线性空间及线性变换

合集下载

线性空间与线性变换

线性空间与线性变换

线性空间与线性变换线性空间是线性代数的一个重要概念,扮演着理解线性变换的基础角色。

本文将介绍线性空间的定义、性质以及线性变换的概念和特性。

一、线性空间的定义与性质线性空间,也被称为向量空间,是指一个集合,其中包含一些向量,满足特定的性质。

具体而言,线性空间需要满足以下几个条件:1. 封闭性:对于线性空间中的任意两个向量,它们的线性组合也属于该空间。

即,如果向量a和向量b属于线性空间V,那么对于任意标量α和β,αa + βb也属于V。

2. 加法封闭性:线性空间中的向量满足加法封闭性,即对于任意的向量a和b,它们的和a + b也属于该空间。

3. 数乘封闭性:线性空间中的向量满足数乘封闭性,即对于任意的向量a和标量α,它们的积αa也属于该空间。

4. 满足加法和数乘的运算性质:线性空间中的向量满足加法和数乘的交换律、结合律和分配律。

线性空间的性质还包括零向量、负向量和线性相关性。

零向量表示线性空间中存在一个使其与任何向量相加得到自身的向量,负向量表示线性空间中的向量存在一个加法逆元。

线性相关性指的是线性空间中存在一组向量线性组合为零向量的关系。

二、线性变换的定义和性质线性变换是指在两个线性空间之间的映射,它保持了向量空间中的线性结构。

具体而言,线性变换需要满足以下几个条件:1. 保持加法运算:对于线性变换T,对任意的向量a和b,有T(a +b) = T(a) + T(b)。

2. 保持数乘运算:对于线性变换T和标量α,有T(αa) = αT(a)。

线性变换的性质还包括零变换、恒等变换和可逆性。

零变换表示线性变换将所有向量映射为零向量。

恒等变换表示线性变换将每个向量映射为其本身。

可逆性表示存在一个逆变换,使得两个线性变换进行复合后得到恒等变换。

三、线性空间与线性变换的关系线性空间和线性变换密切相关,线性变换本质上是线性空间之间的映射,它将一个线性空间中的向量映射到另一个线性空间中。

线性变换保持了向量空间的线性结构,在线性代数中起到了重要的作用。

线性空间与线性变换

线性空间与线性变换
个实际得 R元n 素对应起来,从而将抽象具体化进行
研究。
大家学习辛苦了,还是要坚持
继续保持安静
*例3 设R22中向量组{Ai}
1 1
0 2
A1 1 2 A2 1 3
3 1 A3 0 1
2 4 A4 3 7
1 讨论{Ai}得线性相关性、 2求向量组得秩与极大线性无关组、 3把其余得向量表示成极大线性无关组得
求 V1 V2, V1 V2.
§1、3 线性空间V与Fn得同构
坐标关系
V
Fn
V得基{1,2,。。。 n}
由此建立一个一一对应关系
V,X Fn, ()=X
(1+2)=(1)+(2) (k)=k()
在关系下,线性空间V与Fn同构。
同构得性质
定理1、3、1:数域F上两个有限维线性空 间同构得充分必要条件就是她们得维数 相同。 同构保持线性关系不变。 应用: 借助于空间Fn中已经有得结论与方法研 究一般线性空间得线性关系。
1. 求从基(I)到基(II)得过渡矩阵C。
2. 求向量 7 3 在基(II)得坐标Y。 1 2
§1、2 子空间
概述:线性空间V中,向量集合V可以有集合得 运算与关系:
Wi V, W1W2, W1W2, 问题: 这些关系或运算得结果就是否仍然为 线性空间 ?
1、 子空间得概念
定义: 设非空集合WV,W ,如果W中得 元素关于V中得线性运算为线性空间,则称W 就是V得子空间。 判别方法:Important Theorem W就是子空间 W对V得线性运算封闭。
定义: T 得秩=dim R(T); T 得零度=dim N(T)
例 (P018) Rn中得变换 T:设A Rn×n就是一个给定 得 矩阵,XRn,T(X)=AX。 (1)T就是线性变换; (2)Ker(T)就是AX=0得解空间; (3)Im(T)=Span{a1,a2,…,a n}, 其中ai就是矩阵A得列 向量;

