矩阵论 线性空间与线性变换概述
线性空间与线性变换

线性空间与线性变换线性空间是线性代数的一个重要概念,扮演着理解线性变换的基础角色。
本文将介绍线性空间的定义、性质以及线性变换的概念和特性。
一、线性空间的定义与性质线性空间,也被称为向量空间,是指一个集合,其中包含一些向量,满足特定的性质。
具体而言,线性空间需要满足以下几个条件:1. 封闭性:对于线性空间中的任意两个向量,它们的线性组合也属于该空间。
即,如果向量a和向量b属于线性空间V,那么对于任意标量α和β,αa + βb也属于V。
2. 加法封闭性:线性空间中的向量满足加法封闭性,即对于任意的向量a和b,它们的和a + b也属于该空间。
3. 数乘封闭性:线性空间中的向量满足数乘封闭性,即对于任意的向量a和标量α,它们的积αa也属于该空间。
4. 满足加法和数乘的运算性质:线性空间中的向量满足加法和数乘的交换律、结合律和分配律。
线性空间的性质还包括零向量、负向量和线性相关性。
零向量表示线性空间中存在一个使其与任何向量相加得到自身的向量,负向量表示线性空间中的向量存在一个加法逆元。
线性相关性指的是线性空间中存在一组向量线性组合为零向量的关系。
二、线性变换的定义和性质线性变换是指在两个线性空间之间的映射,它保持了向量空间中的线性结构。
具体而言,线性变换需要满足以下几个条件:1. 保持加法运算:对于线性变换T,对任意的向量a和b,有T(a +b) = T(a) + T(b)。
2. 保持数乘运算:对于线性变换T和标量α,有T(αa) = αT(a)。
线性变换的性质还包括零变换、恒等变换和可逆性。
零变换表示线性变换将所有向量映射为零向量。
恒等变换表示线性变换将每个向量映射为其本身。
可逆性表示存在一个逆变换,使得两个线性变换进行复合后得到恒等变换。
三、线性空间与线性变换的关系线性空间和线性变换密切相关,线性变换本质上是线性空间之间的映射,它将一个线性空间中的向量映射到另一个线性空间中。
线性变换保持了向量空间的线性结构,在线性代数中起到了重要的作用。
矩阵分析引论--第一章 线性空间与线性变换-线性空间的概念、 基变换与坐标变换

复数集的一个非空子集,含非零数,对和、差、 积、商(除数不为零)运算封闭.
• 性质:
必包含0与1; 有理数域是最小的数域.
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
2、线性空间
定义1-1(线性空间) 设V是一非空集合,P是一数域,若
(1)在V上定义了一个二元运算(称为加法, a与b 的和记为a+b), 且 a , b V,有 a b V ;
(2)在P与V的元素之间还定义了一种运算(称为
数乘, k与a的数乘记为ka),
且 a V ,k P, 有 ka V ;
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
(3)加法与数乘满足以下八条规则:
(ⅰ) a b b a; (ⅱ) (a b ) a (b );
第一章第一二节 线性空间的概念、基变换与坐标变换
第一节 线性空间的概念
一、线性代数回顾
★ n维向量:有序数组 ★ 线性运算:加法、数乘 ★ 运算律(八条) ★ 向量关系:线性相关、线性无关 ★ 向量空间 ★ 子空间 ★基
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
(ⅲ) a 0 a;
(ⅳ) a (a ) 0;
(ⅴ) 1a a;
(ⅵ) k(la ) (kl)a;
(ⅶ) (k l)a ka la ;(ⅷ) k(a b ) ka kb .
则称集合V为数域P上的线性空间或向量空间.
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
又若向量 b k1a1 k2a2 knan , 则b 也称为向量 a1,a2,,an 的线性组合,或称 b 可以由向量 a1,a2,,an 线性表示.
线性空间与线性变换

