中考数学试题-2018届中考数学第一轮考点跟踪突破检测题6 最新
18年河南中考数学试卷及答案

2018年河南省中考数学试卷一、选择题(每题只有一个正确选项,本题共10 小题,每题3 分,共30 分)1.(3.00分)﹣的相反数是()A.﹣B.C.﹣D.2.(3.00分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×10 B.0.2147×10C.2.147×10 D.0.2147×10113.(3.00分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我4.(3.00分)下列运算正确的是()A.(﹣x)=﹣x B.x +x =x C.x •x =x D.2x ﹣x=15.(3.00分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7%B.众数是15.3%C.平均数是15.98%D.方差是06.(3.00分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5 钱,还差45 钱;若每人出7 钱,还差3 钱,问合伙人数、羊价各是多少?设合伙人数为x 人,羊价为y 线,根据题意,可列方程组为()A.C.B.D.23102 3 5 2 3 5 3 4 7 3 37.(3.00 分)下列一元二次方程中,有两个不相等实数根的是( )A .x +6x +9=0B .x =xC .x +3=2xD .(x ﹣1) +1=08.(3.00 分)现有 4 张卡片,其中 3 张卡片正面上的图案是“”,1 张卡片正面上的图案是“ ”,它们除此之外完全相同.把这 4 张卡片背面朝上洗匀, 从中随机抽取两张,则这两张卡片正面图案相同的概率是( ) A .B .C .D .9.(3.00 分)如图,已知▱AOBC 的顶点 O (0,0),A (﹣1,2),点 B 在 x 轴正 半轴上按以下步骤作图:①以点 O 为圆心,适当长度为半径作弧,分别交边 OA ,OB 于点 D ,E ;②分别以点 D ,E 为圆心,大于 DE 的长为半径作弧,两弧在∠AOB 内交于点 F ;③作射线 OF ,交边 AC 于点 G ,则点 G 的坐标为( )A .( ﹣1,2)B .( ,2)C .(3﹣,2) D .(﹣2,2)10.(3.00 分)如图 1,点 F 从菱形 ABCD 的顶点 A 出发,沿 A→D→B 以 1cm/s 的速度匀速运动到点 B ,图 2 是点 F 运动时,△FBC 的面积 y (cm )随时间 x (s )变化的关系图象,则 a 的值为( )A .B .2C .D .2二、细心填一填(本大题共 5 小题,每小题 3 分,满分 15 分,请把答案填在答2 2 2 2 2第2 页(共30 页)題卷相应题号的横线上)11.(3.00分)计算:|﹣5|﹣=.12.(3.00分)如图,直线AB,CD相交于点O,EO⊥AB 于点O,∠EOD=50°,则∠BOC 的度数为.13.(3.00分)不等式组的最小整数解是.14.(3.00分)如图,在△ABC 中,∠ACB=90°,AC=BC=2,将△ABC 绕AC 的中点D 逆时针旋转90°得到△A'B′C',其中点B 的运动路径为,则图中阴影部分的面积为.15.(3.00分)如图,∠MAN=90°,点C 在边AM 上,AC=4,点B 为边AN 上一动点,连接BC,△A′BC与△ABC 关于BC 所在直线对称,点D,E 分别为AC,BC 的中点,连接DE 并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为.三、计算题(本大题共8 题,共75分,请认真读题)16.(8.00分)先化简,再求值:(﹣1)÷,其中x=+1.17.(9.00分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E 的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90 万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.18.(9.00分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.19.(9.00分)如图,AB 是⊙O 的直径,DO⊥AB于点O,连接DA 交⊙O 于点C,过点C 作⊙O 的切线交DO 于点E,连接BC交DO 于点F.(1)求证:CE=EF;(2)连接AF 并延长,交⊙O 于点G.填空:①当∠D 的度数为时,四边形ECFG 为菱形;②当∠D 的度数为时,四边形ECOG 为正方形.20.(9.00分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B 两点间的距离为90cm.低杠上点C 到直线AB 的距离CE 的长为155cm,高杠上点D 到直线AB 的距离DF 的长为234cm,已知低杠的支架AC 与直线AB 的夹角∠CAE 为82.4°,高杠的支架BD 与直线AB 的夹角∠DBF 为80.3°.求高、低杠间的水平距离CH 的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)21.(10.00分)某公司推出一款产品,经市场调查发现,该产品的日销售量y (个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m日销售利润w(元87518751875875)(注:日销售利润=日销售量×(销售单价﹣成本单价)(1)求y 关于x 的函数解析式(不要求写出x 的取值范围)及m 的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x=元时,日销售利润w 最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90 元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?22.(10.00分)(1)问题发现如图1,在△OAB和△OCD 中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD 交于点M.填空:①的值为;②∠AMB 的度数为.(2)类比探究如图2,在△OAB和△OCD 中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC 交BD 的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD 绕点O 在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M 重合时AC 的长.223.(11.00分)如图,抛物线y=ax+6x+c 交x 轴于A,B 两点,交y 轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A 的直线交直线BC 于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C 重合),作直线AM 的平行线交直线BC于点Q,若以点A,M,P,Q 为顶点的四边形是平行四边形,求点P 的横坐标;②连接AC,当直线AM 与直线BC 的夹角等于∠ACB的2 倍时,请直接写出点M 的坐标.2018 年河南省中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共 10 小题,每题 3 分,共 30 分) 1.(3.00 分)﹣ 的相反数是( )A .﹣B .C .﹣D .【解答】解:﹣ 的相反数是: .故选:B .2.(3.00 分)今年一季度,河南省对“一带一路”沿线国家进出口总额达 214.7 亿元,数据“214.7 亿”用科学记数法表示为( )A .2.147×10B .0.2147×10C .2.147×10D .0.2147×10 11【解答】解:214.7 亿,用科学记数法表示为 2.147×10 ,故选:C .3.(3.00 分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那 么在原正方体中,与“国”字所在面相对的面上的汉字是( )A .厉B .害C .了D .我【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形, “的”与“害”是相对面, “了”与“厉”是相对面, “我”与“国”是相对面. 故选:D .2 3 10 104.(3.00分)下列运算正确的是()A.(﹣x)=﹣x B.x +x =x C.x •x =x D.2x ﹣x=1【解答】解:A、(﹣x)=﹣x,此选项错误;B、x 、x 不是同类项,不能合并,此选项错误;C、x•x=x,此选项正确;D、2x ﹣x=x ,此选项错误;故选:C.5.(3.00分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7%B.众数是15.3%C.平均数是15.98%D.方差是0【解答】解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;B、(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C 错误;D、∵5 个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.6.