第六章 线性空间与线性变换

第六章 线性空间与线性变换
(7) (k + l)α=kα+lα , k,l ∈ F ; (8) k(lα )=(kl)α ,
其中α, β ,γ 是V 中的任意元素, k,l 是数域 F 中任意数.V 中适合(3)的元素 0 称为零元
素;适合(4)的元素 β 称为α 的负元素,记为 − α .
下面我们列举几个线性空间的例子.
例1 数域 F 上的所有 n 维列向量集 F n 算规则,它是数域 F 上的一个线性空间.特别 地,当 F=R 时,R n 称为 n 维实向量空间;当 F=C 时,C n 称为 n 维复向量
设α = x1ε1 + x2ε 2 + L+ xnε n = y1η1 + y2η2 + L+ ynηn ,则
⎜⎛ x1 ⎟⎞ ⎜⎛ y1 ⎟⎞
⎜ ⎜ ⎜⎜⎝
第 4 页 共 19 页
第六章 线性空间与线性变换
二、同构关系
1.映射
设 M,N 是两个集合.如果给定一个法则ϕ ,使 M 中的每个元素 a 都有 N 中的一
个唯一确定的元素 a' 与之对应,则称ϕ 是集合 M 到集合 N 的一个映射. a' ∈ N 称为 a 在
映射ϕ 下的像,而 a 称为 a' 在映射ϕ 下的原像.记作ϕ(a) = a' . M 中元素在ϕ 下像的全
2) 把(1)式形式地写为
⎜⎛ x1 ⎟⎞
α
=
(ε1,ε
2
,L,
ε
n
)
⎜ ⎜ ⎜⎜⎝
x2 M xn
⎟ ⎟ ⎟⎟⎠

(η1,η2 ,L,ηn ) = (ε1,ε 2 ,L,ε n )A.
第 6 页 共 19 页
第六章 线性空间与线性变换

线性空间与线性变换

线性空间与线性变换

线性空间与线性变换线性空间和线性变换是线性代数中的重要概念,在数学和物理等领域有着广泛的应用。

本文将介绍线性空间和线性变换的概念、性质以及它们之间的关系。

一、线性空间的定义和性质线性空间是指具有加法运算和数乘运算的集合,满足以下条件:1. 加法运算闭合性:对于任意两个向量u和v,它们的和u+v仍然属于该集合。

2. 加法交换律:对于任意两个向量u和v,有u+v = v+u。

3. 加法结合律:对于任意三个向量u、v和w,有(u+v)+w =u+(v+w)。

4. 存在零向量:存在一个特殊的向量0,使得对于任意向量v,有v+0 = v。

5. 对于任意向量v,存在其负向量-u,使得v+(-u) = 0。

6. 数乘运算闭合性:对于任意标量c和向量v,它们的乘积cv仍然属于该集合。

7. 数乘结合律:对于任意标量c和d以及向量v,有(c+d)v = cv+dv。

8. 数乘分配律1:对于任意标量c以及向量u和v,有c(u+v) =cu+cv。

9. 数乘分配律2:对于任意标量c和d以及向量v,有(cd)v = c(dv)。

线性空间的例子包括n维向量空间和函数空间等。

它们满足上述定义中的所有条件。

二、线性变换的定义和性质线性变换是指将一个线性空间映射到另一个线性空间的映射,满足以下条件:1. 对于任意向量v和w以及标量c,线性变换T满足T(v+w) =T(v)+T(w)和T(cv) = cT(v)。

2. 线性变换T保持向量的线性组合关系,即对于任意向量v1、v2、...、vn和标量c1、c2、...、cn,有T(c1v1+c2v2+...+cnvn) =c1T(v1)+c2T(v2)+...+cnT(vn)。