线性空间与线性变换线性空间和线性变换是线性代数中的重要概念,在数学和物理等领域有着广泛的应用。
本文将介绍线性空间和线性变换的概念、性质以及它们之间的关系。
一、线性空间的定义和性质线性空间是指具有加法运算和数乘运算的集合,满足以下条件:1. 加法运算闭合性:对于任意两个向量u和v,它们的和u+v仍然属于该集合。
2. 加法交换律:对于任意两个向量u和v,有u+v = v+u。
3. 加法结合律:对于任意三个向量u、v和w,有(u+v)+w =u+(v+w)。
4. 存在零向量:存在一个特殊的向量0,使得对于任意向量v,有v+0 = v。
5. 对于任意向量v,存在其负向量-u,使得v+(-u) = 0。
6. 数乘运算闭合性:对于任意标量c和向量v,它们的乘积cv仍然属于该集合。
7. 数乘结合律:对于任意标量c和d以及向量v,有(c+d)v = cv+dv。
8. 数乘分配律1:对于任意标量c以及向量u和v,有c(u+v) =cu+cv。
9. 数乘分配律2:对于任意标量c和d以及向量v,有(cd)v = c(dv)。
线性空间的例子包括n维向量空间和函数空间等。
它们满足上述定义中的所有条件。
二、线性变换的定义和性质线性变换是指将一个线性空间映射到另一个线性空间的映射,满足以下条件:1. 对于任意向量v和w以及标量c,线性变换T满足T(v+w) =T(v)+T(w)和T(cv) = cT(v)。
2. 线性变换T保持向量的线性组合关系,即对于任意向量v1、v2、...、vn和标量c1、c2、...、cn,有T(c1v1+c2v2+...+cnvn) =c1T(v1)+c2T(v2)+...+cnT(vn)。
3. 线性变换T将零向量映射为目标线性空间的零向量。
线性变换的例子包括平移、旋转和缩放等。
它们保持向量空间的线性结构和线性关系。
三、线性空间与线性变换的关系线性空间和线性变换之间存在着密切的联系。
给定一个线性空间V,定义一个线性变换T:V→W,其中W是另一个线性空间。
工程硕士矩阵论第一章

n 例 n维向量空间 R(及其子空间)按照向量的加 法以及向量与实数的加法及数乘两种运 算下构成一个实线性空间,记为 R mn .
例 区间[a,b]上的全体连续实函数,按照函数的 加法及数与函数的乘法构成一个实线性空间,记为 C[a,b].
定理1.2 设W是线性空间V的非空子集, 则W是V的子空间的充要条件是: W对V 中的线性运算封闭.
例 函数集合 f x C a, b f a 0是线性空间C[a,b] 的子空间.
例 函数集合 f x C a, b f a 1 不是线性空间 C[a,b]的子空间.
例
22 R 求
中
1 1 2 2 1 1 2 0 A1 0 1 , A2 0 2 , A3 1 0 , A4 1 1 ,
的秩和极大无关组.
第三节 线性子空间
一.子空间的概念 定义 设V为数域P上的线性空间,W是V 的非空子集,若 W关于 V中的线性运算也 构成数域 P 上的线性空间,则称 W 是 V 的 线性子空间,简称子空间. 对任何线性空间V ,显然由V中单个零向 量构成的子集是V的子空间,称为V的零子空 间; V本身也是V的子空间.这两个子空间称 为V的平凡子空间.其它子空间称为V的非平 凡子空间.
• 若ka=0,则k=0或a=0
第二节 基、坐标与维数
一.向量组的线性相关性 1.有关概念 定义 设V为数域P上的线性空间,对V 中的向 , 1 , 2 ,, m , 如果存在一组数 量(元素) k1 , k 2 ,, k m P ,使得
则称 或 可由向量组 1 , 2 ,, m 线性表示. k1 , k 2 ,, k m 称为组合系数(或表示系数)
矩阵论学习-(线性空间与线性变换)

ka1 ,
kb1 +
k( k 2
1 ) a21
ka2 ,
kb2
+
k(
k2
1)
a22
=
ka1
+
ka2 ,
kb1
+
kb2
+
k( k 2
1) (
a21
+
a22 )
+
k2 (
a1 a2 )
.
4
矩 阵 论 学 习 辅 导 与 典型 题 解 析
故有 k⊙ ( α β) = ( k⊙α) ( k⊙β) , 即八条运算法则皆成立 , V 在实域 R 上构
第一章 线性空间与线性变换
线性空间是某一类事物从量方面的一个数学抽象, 线性变换则是反映线性空 间元素之间最基本的线性函数关系 , 它们是研究线性代数的理论基础 .理解本章的 主要概念 , 掌握基本定理、结论和方法 , 对学好矩阵论起着关键的作用 .
§1 .1 线性空间 , 基、维数及坐标
一、线性空间与子空间
mn
mn
mn
∑ ∑ ( aij + bij ) = ∑∑ aij + ∑ ∑ bij = 0
i = 1j = 1
i = 1j = 1
i = 1j = 1
即有 A + B∈ W4 , 同样由于 kA = ( kaij ) m × n ,
mn
mn
∑∑ kaij = k∑∑ aij = k0 = 0
i = 1j = 1
i = 1j = 1
即有 kA∈ W4 .加法运算和数乘运算封闭 , 故 W4 是一个子空间 .
⑥ ( kl ) ⊙α=
矩阵理论第一章线性空间与线性变换13