(3.00分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5 钱,还差45 钱;若每人出7 钱,还差3 钱,问合伙人数、羊价各是多少?设合伙人数为x 人,羊价为y 线,根据题意,可列方程组为()A.C.B.D.2 3 5 2 3 5 3 4 7 3 32 3 62 33473 3 3【解答】解:设合伙人数为 x 人,羊价为 y 线,根据题意,可列方程组为: .故选:A .7.(3.00 分)下列一元二次方程中,有两个不相等实数根的是( )A .x +6x +9=0B .x =xC .x +3=2xD .(x ﹣1) +1=0 【解答】解:A 、x +6x +9=0△=6 ﹣4×9=36﹣36=0,方程有两个相等实数根;B 、x =x x ﹣x=0△=(﹣1) ﹣4×1×0=1>0两个不相等实数根;C 、x +3=2xx ﹣2x +3=0△=(﹣2) ﹣4×1×3=﹣8<0,方程无实根; D 、(x ﹣1) +1=0(x ﹣1) =﹣1, 则方程无实根; 故选:B .8.(3.00 分)现有 4 张卡片,其中 3 张卡片正面上的图案是“”,1 张卡片正面上的图案是“ ”,它们除此之外完全相同.把这 4 张卡片背面朝上洗匀, 从中随机抽取两张,则这两张卡片正面图案相同的概率是( ) A .B .C .D .2 2 2 2 2 2 2 2 2 2 2 2 2 2用B 表示,用A1,A2,A3,表示,【解答】解:令3 张可得:,一共有12 种可能,两张卡片正面图案相同的有6 种,故从中随机抽取两张,则这两张卡片正面图案相同的概率是:.故选:D.9.(3.00分)如图,已知▱AOBC 的顶点O(0,0),A(﹣1,2),点B 在x 轴正半轴上按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA,OB 于点D,E;②分别以点D,E 为圆心,大于DE 的长为半径作弧,两弧在∠AOB 内交于点F;③作射线OF,交边AC 于点G,则点G 的坐标为()A.(﹣1,2)B.(,2)C.(3,2)D.(﹣2,2)﹣【解答】解:∵▱AOBC的顶点O(0,0),A(﹣1,2),∴AH=1,HO=2,R t AOH中,AO=,∴△由题可得,OF 平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,第12 页(共30 页)∴AG=AO=,∴HG= ﹣1,∴G(﹣1,2),故选:A.10.(3.00分)如图1,点F 从菱形ABCD的顶点A 出发,沿A→D→B以1cm/s 的速度匀速运动到点B,图2 是点F 运动时,△FBC的面积y(cm )随时间x (s)变化的关系图象,则a 的值为()A.B.2 C.D.2【解答】解:过点D 作DE⊥BC于点E由图象可知,点F 由点A 到点D 用时为as,△FBC 的面积为acm.∴AD=a∴∴DE=2当点F 从D 到B 时,用∴BD=△R t DBE中,BE=s22∵ABCD 是菱形∴EC=a﹣1,DC=aR t DEC中,△2 22a =2 +(a﹣1)解得a=故选:C.二、细心填一填(本大题共5 小题,每小题3 分,满分15 分,请把答案填在答題卷相应题号的横线上)11.(3.00分)计算:|﹣5|﹣=2.【解答】解:原式=5﹣3=2.故答案为:2.12.(3.00分)如图,直线AB,CD 相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC 的度数为140°.【解答】解:∵直线AB,CD 相交于点O,EO⊥AB于点O,∴∠EOB=90°,∵∠EOD=50°,∴∠BOD=40°,则∠BOC 的度数为:180°﹣40°=140°.故答案为:140°.13.(3.00分)不等式组的最小整数解是﹣2.【解答】解:∵解不等式①得:x>﹣3,解不等式②得:x≤1,∴不等式组的解集为﹣3<x≤1,∴不等式组的最小整数解是﹣2,故答案为:﹣2.14.(3.00分)如图,在△ABC 中,∠ACB=90°,AC=BC=2,将△ABC 绕AC 的中点D 逆时针旋转90°得到△A'B′C',其中点B 的运动路径为,则图中阴影部分的面积为π.【解答】解:△ABC绕AC 的中点D 逆时针旋转90°得到△A'B′C',此时点A′在斜边AB 上,CA′⊥AB,∴∠ACA′=∠BCA′=45°,∴∠BCB′=135°,∴S阴= = π.15.(3.00分)如图,∠MAN=90°,点C 在边AM 上,AC=4,点B 为边AN 上一动点,连接BC,△A′BC与△ABC 关于BC 所在直线对称,点D,E 分别为AC,BC 的中点,连接DE 并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为4或4.【解答】解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,∵△A′BC与△ABC关于BC 所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E 分别为AC,BC 的中点,∴D、E 是△ABC 的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,R t A'CB中,∵E 是斜边BC 的中点,△∴BC=2A'B=8,2 2 2由勾股定理得:AB =BC ﹣AC,∴AB= =4;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC 所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC 是等腰直角三角形,∴AB=AC=4;综上所述,AB 的长为4或4;故答案为:4或4;三、计算题(本大题共8 题,共75分,请认真读题)﹣1)÷,其中x=+1.16.(8.00分)先化简,再求值:(【解答】解:当x=+1 时,原式= •=1﹣x=﹣17.(9.00分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2000人;(2)扇形统计图中,扇形E 的圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90 万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.【解答】解:(1)本次接受调查的市民人数为300÷15%=2000人,故答案为:2000;(2)扇形统计图中,扇形E 的圆心角度数是360°×故答案为:28.8°;=28.8°,治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他(3)D 选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为70×40%=28(万人).18.(9.00分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k 的值.【解答】解:(1)∵反比例函数y= (x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y= ;第19 页(共30 页)(2)如图所示:矩形OAPB、矩形OCDP 即为所求作的图形.19.(9.00分)如图,AB 是⊙O 的直径,DO⊥AB于点O,连接DA 交⊙O 于点C,过点C 作⊙O 的切线交DO 于点E,连接BC交DO 于点F.(1)求证:CE=EF;(2)连接AF 并延长,交⊙O 于点G.填空:①当∠D 的度数为30°时,四边形ECFG 为菱形;②当∠D 的度数为22.5°时,四边形ECOG 为正方形.【解答】(1)证明:连接OC,如图,∵CE 为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB 为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF 为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG 为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG 为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°﹣67.5°﹣67.5°=45°,∴∠AOC=45°,∴∠COE=45°,利用对称得∠EOG=45°,∴∠COG=90°,易得△OEC≌△OEG,∴∠OEG=∠OCE=90°,∴四边形ECOG 为矩形,而OC=OG,∴四边形ECOG 为正方形.故答案为30°,22.5°.20.(9.00分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B 两点间的距离为90cm.低杠上点C 到直线AB 的距离CE 的长为155cm,高杠上点D 到直线AB 的距离DF 的长为234cm,已知低杠的支架AC 与直线AB 的夹角∠CAE 为82.4°,高杠的支架BD 与直线AB 的夹角∠DBF 为80.3°.求高、低杠间的水平距离CH 的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)【解答】解:在△R t ACE中,∵tan∠CAE=,≈≈21(cm)∴AE= =在△R t DBF 中,,∵tan∠DBF=∴BF= =≈=40(cm)∵EF=EA+AB+BF≈21+90+40=151(cm)∵CE⊥EF,CH⊥DF,DF⊥EF∴四边形CEFH 是矩形,∴CH=EF=151cm答:高、低杠间的水平距离CH 的长为151cm.21.