3. 线性变换T将零向量映射为目标线性空间的零向量。

线性变换的例子包括平移、旋转和缩放等。

它们保持向量空间的线性结构和线性关系。

三、线性空间与线性变换的关系线性空间和线性变换之间存在着密切的联系。

给定一个线性空间V,定义一个线性变换T:V→W,其中W是另一个线性空间。

5.4第5章 线性空间与线性变换

5.4第5章  线性空间与线性变换
7
4. 线性变换T的象集T (V n )是一个线性空间V n ( 的子空间), 称为线性变换T的象空间. 证明 设 1 , 2 T (Vn ), 则有 1 , 2 Vn ,
使 T1 1 , T 2 2 , 从而
1 2 T1 T 2 T (1 2 ) T (Vn ), (因1 2 Vn ); k1 kT1 T (k1 ) T (Vn ), (因k1 Vn ),
所以, B X AX
1
18
例19 设V是一个二维线性空间, 1 , 2 是一组基,线性 变换 在 1 , 2 下的矩阵是 2 1 1 0
1 1 1 , 2 为V的另一组基,且 (1 ,2 ) (1 , 2 ) 1 2 求 在基 1 , 2 下的矩阵.
19
小结
R 给定了线性空间 R 的一组基以后, 中的线 性变换与 R nn 中的矩阵形成一一对应.因此,在 线阵.
n n
同一变换在不同基下的矩阵是相似的.
20
思考题
已知R 的两个线性变换
22
T ( X ) XN , S ( X ) MX , X R22
这样,在取定一组基之后,就建立了由数域P上的n维 线性空间V的线性变换到数域P上的 n n 矩阵的一个 13 映射.
定理3 设 1 , 2 ,, n 是数域P上n维线性空间V的一组基, 在这组基下,V的每个线性变换都唯一对应一个 n n 矩阵,这个对应具有以下性质: 1)线性变换的和对应于矩阵的和; 2)线性变换的乘积对应于矩阵的乘积; 3)线性变换的数量乘积对应于矩阵的数量乘积; 4)可逆的线性变换与可逆矩阵对应,且逆变换对应于 逆矩阵.

线性代数与解析几何 第7章 线性空间与线性变换

线性代数与解析几何 第7章 线性空间与线性变换

§ 7.1 线性空间的定义与性质
7.1.1 线性空间的定义
7.1.2 线性空间的性质
7.1.3 子空间
§ 7.1 线性空间的定义与性质
7.1.1 线性空间的定义
定义7.1
设是一个非空集合,为实数域. 若在中定义
了两种运算,一种运算称为加法:即对于中任意两个元素
, ,在中都有唯一的元素与它们相对应,称为与的
证明
因为 a, b R , R
有 a b ab R , a a R
即R+对上述定义的加法与数乘运算封闭.

a
,
b
,
c

R
, , R 时,有
又因
(1) a b ab=ba b a ;
(2) (a b) c (ab) c (ab)c a(bc) a(b c) a (b c) ;
A R mn
又对矩阵加法和数与矩阵的乘法两种运算满足线性运算规律,
所以R mn对矩阵加法和数与矩阵的乘法,构成实数域R
上的线性空间,称此线性空间为mn矩阵空间.
§ 7.1 线性空间的定义与性质
注7.1
检验一个集合是否构成线性空间,当然不能只象例
7.1、例7.2、例7.3那样检验对运算的封闭性.若所定义的加法
(7) ( + ) a a a a a a a a ;
(8) (a b) (ab) (ab) a b
a b a b ;
所以R+对上述定义的加法与数乘运算构成线性空间.
*第7章
线性空间与线性变换
线性空间又称向量空间,是线性代数的中心内容和

线性空间与线性变换

线性空间与线性变换

映射:设M 和M'是两个非空集合,如果对M 中的每个元素,按照某种法则T 都有M'中的一个确定的元素与之对应,则称T 是从M 到M'中的一个映射,记作T :M →M'称M 为T 的定义域。

如果映射T 使α∈M 与β∈M'相对应,则称β是α在映射T 下的象,而称α为β的一个原象,记作T (α)=β(α∈M )集合M 到自身的映射称为M 上的变换。

设T 和S 都是集合M 到M'的映射。

如果对任一元素α∈M 都有T (α)=S (α),则称T 和S 相等,记作T=S如果对于M'中的每一个元素β,都有α∈M 使T (α)=β,则称T 是一个满射。

如果对于任意α1,α2∈M ,当α1≠α2时,都有T (α1)≠T (α2),则称T 是单射。

如果映射T 既是满射又是单射,则称之为一一映射(或一一对应)映射T 下所有象所成的集合称为T 的值域(或象集合),记作R (T ),即R(T)={ T (α)︱α∈M}显然R(T)⊂ M',一个集合M 到M'的映射T 是满射的充分必要条件是R (T )= M';而T 是单射的充分必要条件是,对任意α1,α2∈M ,由T (α1)= T (α2)可以推出α1=α2 设M 是一个非空集合,定义E (α)=α(α∈M )则E 是M 上的变换,称为M 的单位映射(或恒等映射),记作M I 。