主讲教师 杨建平
教材:矩阵论及其应用
(中国科技大学出版社,黄有度等)
• 参考书: • 矩阵分析(北京理工大学出版社,史荣昌) • 矩阵理论(高等教育出版社,黄廷祝等) • 矩阵论(科学出版社,戴华)
矩阵理论
内容简介 第一章 线性空间与线性变换 第二章
—矩阵与Jordan标准形
第三章 矩阵分析及矩阵函数 第四章 矩阵微分方程
n 又 C n 为线性空间, 故 x1 x2 C ,因此 A( x1 x2 ) R( A),
又 A( x1 x2 ) Ax1 Ax 2 y1 y2 故 y1 y2 R( A), 同理, 当 k C 时,有 ky1 R( A), 由于 C n 为线性空间, 容易验证 R( A) 中的加法和数乘满足8条规则,故 R( A) 为C上的线性空间。
则把f(x)在 x a 处按 Taylor 公式展开后,有
例8
1 (1, 2 (0,
在 n 维线性空间 R n 中,它的一个基为:
0,,0) T 1,,0)
0,,1)
T
T n
T
n (0,
对于任一向量 (a1 , a2 ,, an ) R , 有
R( A) { y | y Ax , N ( A) {x | Ax 0,
x C n} x C n}
按 C n 中的加法和数乘运算,则 R( A) 和 N ( A) 都是复数 域C上的线性空间,其中 N ( A) 叫做矩阵A的零空间,(或核), 也叫做方程组Ax=0的解空间。
证明: 设 y1, y2 R( A), 则存在 x1 , x2 Cn, 使得 y1 Ax1, y2 Ax 2
矩阵论——讲稿

(Ⅱ) 定义的数乘运算封闭, 即
∀ x ∈V , ∀ k ∈ K , 对应唯一 元素(kx)∈V , 且满足 (5) 数对元素分配律: k( x + y) = kx + ky (∀y ∈V ) (6) 元素对数分配律: (k + l )x = kx + lx (∀l ∈ K ) (7) 数因子结合律: k(lx) = (kl )x (∀l ∈ K ) (8) 有单位数:单位数1∈ K , 使得 1x = x . 则称V 为 K 上的线性空间.
例 3 K = R 时, R n —向量空间;
R m×n —矩阵空间
第一章 线性空间与线性变换(第 1 节)
3
Pn[t]—多项式空间; C[a,b] —函数空间 K = C 时, Cn —复向量空间; Cm×n —复矩阵空间 例 4 集合 R + = {m m是正实数 } ,数域 R = {k k是实数 } .
0
a 12
a
22
ai
j1
I
S 2
=
{A
=
a11
0
0
a
22
a 11
, a22
∈
R}
S 1
U
S 2
=
{A
=
a11 a21
a 12
a
22
aa 12 21
=
0,
ai
j
∈
R}
S 1
+
S 2
=
{A
=
a11 a21
a 12
a 22
ai j ∈ R}
2.数域:关于四则运算封闭的数的集合.
2.减法运算:线性空间V 中, x − y = x + (− y) .
第三章线性空间与线性变换 - 同济大学数学系