(10.00分)某公司推出一款产品,经市场调查发现,该产品的日销售量y (个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x (元)8595105115日销售量y(个)17512575m日销售利润w(元87518751875875)(注:日销售利润=日销售量×(销售单价﹣成本单价)(1)求y 关于x 的函数解析式(不要求写出x 的取值范围)及m 的值;(2)根据以上信息,填空:该产品的成本单价是80元,当销售单价x=100元时,日销售利润w 最大,最大值是2000元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90 元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【解答】解;(1)设y 关于x 的函数解析式为y=kx+b,,得,即y 关于x 的函数解析式是y=﹣5x+600,当x=115 时,y=﹣5×115+600=25,即m 的值是25;(2)设成本为a 元/个,当x=85 时,875=175×(85﹣a),得a=80,22w=(﹣5x+600)(x﹣80)=﹣5x+1000x﹣48000=﹣5(x﹣100)+2000,∴当x=100时,w 取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b 元,当x=90 时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.22.(10.00分)(1)问题发现如图1,在△OAB和△OCD 中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD 交于点M.填空:①的值为1;②∠AMB 的度数为40°.(2)类比探究如图2,在△OAB和△OCD 中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC 交BD 的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD 绕点O 在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M 重合时AC 的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB 中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°; (2)类比探究 如图 2,= ,∠AMB=90°,理由是:△R t COD 中,∠DCO=30°,∠DOC=90°, ∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD ,∴△AOC ∽△BOD ,∴=,∠CAO=∠DBO ,在△AMB 中,∠AMB=180°﹣(∠MAB +∠ABM )=180° ﹣(∠OAB +∠ABM +∠DBO )=90°; (3)拓展延伸①点 C 与点 M 重合时,如图 3,同理得:△AOC ∽△BOD , ∴∠AMB=90°,,设 BD=x ,则 AC=x ,△R t COD 中,∠OCD=30°,OD=1,∴CD=2,BC=x ﹣2,△R t AOB 中,∠OAB=30°,OB=,∴AB=2OB=2,在 △R t AMB 中,由勾股定理得:AC +BC =AB ,,x ﹣x ﹣6=0,2 2 2 2(x ﹣3)(x +2)=0, x 1=3,x2=﹣2, ∴AC=3;②点 C 与点 M 重合时,如图 4,同理得:∠AMB=90°, ,设 BD=x ,则 AC=x ,在 △R t AMB 中,由勾股定理得:AC +BC =AB ,+(x +2)2=x +x ﹣6=0,(x +3)(x ﹣2)=0, x 1=﹣3,x 2=2,;∴AC=2综上所述,AC 的长为 3 或 2.23.(11.00 分)如图,抛物线 y=ax +6x +c 交 x 轴于 A ,B 两点,交 y 轴于点 C .直线 y=x ﹣5经过点 B ,C . (1)求抛物线的解析式;(2)过点 A 的直线交直线 BC 于点 M .22222第27 页(共30 页)行线交直线 BC 于点 Q ,若以点 A ,M ,P ,Q 为顶点的四边形是平行四边形, 求点 P 的横坐标;②连接 AC ,当直线 AM 与直线 BC 的夹角等于∠ACB 的 2 倍时,请直接写出点 M 的坐标.【解答】解:(1)当 x=0 时,y=x ﹣5=﹣5,则 C (0,﹣5),当 y=0 时,x ﹣5=0,解得 x=5,则 B (5,0),把 B (5,0),C (0,﹣5)代入 y=ax +6x +c 得 ,解得 ,∴抛物线解析式为 y=﹣x+6x ﹣5; (2)①解方程﹣x +6x ﹣5=0 得 x 1=1,x 2=5,则 A (1,0),∵B (5,0),C (0,﹣5),∴△OCB 为等腰直角三角形,∴∠OBC=∠OCB=45°,∵AM ⊥BC ,∴△AMB 为等腰直角三角形,∴AM=AB= ×4=2,∵以点 A ,M ,P ,Q 为顶点的四边形是平行四边形,AM ∥PQ ,∴PQ=AM=2,PQ ⊥BC ,第 28 页(共 30 页)2 2 2作PD⊥x 轴交直线BC 于D,如图1,则∠PDQ=45°,∴PD= PQ=×2 =4,设P(m,﹣m+6m﹣5),则D(m,m﹣5),当P 点在直线BC 上方时,PD=﹣m+6m﹣5﹣(m﹣5)=﹣m+5m=4,解得m1=1,m2=4,当P 点在直线BC 下方时,或;PD=m﹣5﹣(﹣m+6m﹣5)=m ﹣5m=4,解得m1=综上所述,P 点的横坐标为4 或,m2=,②作AN⊥BC 于N,NH⊥x 轴于H,作AC的垂直平分线交BC于M1,交AC 于E,如图2,∵M 1A=M1C,∴∠ACM1=∠CAM1,∴∠AM1B=2∠ACB,∵△ANB 为等腰直角三角形,∴AH=BH=NH=2,∴N(3,﹣2),易得AC 的解析式为y=5x﹣5,E点坐标为(,﹣),设直线EM1 的解析式为y=﹣x+b,把E(,﹣)代入得﹣+b=﹣,解得b=﹣,∴直线EM解方程组1,的解析式为y=﹣x﹣得,则M1(,﹣);作直线BC 上作点M1关于N 点的对称点M 2,如图2,则22222∠A M 2C=∠AM1B=2∠ACB,第29 页(共30 页)设2(x,x﹣5),M∵3=,∴x=,∴2(,﹣),M)或(,﹣).综上所述,点M 的坐标为(,﹣第30 页(共30 页)。
中考数学试题-2018届中考数学第一轮考点跟踪突破检测

考点跟踪突破3因式分解一、选择题1.(2018·百色)分解因式:16-x2=( A )A.(4-x)(4+x) B.(x-4)(x+4)C.(8+x)(8-x) D(4-x)22.(2018·贵港)下列因式分解错误的是( C )A.2a-2b=2(a-b)B.x2-9=(x+3)(x-3)C.a2+4a-4=(a+2)2D.-x2-x+2=-(x-1)(x+2)3.(2018·聊城)把8a3-8a2+2a进行因式分解,结果正确的是( C ) A.2a(4a2-4a+1) B.8a2(a-1)C.2a(2a-1)2D.2a(2a+1)24.若实数x,y,z满足(x-z)2-4(x-y)(y-z)=0,则下列式子一定成立的是( D )A.x+y+z=0 B.x+y-2z=0C.y+z-2x=0 D.z+x-2y=0点拨:左边=[(x-y)+(y-z)]2-4(x-y)(y-z)=(x-y)2-2(x-y)(y-z)+(y-z)2=[(x-y)-(y-z)]2,故(x-y)-(y-z)=0,x-2y+z=05.(2018·宜昌)小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a -b ,x -y ,x +y ,a +b ,x 2-y 2,a 2-b 2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x 2-y 2)a 2-(x 2-y 2)b 2因式分解,结果呈现的密码信息可能是( C )A .我爱美B .宜昌游C .爱我宜昌D .美我宜昌 二、填空题6.(2018·北京)如图中的四边形均为矩形,根据图形,写出一个正确的等式__am +bm +cm =m(a +b +c)__.7.(2018·株洲)分解因式:(x -8)(x +2)+6x =__(x +4)(x -4)__. 8.(2018·杭州)若整式x 2+ky 2(k 为不等于零的常数)能在有理数范围内因式分解,则k 的值可以是__-1__(写出一个即可).9.(2018·威海)分解因式:(2a +b)2-(a +2b)2=__3(a +b)(a -b)__.10.(2018·内江)已知实数a ,b 满足:a 2+1=1a ,b 2+1=1b ,则2 015|a -b|=__1__.点拨:∵a 2+1=1a ,b 2+1=1b ,两式相减可得a 2-b 2=1a -1b ,(a+b)(a -b)=b -aab ,[ab(a +b)+1](a -b)=0,∴a -b =0,即a =b ,∴2 015|a -b|=2 0150=1三、解答题11.分解因式:(1)(2018·黄石)3x2-27;解:原式=3(x2-9)=3(x+3)(x-3)(2)4+12(x-y)+9(x-y)2;解:原式=[2+3(x-y)]2=(3x-3y+2)2(3)8(x2-2y2)-x(7x+y)+xy.