E 是一一映射。

对于映射,定义它的乘积如下(ST )(α)﹦S (T (α))(α∈M )所确定的从M 到M''的映射ST 称为S 与T 的乘积。

映射的乘积是复合函数的推广,但不是任意两个影射都可以求他们的乘积。

由映射T 和S 得到乘积ST 的充分必要条件是T 的值域含与S 的定义域。

例1 设M=K n ×n .定义 T 1(A )=det A (A ∈K )则T 是K n ×n 到K 的一个映射,它是满射,但不是单射。

线性空间及线性变换

线性空间及线性变换
i
是V1的一组基, 1 , 2 , , l 是V2的一组基.
(1) V1+V2的基与维数. 令矩阵 A ( 1 , 2 , , k , 1 , 2 , , l ) ,求A的秩,则 V1+V2的维数等于A的秩r,A中r个线性无关的列即为 V1+V2的基. (2) V1∩V2的基与维数. 令 x 1 1 x 2 2 x k k y 1 1 y 2 2 y l l ,解这 个方程组求它的一个基础解系: (xi1,xi2,…,xik,yi1,yi2,…,yil)/,i=1,2,…,d,d=k+l-r,则 z y i=1,2,…,d是V1∩V2的一组基, V1∩V2的维数等于 d=k+l-r. 4.线性变换的值域与核 线性变换/A的值域 / AV { y | y V , y / A , V } ,/A的 核/A-1(0)={y|y∈V,/Ay=0}.
二、基本方法 1.V1,V2是线性空间V的两个子空间,证明V=V1△V2 只要证明以下两点: (1)V1∩V2={0}; (2)dimV=dimV1+dimV2. 2.求线性空间V的基与维数,可先找到V的一个生成 元组 , , , ,然后证明 , , , 线性无关.
f ( ) ( 1 ) ( 2 )
r1 r2
生成
( s )
rs
则V可分解为A的不变子空间的直和
V=V1 △V2△…△Vs,其中: V i
是A属于 i 的根子空间.
{ X | ( i I A) i X 0, X V }
r
2.子空间的性质 我们用dimV表示线性空间V的维数. (1) 设V1和V2是线性空间V的子空间,则 dimV1+dimV2=dim(V1+V2)+dim(V1∩V2). (2) 设V1,V2,…,Vm是线性空间V的真子空间,则必存 在 V ,使 V ,1 i m , (3) 设V1=L(u1,u2,…,um),v1,v2,…,vr是V1中的r个线性 无关的向量,且r<m,则可以从u1,u2,…,um中去掉r个向 量,使剩下的m-r个向量与v1,v2,…,vr合在一起仍生成 子空间V1. 3.子空间的和与交的基与维数的求法 设V1和V2是线性空间V的子空间, 1 , 2 , , k
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 C 0 0 1 n 0 0 C n
那么比较等式两边易得C(i,j)=0(i≠j),于是S(A)的维 数为n维,它的一组基可取为E11,E22,…,Enn. □ 例6.1.2 (北京航空航天大学,2005年)设向量组
1 , 2 ,, s 与 1 , 2 ,, t 是两组n维向量,证明:
若这两个向量组都线性无关,则 L( , ,, 的维数等于齐次方程组 x x x y 的解空间的维数.
1 2 1 1 2 2 s s
s
) L(1 , 2 ,, t ) y 2 2 yt t 0
1 1
证明:设 W1 1 , 2 ,, s , W2 1 , 2 ,, t ,那么 由题知dim(W1)=s,dim(W2)=t. 记矩阵 A (1,2 ,, s , 1, 2 ,, t ),
f ( ) ( 1 ) ( 2 ) ( s )
r 1 r2
rs
则V可分解为A的不变子空间的直和
V=V1 △V2△…△Vs,其中: Vi {X | (i I A) r X 0, X V }
i
是A属于 i 的根子空间.
2.子空间的性质 我们用dimV表示线性空间V的维数. (1) 设V1和V2是线性空间V的子空间,则 dimV1+dimV2=dim(V1+V2)+dim(V1∩V2). (2) 设V1,V2,…,Vm是线性空间V的真子空间,则必存 在 V ,使 Vi ,1 i m , (3) 设V1=L(u1,u2,…,um),v1,v2,…,vr是V1中的r个线性 无关的向量,且r<m,则可以从u1,u2,…,um中去掉r个向 量,使剩下的m-r个向量与v1,v2,…,vr合在一起仍生成 子空间V1. 3.子空间的和与交的基与维数的求法 设V1和V2是线性空间V的子空间, 1 , 2 ,, k 是V1的一组基, 1 , 2 ,, l 是V2的一组基.
l i j 1 ij
j
(1)dim/AV=A的秩, / AV L(/ A1 , / A 2 ,, / A n ) ,其中
1 , 2 ,, n 是线性空间V的一组基.
(2)dim/AV+dimA-1(0)=dimV. (3) 设 1 , 2 ,, r 是/AV的一组基且 / A i i , 1≤i≤r,则V=/A-1(0)△ L(1 , 2 ,, r.) 一般地V不等 于/AV与/A-1(0)的直和.