21
GEM
例1 设
R
2 2
a b = a , b, c , d R c d
2 2 R 是实数域 R 上的线性空间。 则
22
GEM
自然基
1 0 0 1 0 0 0 0 E11 = 0 0 , E12 = 0 0 , E 21 = 1 0 , E 22 = 0 1
= a1 + a2 cos x + b1 + b2 sin x
= a sin x + b S[ x ].
ls1 = la1 sin x + b1 = la1 sin x + b1 S[ x ]
\ S x 是一个线性空间.
9
GEM
例5 在区间[a, b]上全体实连续函数,对函数的 加法与数和函数的数量乘法,构成实数域R上的 线性空间,记作C[a, b]。
下的坐标。
26
GEM
解:设
1 2 = x1 A1 + x2 A2 + x3 A3 + x4 A4 1 1
x1 + x3 + x4 = x1 + x2 x1 x2 x3 x1
27
GEM
x1 + x3 + x4 = 1 x x x = 2 1 2 3 \ = 1 x1 + x2 =1 x1
对于多项式的加法、数乘多项式构成线性空间。
6
GEM
例3 n 次多项式的全体
Q[ x ]n = { an-1 x n-1+ + a 1 x + a 0 a n-1 0 }
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不交作业,但应该重视练习环节。
第1章:线性空间与线性变换
内容: 线性空间的一般概念
重点:空间的代数与几何结构,与向量空间R n 的关系 线性变换 重点:其中的矩阵处理方法 特点: 研究代数结构——具有线性运算的集合。 研究几何结构——空间的维数和基 看重的不是研究对象本身,而是对象之间的结构关系。 研究的关注点:对象之间数量关系的矩阵处理。 学习特点:具有抽象性和一般性。
二、教学安排
学时配置 讲授第1章至第6章 (48学时) 第1章:10学时; 第2章:8学时 第3章:8学时; 第4章:6学时; 第5章:8学时; 第6章:6学时
考核方式:课程结束考试
卷面成绩为最终成 绩
三、教学指导意见
背景要求:线性代数 矩阵与计算工具:MATLAB,MAPLE, … 矩阵与现代应用:应用选讲 教学参考书:
矩阵论应用介绍 Symmetric matrices are inertia deformation,viscous tensors in continuum mechanics. Graphs can be described in a useful way by square matrices. Markov processes involve stochastic or bistochastic matrices. Quantum chemistry is intimately to matrix group and their representation. Quantum mechanics was called “mechanics of matrices”
n 1
F=R或C
运算:多项式的加法和数乘
•C[a,b]={f(x):f(x)在[a,b]上连续}
运算:函数的加法和数乘
•eg5: V=R+,F=R, a b=ab, a=a
线性空间的抽象:
线性空间的一般形式:
V(F),元素被统称为向量:, ,,
线性空间的简单性质(共性): 定理1 . 1:V(F)具有性质: (1) V(F)中的零元素是惟一的。 (2) V(F)中任何元素的负元素是惟一的。 (3)数零和零元素的性质: 数0 0=0,k0=0,k =0 =0 或k=0 ( 4 ) = ( 1)
余鄂西,矩阵论,高等教育出版社,1995。 方保熔等,矩阵论,清华大学出版社,2004。 Fuzhen Zhang,Matrix Theory,Springer,1999。 Denis Serre, Matrices Theory and Applications, Springer,2002。 R. A. Hom et al, Matrix Analysis, Cambridge University Press, (卷1:人民邮电出版社,2005)
前言
一、矩阵论内容介绍 研究内容:
矩阵与线性空间和线性变换
• 以矩阵为工具研究问题 • 在其中发展矩阵理论
矩阵在各种意义下的化简与分解 矩阵的分析理论 各类矩阵的性质研究
矩阵被认为是最有用的数学工具,既适用于 应用问题,又适合现代理论数学的抽象结构。
矩阵论应用介绍
Scientific computing libraries began growing around matrix calculus. The maximum principle is related to nonnegative matrices. Control theory and stabilization of system with finitely many degrees of freedom involve spectral analysis of matrices. Statistics is widely based on correlation matrices. The discrete Fourier transform, including the fast Fourier transform, make use of Toneralized inverse is involved in least-squares approximation.
1.1 线性空间
一、线性空间的概念 回顾n 维向量空间Rn 推广思想:
抽象出线性运算的本质,在任意研究对象的集 合上定义具有线性运算的代数结构。
定义1.1(P .1)
要点:
• 集合V 与数域F • 向量的加法和数乘向量运算 • 运算性质的公理定义
常见的线性空间
F n={X=(x1,x2,…,xn)T:x F} 运算:向量加法和数乘向量 F mn = {A=[aij]mn:a ijF}; 运算:矩阵的加法和数乘矩阵 i 1 R mn ;C mn 。 ix a i aiR} Pn [x]={p(x)= :
向量0
二、线性空间的基和维数
向量的线性相关与线性无关:
定义形式和向量空间Rn中的定义一样。 有关性质与定理和Rn中的结果一样。
例题1 证明C[0,1]空间中的向量组 {ex,e2x,e3x …,enx},x[0,1] 线性无关。
二、线性空间的基和维数
基与维数的概念:P . 2,定义1 . 2 常见线性空间的基与维数: Fn,自然基{e1,e2,…,en},dim Fn =n Rmn ,自然基{Eij},dim Rmn =mn。 Pn [x] ,自然基{1,x,x2,x3…,x n-1},dimPn [x] =n C[a,b], {1,x,x2,x3…x n-1 …}C[a,b], dim C[a,b]= 约定:
V n (F)表示数域F上的 n 维线性空间。 只研究有限维线性空间。
三、坐标
1 定义 1 .3 (P . 3)设{1,2,…, n } 是空间 n Vn ( F ) 的一组基, Vn ( F ) , = xi i ,则x1 , i 1 x2, …, xn 是在基{i}下的坐标。