解:原式=8x2-16y2-7x2-xy+xy=x2-16y2=(x+4y)(x-4y)12.若△ABC的三边长分别为a,b,c,且a+2ab=c+2bc,判断△ABC的形状.解:∵a+2ab=c+2bc,∴a-c+2ab-2bc=0,(a-c)+2b(a-c)=0,∴(1+2b)(a-c)=0.∵1+2b≠0,∴a-c=0,∴a=c,∴△ABC是等腰三角形13.有足够多的长方形和正方形的卡片,如下图.如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是__a2+3ab+2b2=(a+b)(a+2b)__.解:或14.设a =12m +1,b =12m +2,c =12m +3.求代数式a 2+2ab +b 2-2ac -2bc +c 2的值.解:原式=(a 2+2ab +b 2)-(2ac +2bc)+c 2=(a +b)2-2(a +b)c +c 2=(a +b -c)2=[(12m +1)+(12m +2)-(12m +3)]2=(12m)2=14m 215.(导学号:01262018)设y =kx ,是否存在实数k ,使得代数式(x 2-y 2)(4x 2-y 2)+3x 2(4x 2-y 2)能化简为x 4?若能,请求出所有满足条件的k 的值;若不能,请说明理由.解:能 (x 2-y 2)(4x 2-y 2)+3x 2(4x 2-y 2)=(4x 2-y 2)(x 2-y 2+3x 2)=(4x 2-y 2)2,当y =kx ,原式=(4x 2-k 2x 2)2=(4-k 2)2x 4,令(4-k 2)2=1,解得k =±3或±5,即当k =±3或±5时,原代数式可化简为x 4。
中考数学试题-2018届中考数学第一轮考点跟踪突破检测题43 最新

考点跟踪突破6 一次方程(组)及其应用一、选择题1.(2018·包头)若2(a +3)的值与4互为相反数,则a 的值为( C )A .-1B .-72C .-5D .122.(2018·荆州)互联网”微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( C )A .120元B .100元C .80元D .60元3.(2018·茂名)我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马,多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( C )A .⎩⎪⎨⎪⎧x +y =100,3x +3y =100B .⎩⎪⎨⎪⎧x +y =100,x +3y =100C .⎩⎪⎨⎪⎧x +y =100,3x +13y =100 D .⎩⎪⎨⎪⎧x +y =100,3x +y =100 4.(2018·聊城)在如图的2018年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( D )日 一 二 三 四 五 六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30A .27B .51C .69D .725.(2018·齐齐哈尔)足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是( C )A .1或2B .2或3C .3或4D .4或5二、填空题6.(2018·扬州)以方程组⎩⎪⎨⎪⎧y =2x +2,y =-x +1的解为坐标的点(x ,y)在第__二__象限.7.(2018·湖北)王经理到襄阳出差带回襄阳特产——孔明菜若干袋,分给朋友们品尝,如果每人分5袋,还余3袋;如果每人分6袋,还差3袋,则王经理带回孔明菜__33__袋.8.(2018·成都)已知⎩⎪⎨⎪⎧x =3,y =-2是方程组⎩⎪⎨⎪⎧ax +by =3,bx +ay =-7的解,则代数式(a +b)(a -b)的值为__-8__.9.(2018·滨州)甲、乙二人做某种机械零件,已知甲是技术能手每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做__9__个零件.10.(导学号:01262018)(2018·绍兴)书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是__248或296__元.点拨:设第一次购书的原价为x 元,则第二次购书的原价为3x元,依题意得:①当0<x ≤1003时,x +3x =229.4,解得:x =57.35(舍去)②当1003<x ≤2003时,x +910×3x =229.4,解得:x =62,此时两次购书原价总和为:4x =4×62=248③当2003<x ≤100时,x +710×3x =229.4,解得:x =74,此时两次购书原价总和为:4x =4×74=296综上可知:小丽这两次购书原价的总和是248或296元三、解答题11.(1)(2018·贺州)解方程:x 6-30-x 4=5; 解:去分母得:2x -3(30-x)=60,去括号得:2x -90+3x =60,移项合并得:5x =150,解得:x =30(2)(2018·新疆)解方程组:⎩⎪⎨⎪⎧2x +3y =7①,x -3y =8②.解:①+②得,3x =15,解得x =5,把x =5代入①得,10+3y=7,解得y =-1.故方程组的解为⎩⎪⎨⎪⎧ x =5,y =-112.(2018·滨州)根据要求,解答下列问题.(1)解下列方程组(直接写出方程组的解即可)①⎩⎪⎨⎪⎧x +2y =3,2x +y =3的解为__⎩⎪⎨⎪⎧x =1,y =1;__ ②⎩⎪⎨⎪⎧3x +2y =10,2x +3y =10的解为__⎩⎪⎨⎪⎧x =2,y =2;__ ③⎩⎪⎨⎪⎧2x -y =4,-x +2y =4的解为__⎩⎪⎨⎪⎧x =4,y =4.__ (2)以上每个方程组的解中,x 值与y 值的大小关系为__x =y__;(3)请你构造一个具有以上外形特征的方程组,并直接写出它的解.解:⎩⎪⎨⎪⎧3x +2y =25,2x +3y =25,解为⎩⎪⎨⎪⎧x =5,y =513.(导学号:01262186)已知关于x ,y 的二元一次方程(a -1)x +(a +2)y +5-2a =0,当a 每取一个值时,就有一个方程,而这些方程有一个公共解,求这个公共解.解:解法一:取a =1,解得3y +3=0,y =-1,取a =-2,得-3x +9=0,x =3,∴x =3,y =-1解法二:整理得(x +y -2)a =x -2y -5,∵当a 每取一个值时,就有一个方程,而这些方程有一个公共解,可知方程(x +y -2)a =x-2y -5有无数个解,∴⎩⎪⎨⎪⎧x +y -2=0,x -2y -5=0,解得⎩⎪⎨⎪⎧x =3,y =-114.(导学号:01262187)(2018·泰州)某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?解:设每件衬衫降价x 元,依题意有120×400+(120-x)×100=80×500×(1+45%),解得x =20.答:每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标15.(导学号:01262018)(2018·连云港)某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性定客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?解:(1)设该店有客房x 间,房客y 人;根据题意得:⎩⎪⎨⎪⎧7x +7=y ,9(x -1)=y ,解得⎩⎪⎨⎪⎧x =8,y =63,答:该店有客房8间,房客63人 (2)若每间客房住4人,则63名客人至少需客房16间,需付费20×16=320钱;若一次性定客房18间,则需付费20×18×0.8=288钱<320钱;答:若诗中”众客”再次一起入住,他们应选择一次性订房18间更合算。
2018年中考数学真题(附答案解析)

2018年初中毕业生升学考试数学真题一、选择题 (本大题12个小题,每小题4分,共48分。
