间为t(小时)它们之间的函数关系图象如图所示.
(1)汽车用几小时可以从天津到达北京?汽车的速度是多少?
(2)当汽车行驶1小时时,离开天津的距离是多少?
10.已知一次函数y=-2x+4与y轴的交点为B,y=3x+1与y•轴的交点为C,两函数图象的交点为A,求△ABC的面积.
三、拓展探究
1.一次函数y1=kx+b与y2=x+a的图象如图,•则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是()
A.0 B.1 C.2 D.3
2.一天,小明背着书包去上学,几分钟后,他爸爸•发现他忘了带今天的家庭作业,于是小明的爸爸拿着作业本追赶小明,图中的l1,l2分别表示两人所走的路程s(米)和时间t(分)之间的关系,根据图象回答下列问题:(1)哪条线表示小明的爸爸所走的路程与追赶时间的关系?(2)30分钟内小明的爸爸能追上小明吗?
3.青云中学需要添置某种教学仪器,方案一:到商家购买,每件需要8元;方案二:学校自己制作,每件需要4元,另外需要制作工具的租用费120元,设需要仪器x件,方案一与方案二的费用分别为y1(元),y2(元).(1)分别写出y1,y2的函数关系式(不必写出自变量的取值范围);(2)若学校需要添置仪器50件,问应采用哪种方案?说明理由.。