第六章 线性空间及线性变换 一、基本概念和重要结果 1.空间的直和 我们用W=V1+V2记子空间V1与V2的和,用 W=V1△V2记W是V1与V2的直和. (1) W=V1△V2当且仅当W=V1+V2,对任意的 W 有 1 2 ,其中 i Vi ,i=1,2,且表示法是唯一的. (2) W=V1△V2当且仅当W=V1+V2且零向量的表示 法是唯一的. (3) W=V1△V2当且仅当W=V1+V2且V1∩V2={0}. (4) W=V1△V2当且仅当W=V1+V2且W的维数=V1的 维数+V2的维数.
X=(x1,x2,…,xs,y1,y2,…,yt)T. 那么方程组AX=0的解空间的维数为:s+t-r (A),注意 到W1+W2= 1 , 2 ,, s , 1 , 2 ,, t ,那么显然有 dim(W1+W2)=r(A).于是有: s+t-r(A)=dimW1+dimW2-dim(W1+W2)=dim(W1∩W2). 即解空间的维数等于 1,2 ,,s 1, 2 ,, t 的维数.
解: (1) 任取f(A),g(A)∈F(A),k∈P, 有 f(A)+g(A)=(f+g)(A).显然由f(x), g(x)∈P[x]可得 (f+g)(x)=f(x)+g(x)∈P[x],于是有f(A)+g(A)∈F(A).而 kf(A)=(kf)(A),那么由kf(x)∈P[x] 可知kf(A)∈F(A),即 知F(A)是Pn×n的一个线性子空间. (2) 不妨设A的最小多项式为 m( ) ,并记 (m( )) =m+1,那么由m(A)=0 且m( )的首项系数为1可知Am+1 可被I,A,A2,…,Am线性表出. 显然有任意f(A)∈F(A),都可使得f(A)被 I,A,A2,…,Am线性表出.下证I,A,A2,…,Am线性无关,利 用反证法. 若I,A,A2,…,Am线性相关,那么存在一组不全为零的 数k0,k1,…,km∈P,使得: k0I+k1A+k2A2+…+kmAm=0.
的特
(5) 设W是线性空间V的子空间且W L(1 , 2 ,, r ) , 则W是A的不变子空间当且仅当 / A i W ,i=1,2,…,r. (6) 设V1是线性变换/A的不变子空间,则对任一多 项式f, V1是f(A)的不变子空间. (7) 设/A和/B是线性变换且/A/B=/B/A, V 是/A的 V 特征子空间,则 也是/B的不变子空间. (8) V1是线性变换/A和/B的不变子空间,则它也是 /A+/B及/A/B的不变子空间.
二、基本方法 1.V1,V2是线性空间V的两个子空间,证明V=V1△V2 只要证明以下两点: (1)V1∩V2={0}; (2)dimV=dimV1+dimV2. 2.求线性空间V的基与维数,可先找到V的一个生成 元组 1 , 2 ,, n ,然后证明 1 , 2 ,, n线性无关. 3.证明多个子空间的和是直和,一般采用零向量的 表示方法是唯一的. 4.几种常见的线性空间: (1)数域P上的线性空间Pn,dimPn=n, 1 , 2 ,, n 是Pn的一组基,其中 i =(0,…,1,…,0),i=1,2,…,n.
注意到ImB|V=W,那么有dimImB|V=dimW.而 dimV=m-r(AB),kerB|V=kerB∩V.若Bx=0,显然有 ABx=0,所以有kerB V,那么有B=B∩V. 注意到dimkerB即为Bx=0的解空间的维数,它等于 m-r(B),于是有dimkerB|V=dimkerB∩V=dimkerB=mr(B),代入等式(I)有: dimW+(m-r(B))=m-r(AB). 移项即 得: dimW=r(B)-r(AB). □ 例6.1.4 (中南大学,2003年)设P是一个数域,A是Pn×n 中一个矩阵,令F(A)={f(A)|f(x)∈P[x]}.证明: (1)F(A)是Pn×n的一个线性子空间. (2)可以找到非负整数m,使I,A,A2,…,Am是F(A)的一组 基. (3)F(A)的维数等于A的最小多项式的次数.
(5) 若 1 , 2 ,, n 是线性空间V的一组基,则
V L(1 , 2 ,, r )L( r 1 , r 2 ,, n )
其中 L(1 , 2 ,, r ) 表示由 1 , 2 ,, r 生成 的子空间. (6) 若W=V1+V2且V1与V2正交,则W=V1△V2. 上面的结论可推广到多个子空间的情况. (7) 设线性变换/A的特征多项式为:
1 0 0 n
,求S(A)的基与维数.
解: (1)显然只要验证对加法和数乘封闭即可.
对任意Z1,Z2∈S(A),任意k∈R,有 A(Z1+Z2)=AZ1+AZ2=Z1A+Z2A=(Z1+Z2)A.知 Z1+Z2∈S(A). (kZ1)A=kAZ1=A(kZ).知kZ1∈S(A).即知 S(A)为一个子空间. (2)对任何矩阵C,若:
(1) V1+V2的基与维数. 令矩阵 A (1 , 2 ,, k , 1 , 2 ,, l ) ,求A的秩,则 V1+V2的维数等于A的秩r,A中r个线性无关的列即为 V1+V2的基. (2) V1∩V2的基与维数. 令 x11 x2 2 xk k y11 y2 2 yl l ,解这 个方程组求它的一个基础解系: (xi1,xi2,…,xik,yi1,yi2,…,yil)/,i=1,2,…,d,d=k+l-r,则 z y i=1,2,…,d是V1∩V2的一组基, V1∩V2的维数等于 d=k+l-r. 4.线性变换的值域与核 线性变换/A的值域 / AV { y | y V , y / A , V } ,/A的 核/A-1(0)={y|y∈V,/Ay=0}.