)1.2的相反数是( ) A .2-B .12-C .12D .22.下列图形中一定是轴对称图形的是A.B.C.D.3.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是( ) A.企业男员工 B.企业年满50岁及以上的员工 C.用企业人员名册,随机抽取三分之一的员工 D.企业新进员工4.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )A .12B .14C .16D .185.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm ,6cm 和9cm ,另一个三角形的最短边长为2.5cm ,则它的最长边为( ) A. 3cm B. 4cm C. 4.5cmD. 5cm6.下列命题正确的是A.平行四边形的对角线互相垂直平分B.矩形的对角线互相垂直平分C.菱形的对角线互相平分且相等D.正方形的对角线互相垂直平分7.估计()1230246-⋅的值应在( ) A. 1和2之间 B.2和3之间 C.3和4之间 D.4和5之间8.按如图所示的运算程序,能使输出的结果为12的是( )40°直角三角形四边形平行四边形矩形A.3,3==y xB.2,4-=-=y xC.4,2==y xD.2,4==y x9.如图,已知AB 是O 的直径,点P 在BA 的延长线上,PD 与O 相切于点D ,过点B 作PD 的垂线交PD 的延长线于点C ,若O 的半径为4,6BC =,则PA 的长为( ) A .4B .23C .3D .2.510.如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E 点处测得旗杆顶端的仰角58AED ∠=︒,升旗台底部到教学楼底部的距离7DE =米,升旗台坡面CD 的坡度1:0.75i =,坡长2CD =米,若旗杆底部到坡面CD 的水平距离1BC =米,则旗杆AB 的高度约为( )(参考数据:sin580.85︒≈,cos580.53︒≈,tan58 1.6︒≈) A .12.6米 B .13.1米 C .14.7米 D .16.3米11.如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B 在反比例函数ky x=(0k >,0x >)的图象上,横坐标分别为1,4,对角线BD x ∥轴.若菱形ABCD 的面积为452,则k 的值为( )A .54B .154C .4D .512.若数a 使关于x 的不等式组112352x xx x a-+⎧<⎪⎨⎪-≥+⎩有且只有四个整数解,且使关于y 的方程2211y a ay y++=--的解为非负数,则符合条件的所有整数a 的和为( ) A .3- B .2- C .1 D .2二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.计算:02(3)π-+-=______________.14.如图,在矩形ABCD 中,3AB =,2AD =,以点A 为圆心,AD 长为半径画弧,交AB 于点E ,图中阴影部分的面积是___________(结果保留π).15. 春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为 。
(完整word版)2018中考数学试卷及答案

2018年中考数学试卷说明:1.全卷共6页,满分为150 分,考试用时为120分钟。
2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。
用2B 铅笔把对应该号码的标号涂黑。
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。
4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案 无效。
5.考生务必保持答题卡的整洁。
考试结束时,将试卷和答题卡一并交回。
第Ⅰ卷(共42分)一、选择题:本大题共16个小题,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列运算结果为正数的是( )A .2(3)-B .32-÷C .0(2017)⨯-D .23-2.把0.0813写成10n a ⨯(110a ≤<,n 为整数)的形式,则a 为( )A .1B .2-C .0.813D .8.133.用量角器测量MON ∠的度数,操作正确的是( )4.23222333m n ⨯⨯⨯=+++个个……( ) A .23n m B .23m n C .32m n D .23m n5.图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是()A.①B.②C.③D.④6.如图为张小亮的答卷,他的得分应是()A.100分B.80分C.60分D.40分7.若ABC∆,则'B∆的每条边长增加各自的10%得'''A B C∠的度数相比∠的度数与其对应角B()A.增加了10%B.减少了10%C.增加了(110%)+D.没有改变8.如图是由相同的小正方体木块粘在一起的几何体,它的主视图是()9.求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC BD⊥.以下是排乱的证明过程:①又BO DO=,②∴AO BD⊥.⊥,即AC BD③∵四边形ABCD是菱形,④∴AB AD=.证明步骤正确的顺序是()A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②10.如图,码头A在码头B的正西方向,甲、乙两船分别从A、B同时出发,并以等速驶向某海域,甲的航向是北偏东35︒,为避免行进中甲、乙相撞,则乙的航向不能是()A.北偏东55︒B.北偏西55︒C.北偏东35︒D.北偏西35︒11.如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确的()12.如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是( )A .446+=B .004446++=C .46=D .1446-= 13.若321x x -=-( )11x +-,则( )中的数是( ) A .1- B .2- C .3- D .任意实数14.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,比较5月份两组家庭用水量的中位数,下列说法正确的是( )A .甲组比乙组大B .甲、乙两组相同C .乙组比甲组大D .无法判断15.如图,若抛物线23y x =-+与x 轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数kyx=(0x>)的图象是()16.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示.按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4 B.1.1 C.0.8 D.0.5第Ⅱ卷(共78分)二、填空题(本题共有3个小题,满分10分,将答案填在答题纸上)17.如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接CA,CB,分别延长到点M,N,使AM AC=,BN BC=,测得200MN m=,则A,B间的距离为m.18.如图,依据尺规作图的痕迹,计算α∠= .19.对于实数p ,q ,我们用符号{}min ,p q 表示p ,q 两数中较小的数,如{}min 1,21=,因此{min = ;若{}22min (1),1x x -=,则x = . 三、解答题 (本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤.)20.在一条不完整的数轴上从左到右有点A ,B ,C ,其中2AB =,1BC =,如图所示.设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且28CO =,求p .21.编号为1~5号的5名学生进行定点投篮,规定每人投5次,每命中1次记1分,没有命中记0分.如图是根据他们各自的累积得分绘制的条形统计图,之后来了第6号学生也按同样记分规定投了5次,其命中率为40%.(1)求第6号学生的积分,并将图增补为这6名学生积分的条形统计图;(2)在这6名学生中,随机选一名学生,求选上命中率高于50%的学生的概率;(3)最后,又来了第7号学生,也按同样记分规定投了5次.这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分.22.发现 任意五个连续整数的平方和是5的倍数.验证 (1)22222(1)0123-++++的结果是5的几倍?(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数.23.如图,16AB =,O 为AB 中点,点C 在线段OB 上(不与点O ,B 重合),将OC 绕点O 逆时针旋转270︒后得到扇形COD ,AP ,BQ 分别切优弧CD 于点P ,Q ,且点P ,Q 在AB 异侧,连接OP .(1)求证:AP BQ =;(2)当BQ =QD 的长(结果保留π);(3)若APO ∆的外心在扇形COD 的内部,求OC 的取值范围.24.如图,直角坐标系xOy 中,(0,5)A ,直线5x =-与x 轴交于点D ,直线33988y x =--与x 轴及直线5x =-分别交于点C ,E .点B ,E 关于x 轴对称,连接AB .(1)求点C ,E 的坐标及直线AB 的解析式;(2)设面积的和CDE ABDO S S S ∆=+,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将CDE ∆沿x 轴翻折到CDB ∆的位置,而CDB ∆与四边形ABDO 拼接后可看成AOC ∆,这样求S 便转化为直接求AOC ∆的面积不更快捷吗?”但大家经反复验算,发现AOC S S ∆≠,请通过计算解释他的想法错在哪里.25.平面内,如图,在ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90︒得到线段PQ .(1)当10DPQ ∠=︒时,求APB ∠的大小;(2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号);(3)若点Q 恰好落在ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π).26.某厂按用户的月需求量x (件)完成一种产品的生产,其中0x >.每件的售价为18万元,每件的成本y (万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x (件)成反比.经市场调研发现,月需求量x 与月份n (n 为整数,112n ≤≤)符合关系式2229(3)x n kn k =-++(k 为常数),且得到了表中的数据.(1)求y与x满足的关系式,请说明一件产品的利润能否是12万元;(2)求k,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m个月和第(1)m 个月的利润相差最大,求m.。
2018年安徽省中考数学试卷(含答案与解析)

2018年安徽省中考数学试卷(含答案与解析)数学试卷第1页(共18页) 数学试卷第2页(共18页)绝密★启用前安徽省2018年初中学业水平考试数学(考试时间120分钟,满分150分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.8-的绝对值是( ) A .8-B .8C .8±D .18-2.2017年我省粮食总产量为695.2亿斤,其中695.2亿科学记数法表示为( ) A .66.95210? B .86.95210? C .106.95210?D .8695.210? 3.下列运算正确的是( )A .235()a a =B .428a a a =C .632a a a ÷=D .333()ab a b =4.一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为( )ABC D(第4题)5.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-6.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%.假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a 万件和b 万件,则( )A .(122.1%2)b a =+?B .2(122.1%)b a =+C .(122.1%)2b a =+?D .22.1%2b a =?7.若关于x 的一元二次方程(1)0x x ax ++=有两个相等的实数根,则实数a 的值为( ) A .1-B .1C .2-或2D .3-或18.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲8关于以上数据,说法正确的是( )A .甲、乙的众数相同B .甲、乙的中位数相同C .甲的平均数小于乙的平均数D .甲的方差小于乙的方差 9.ABCD Y 中,E ,F 是对角线BD 上不同的两点.下列条件中,不能得出四边形AECF一定为平行四边形的是( ) A .BE DF = B .AE CF = C .AF CE ∥D .BAE DCF ∠=∠10.如图,直线1l ,2l 都与直线l 垂直,垂足分别为M ,N ,1MN =.正方形ABCD 的边长,对角线AC 在直线l 上,且点C 位于点M 处,将正方形ABCD 沿l 向右平移,直到点A 与点N 重合为止.记点C 平移的距离为x ,正方形ABCD 的边位于1l ,2l 之间部分的长度和为y ,则y 关于x 的函数图象大致为( )毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第3页(共18页) 数学试卷第4页(共18页)ABCD(第10题)二、填空题(本大题共4小题,每小题5分,共20分)11.不等式812x ->的解集是 . 12.如图,菱形ABOC 的边,AB AC 分别与O e 相切于点,D E .若点D 是边AB 的中点,则DOE ∠=.(第12题)(第13题)13.如图,正比例函数y kx =与反比例函数6y x=的图象有一个交点()2,A m ,AB x ⊥轴于点B .平移直线y kx =,使其经过点B ,得到直线l ,则直线l 对应的函数表达式是 .14.矩形ABCD 中,6,8AB BC ==.点P 在矩形ABCD 的内部,点E 在边BC 上,满足PBE DBC V V ∽,若APD V 是等腰三角形,则PE 的长为 . 三、解答题(本大题共2小题,共16分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分8分)计算:05(2)--16.(本小题满分8分)《孙子算经》中有这样一道题,原文如下:“今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?” 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?请解答上述问题. 四、解答题(本大题共2小题,共16分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分8分)如图,在由边长为1个单位长度的小正方形组成的1010?网格中,已知点,,O A B 均为网格线的交点.(1)在给定的网格中,以点O 为位似中心,将线段AB 放大为原来的2倍,得到线段11A B (点,A B 的对应点分别为11,A B ).画出线段11A B .(2)将线段11A B 绕点1B 逆时针旋转90得到线段21A B .画出线段21A B . (3)以112,,,A A B A 为顶点的四边形112AA B A 的面积是个平方单位.(第17题)18.(本小题满分8分) 观察以下等式:第1个等式:101011212++?=, 第2个等式:111112323++?=,第3个等式:121213434++?=,第4个等式:131314545++?=,第5个等式:141415656++?=,……按照以上规律,解决下列问题:(1)写出第6个等式: .(2)写出你猜想的第n 个等式: (用含n 的等式表示),并证明.五、解答题(本大题共2小题,共20分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分10分)为了测量竖直旗杆AB 的高度,某综合实践小组在地面D 处竖直放置标杆CD ,并在数学试卷第5页(共18页) 数学试卷第6页(共18页)地面上水平放置个平面镜E ,使得,,B E D 在同一水平线上,如图所示.该小组在标杆的F 处通过平面镜E 恰好观测到旗杆顶A (此时AEB FED ∠=∠).在F 处测得旗杆顶A 的仰角为39.3,平面镜E 的俯角为45, 1.8m FD =,问:旗杆AB 的高度约为多少米?(结果保留整数.参考数据:tan39.30.82,tan84.310.02≈≈)(第19题)20.(本小题满分10分)如图,O e 为锐角三角形ABC 的外接圆,半径为5.(1)用尺规作图作出BAC ∠的平分线,并标出它与劣弧BC 的交点E (保留作图痕迹,不写作法).(2)若(1)中的点E 到弦BC 的距离为3,求弦CE 的长.(第20题)六、解答题(本大题共1小题,共12分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分9分)“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:(第21题)(1)本次比赛参赛选手共有人,扇形统计图中“69.579.5~”这一组人数占总参赛人数的百分比为 .(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由.(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.七、解答题(本大题共1小题,共12分.解答应写出文字说明、证明过程或演算步骤) 22.(本小题满分12分)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元.②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x 盆,第二期盆景与花卉售完后的利润分别为12,W W (单位:元). (1)用含x 的代数式分别表示12,W W .(2)当x 取何值时,第二期培植的盆景与花卉售完后获得的总利润W 最大?最大总利润是多少?八、解答题(本大题共1小题,共14分.解答应写出文字说明、证明过程或演算步骤) 23.(本小题满分14分)如图1,在Rt ABC V 中,90ACB ∠=,点D 为边AC 上一点,DE AB ⊥于点E ,点M 为BD 中点,CM 的延长线交AB 于点F.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷第7页(共18页) 数学试卷第8页(共18页)(第23题)(1)求证:CM EM =.(2)若50BAC ∠=,求EMF ∠的大小.(3)如图2,若DAE CEM V V ≌,点N 为CM 的中点,求证:AN EM ∥.数学试卷第9页(共18页) 数学试卷第10页(共18页)安徽省2018年初中学业水平考试数学答案解析一、选择题 1.【答案】B【解析】∵80-<,∴|88|-=.故选:B . 【考点】绝对值. 2.【答案】C【解析】695.2亿1069520000000 6.95210==?,故选:C .【考点】科学记数法. 3.【答案】D【解析】Q 236()a a =,∴选项A 不符合题意;Q 426a a a =,∴选项B 不符合题意;Q 633a a a ÷=,∴选项C 不符合题意;Q 333()ab a b =,∴选项D 符合题意.故选:D .【考点】幂的运算. 4.【答案】A【解析】从正面看上边是一个三角形,下边是一个矩形,故选:A .【考点】三视图. 5.