例6.1.3 (北京理工大学,2004年)设A,B分别是数域K 上的p×n、 n×m矩阵,令 V={x|x∈Km,ABx=0},W={y|y=Bx,x∈V}.证明: W是向 量空间的子空间,且dimW=r(B)-r(AB). 证明: 要证明W是一个子空间,只要说明它对加法和 数乘封闭即可. 若y1,y2∈W,k∈K,那么存在x1,x2∈V,使得 y1=Bx1,y2=Bx2,显然V是方程组ABx=0的解空间,它是 一个子空间,那么有x1+x2∈V, kx1∈V,这时 y1+y2=Bx1+Bx2=B(x1+x2).于是有y1+y2∈W,而 ky1=kBx1=B(kx1),知ky1∈W,知W必是向量空间的一个 子空间. 把B看成是向量空间Km到向量空间Kn的线性映射, 那么有:W=B(V),于是有: dimImB|V+dimkerB|V=dimV (I)
(4)/AV和/A-1(0)都是线性变换/A的不变子空间. (5)/A与/B可换,则/B的核与值域也是/A的不变子空 间. 5.不变子空间 (1) 线性空间V的子空间W是线性变换/A的不变子 空间当且仅当对任意的 W 有 / A W .
(2) 设 是线性变换/A的特征根,则A属于 征子空间 V {x | Ax x}是A的不变子空间. (3) 不变子空间的和与交是不变子空间. (4) 任一空间是数乘变换的不变子空间.
相关文档
最新文档