【答案】C【解析】A 、24(4)x x x x -+=--,故此选项错误;B 、2(1)x xy x x x y ++=++,故此选项错误;C 、2()()()x x y y y x x y -+-=-,故此选项正确;D 、2244(2)x x x -+=-,故此选项错误;故选:C .【考点】分解因式. 6.【答案】B【解析】因为2016年和2018年我省有效发明专利分别为a 万件和b 万件,所以2(122.1%)b a =+.故选:B .【考点】增长率问题. 7.【答案】A【解析】原方程可变形为2(1)0x a x ++=.∵该方程有两个相等的实数根,∴2(1)4100a ?=+-??=,解得:1a =-.故选:A .【考点】一元二次方程根的判别式. 8.【答案】D【解析】A 、甲的众数为7,乙的众数为8,故原题说法错误;B 、甲的中位数为7,乙的中位数为4,故原题说法错误;C 、甲的平均数为6,乙的平均数为5,故原题说法错误;D 、甲的方差为4.4,乙的方差为6.4,甲的方差小于乙的方差,故原题说法正确;故选:D .【考点】众数,中位数,平均数,方差. 9.【答案】B【解析】如图,连接AC 与BD 相交于O ,在ABCD 中,,OA OC OB OD ==,要使四边形AECF 为平行四边形,只需证明得到OE OF =即可;A 、若B E D F =,则OB BE OD DF -=-,即O E O F=,故本选项不符合题意;B 、若A E C F=,则无法判断OE OE =,故本选项符合题意;C 、AF CE ∥能够利用“角角边”证明和COE △全等,从而得到OE OF =,故本选项不符合题意;D 、BAE DCF ∠=∠能够利用“角角边”证明ABE △和CDF △全等,从而得到DF BE =,然后同A ,故本选项不符合题意;故选:B .数学试卷第11页(共18页) 数学试卷第12页(共18页)【考点】一元二次方程根的判别式. 10.【答案】A【解析】当01x <≤时,y =,当12x <≤时,y =,当23x <≤时,y =-+,∴函数图象是A ,故选:A .【考点】动点问题的函数图象. 二、填空题 11.【答案】10x >【解析】去分母,得:82x ->,移项,得:28x +>,合并同类项,得:10x >,故答案为:10x >.【考点】解一元一次不等式. 12.【答案】60【解析】连接OA ,四边形ABOC 是菱形,∴B A BO =,∵AB 与O e 相切于点D ,∴OD AB ⊥,∵点D 是AB 的中点,∴直线OD 是线段AB 的垂直平分线,∴OA OB =,∴AOB △是等边三角形,∵AB 与O 相切于点D ,∴O D A B ⊥,∴30AOD AOB ∠=∠=,同理,30AOE ∠=,∴60DOE AOD AOE ∠=∠+∠=,故答案为:60.【考点】圆的切线的性质,菱形的性质,等边三角形的判定与性质. 13.【答案】332y x =- 【解析】∵正比例函数y kx =与反比例函数6y x =的图象有一个交点(2,)A m ,∴26m =,解得:3m =,故(2,3)A ,则32k =,解得:32k =,故正比例函数解析式为:3 2y x =,∵AB x ⊥轴于点B ,平移直线y kx =,使其经过点B ,∴(2,0)B ,∴设平移后的解析式为:32y x b =+,则03b =+,解得:3b =-,故直线l 对应的函数表达式是:332y x =-.故答案为:332y x =-.【考点】一次函数与反比例函数的图象与性质,图形的平移. 14.【答案】3或65【解析】∵四边形ABCD 为矩形,∴90BAD ∠=,∴10BD ==,当8PD DA ==时,2BP BD PD =-=,∵PBEDBC △∽△,∴B P P E B D C D=,即2106PE=,解得,65PE =,当P D P A '='时,点P '为BD 的中点,∴132P E CD ''==,故答案为:3或65.【考点】矩形的性质,相似三角形的判定与性质,等腰三角形的性质. 三、解答题15.【答案】解:原式1247=++=.【解析】首先计算零次幂和乘法,然后再计算加减即可.【考点】实数的运算,零指数幂.16.【答案】解:设城中有x 户人家,根据题意,得1003xx +=,解得75x =.答:城中有75户人家.【解析】设城中有x 户人家,根据鹿的总数是100列出方程并解答.【考点】一元一次方程的应用. 四、解答题17.【答案】解:(1)线段11A B 如图1所示.数学试卷第13页(共18页) 数学试卷第14页(共18页)图1(2)线段21A B 如图1所示. (3)20【解析】(1)以点O 为位似中心,将线段AB 放大为原来的2倍,即可画出线段11A B ;(2)将线段11A B 绕点1B 逆时针旋转90得到线段,即21A B 可画出线段21A B ;(3)连接2AA ,即可得到四边形112AA B A 为正方形,进而得出其面积.【考点】位似变换,旋转的性质,勾股定理.18.【答案】解:(1)151516767++?= (2)1111111n n n n n n --++?=++ 证明如下:左边21(1)(1)1(1)(1)n n n n n nn n n n ++-+-+====++右边,∴猜想正确.【解析】以序号n 为前提,依此观察每个分数,可以用发现,每个分母在n 的基础上依次加1,每个分字分别是1和1n -.【考点】规律探究,分式计算.五、解答题19.【答案】解法一:由题意知,45AEB FED ∠=∠=,∴90AEF ∠=. 在Rt AEF △中,tan tan84.310.02AEAFE FE=∠=≈. 在ABE △和FDE △中,90ABE FDE AEB FED ∠=∠=∠=∠,,∴ABE FDE △∽△,∴10.02AB AEFD FE==,∴10.0218.03618(m)AB FD =?=≈. 答:旗杆AB 的高度约为18m .解法二:如图,过点F 作FG AB ⊥于点G ,则 1.8AG AB GB AB FD AB =-=-=-. 由题意,知ABE △和FDE △均为等腰三角形,∴, 1.8m AB BE DE FD ===,∴ 1.8FG DB DE BE AB ==+=+.在Rt AFG △中,tan tan39.3AGAFG FG=∠=,即1.80.821.8AB AB -≈+,解得18.218(m)AB =≈. 答:旗杆AB 的高度约为18m .【解析】根据平行线的性质得出45FED ∠=.解等腰直角DEF △,得出 1.8DE DF ==米,EF ==米.证明90AEF ∠=.解直角AEF △,求出t a n 1862A E E F A F E =∠≈米.再解直角ABE △,即可求出s i n1A B A E A E B =∠≈米.【考点】解直角三角形的应用﹣仰角俯角问题,平行线的性质.20.【答案】解:(1)如图,AE 即为所求.数学试卷第15页(共18页) 数学试卷第16页(共18页)(2)如图,连接OE 交BC 于点M ,连接,OC CE . ∵BAE CAE ∠=∠,∴BE EC =,∴OE BC ⊥,∴3EM =.在Rt OMC △中,532,5OM OE EM OC =-=-==,∴22225421MC OC OM =-=-=.在Rt EMC △中,22292130CE EM MC =+=+=.∴CE =【解析】(1)利用基本作图作AE 平分BAC ∠;(2)连接OE 交BC 于F ,连接OC ,如图,根据圆周角定理得到BE CE =,再根据垂径定理得到O E BC ⊥,则3BF =,2OF =,然后在Rt OCF △中利用勾股定理计算出CF =,在Rt CEF △中利用勾股定理可计算出CE .【考点】作图—复杂作图,三角形的外接圆与外心.六、解答题21.【答案】(1)5030%(2)“89.59.5~”这一组人数占总参赛人数的百分比为(48)5024%+÷=,79.5分以上的人数占总参赛人数的百分比为24%36%60%+=.所以最低获奖成绩应该为79.5分以上,故他不能获奖.(3)用A ,B 表示2名男生,用a,b 表示2名女生,则从这4名学生中任选2人共有(A,B),(A,a),(A,b),(B,a),(B,b),(a,b)这6种等可能结果.其中为1男1女的有(A,a),(A,b),(B,a),(B,b)这4种结果,故所求概率4263P ==.【解析】(1)用“59.5~69.5”这组的人数除以它所占的百分比可得到调查的总人数;再计算出“89.5~99.5”这一组人数占总参赛人数的百分比,然后用1分别减去其它三组的百分比得到“69.5~79.5”这一组人数占总参赛人数的百分比;(2)利用“59.5~69.5”和“69.5~79.5”两分数段的百分比为40%可判断他不能获奖;(3)画树状图展示所有12种等可能的结果数,再找出恰好选中1男1女的结果数,然后根据概率公式求解.【考点】列表法.七、解答题22.【答案】解:(1)21(50)(1602)2608000W x x x x =+-=-++,2(50)1919950W x x =-?=-+.(2)2212417328124189502()48W W W x x x =+=-++=--+. 由于x 取整数,根据二次函数性质,得当10x =时,总利润W 最大,最大总利润是9 160元.【解析】(1)设培植的盆景比第一期增加x 盆,则第二期盆景有(50)x +盆,花卉有(50)x -盆,根据“总利润=盆数?每盆的利润”可得函数解析式;(2)将盆景的利润加上花卉的利润可得总利润关于x 的函数解析式,配方成顶点式,利用二次函数的性质求解可得.【考点】二次函数的应用.八、解答题23.【答案】(1)证明:由已知,在Rt BCD △中,90BCD ∠=,M 为斜边BD 的中点,∴12CM BD =. 又∵DE AB ⊥,同理,12EM BD =,∴CM EM =.(2)解:由已知,得905040CBA ∠=-=,又由(1)知,CM BM EM ==,∴2()280CME CMD DME CBM ABM CBA ∠=∠+∠=∠+∠=∠=. ∴180100EMF CME ∠=-∠=.数学试卷第17页(共18页) 数学试卷第18页(共18页)(3)证明:∵DAE CEM △≌△,∴90,,CME DEA DE CM AE EM ∠=∠===. 又∵CM DM EM ==,∴DM DE EM ==. ∴DEM △是等边三角形,∴30MEF DEF DEM ∠=∠-∠=.方法一:在Rt EMF △中,∵90,30EMF MEF ∠=∠=,∴12MF EF =. 又∵111222NM CM EM AE ===,∴1111()2222FN FM NM EF AE AE EF AF =+=+=+=.∴12MF NF EF AF ==. ∵AFN EFM ∠=∠,∴AFN EFM △∽△ ∴NAF MEF ∠=∠,∴AN EM ∥.方法二:如图,连接AM ,则1152EAM EMA MEF ∠=∠=∠=,∴75AMC EMC EMA ∠=∠-∠=①.又∵30CMD EMC MD ∠=∠-∠=,且MC MD =,∴1(18030)752 ACM ∠=-=②. 由①②知,AC AM =. 又∵N 为CM 的中点,∴AN CM ⊥. ∵EM CM ⊥,∴AN EM ∥.【解析】(1)利用直角三角形斜边中线的性质定理即可证明;(2)利用四边形内角和定理求出CME ∠即可解决问题;(3)首先证明ADE △是等腰直角三角形,DEM △是等边三角形,设FM a =,则AE CM EM a ==,2EF a =,推出3FM MN =, 3EF AE =,由此即可解决问题.【考点】三角形综合题,全等三角形的判定和性质,等腰直角三角形的判定和性质,等边三角形的判定和性质,直角三角形斜边中线定理.。
2018年江西省中考数学试卷含答案
数学试卷第1页(共28页)数学试卷第2页(共28页)绝密★启用前江西省2018年中等学校招生考试数学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题共18分)一、选择题(本大题共6小题,每小题3分,共18分.每小题给出的四个选项中,只有一项是符合题目要求的)1.2-的绝对值是()A .2-B .2C .12-D .122.计算22()ba a- 的结果为()A .bB .b-C .abD .b a3.如图所示的几何体的左视图为()ABCD4.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A .最喜欢篮球的人数最多B .最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C .全班共有50名学生D .最喜欢田径的人数占总人数的10%5.小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形ABCD 从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A .3个B .4个C .5个D .无数个6.在平面直角坐标系中,分别过点(),,02,0()A m B m +作x 轴的垂线和1l 和2l ,探究直线1l ,直线2l 与双曲线3y x=的关系,下列结论中错误的是()A .两直线中总有一条与双曲线相交B .当1m =时,两直线与双曲线的交点到原点的距离相等C .当20m -<<时,两直线与双曲线的交点在y 轴两侧D .当两直线与双曲线都有交点时,这两交点的最短距离是2第Ⅱ卷(非选择题共102分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填在题中的横线上)7.若分式11x -有意义,则x 的取值范围为.8.2018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为.9.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.问牛羊各直金几何?”译文:今有牛5头,羊2毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第3页(共28页)数学试卷第4页(共28页)头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x 两、y两,依题意,可列出方程组为.10.如图,在矩形ABCD 中,3AD =,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE EF =,则AB 的长为.11.一元二次方程2420x x +=-的两根为1x ,2x ,则2111242x x x x -+的值为.12.在正方形ABCD 中,6AB =,连接AC ,BD ,P 是正方形边上或对角线上一点,若2PD AP =,则AP 的长为.三、解答题(本大题共11小题,共84分.解答应写出必要的文字说明、证明过程或演算步骤)13.(本小题满分6分,每题3分)(1)计算:2(1)(1)(2)a a a +---;(2)解不等式:2132x x --+≥.14.(本小题满分6分)如图,在ABC △中,8AB =,4BC =,6CA =,CD AB ∥,BD 是ABC ∠的平分线,BD 交AC 于点E .求AE 的长.15.(本小题满分6分)如图,在四边形ABCD 中,AB CD ∥,2AB CD =,E 为AB 的中点.请仅用无刻度的直尺分别按下列要求画图(保留作图痕迹).(1)在图1中,画出ABD △的BD 边上的中线;(2)在图2中,若BA BD =,画出ABD △的AD 边上的高.16.(本小题满分6分)2018年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签的方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是事件,“小悦被抽中”是事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.数学试卷第5页(共28页)数学试卷第6页(共28页)17.(本小题满分6分)如图,反比例函数 ()0ky k x=≠的图象与正比例函数 2y x =的图象相交于()1,A a ,B两点,点C 在第四象限,CA y ∥轴,o90ABC ∠=.(1)求k 的值及点B 的坐标(2)求tan C的值.18.(本小题满分8分)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校文学社为了解学生课外阅读的情况,抽样调查了部分学生每周用于课外阅读的时间.过程如下.收集数据从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min ):30608150401101301469010060811201407081102010081整理数据按如下分段整理样本数据并补全表格:课外阅读时间(min)x 040x ≤<4080x ≤<80120x ≤<120160x ≤<等级D CB A人数38分析数据补全下列表格中的统计量:平均数中位数众数80得出结论(1)用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为;(2)如果该校现有学生400人,估计等级为“B ”的学生有多少名?(3)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?19.(本小题满分8分)图1是一种折叠门,由上下轨道和两扇长宽相等的活页门组成,整个活页门的右轴固定在门框上,通过推动左侧活页门开关.图2是其俯视图简化示意图,已知轨道120AB cm =,两扇活页门的宽60cm OC OB ==,点B 固定,当点C 在AB 上左右运动时,OC 与OB 的长度不变(所有结果保留小数点后一位).(1)若o 50OBC∠=,求AC 的长;(2)当点C 从点A 向右运动60cm 时,求点O 在此过程中运动的路径长.参考数据:o sin 500.77≈,o cos500.64≈,o tan 50 1.19≈,π取3.14.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________姓名________________考生号_____________________________________________图1图2数学试卷第7页(共28页)数学试卷第8页(共28页)20.(本小题满分8分)如图,在ABC △中,O 为AC 上一点,以点O 为圆心,OC 的半径作圆,与BC 相切于点C ,过点A 作AD BO ⊥交BO 的延长线于点D ,且AOD BAD ∠=∠.(1)求证:AB 为O 的切线;(2)若6BC =,4tan 3ABC ∠=,求AD 的长.21.(本小题满分9分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y (千克)与销售单价x (元/千克)之间的函数关系如图所示.(1)求y 与x 的函数关系式,并写出x 的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.22.(本小题满分9分)在菱形ABCD 中,60ABC ∠=︒,点P 是射线BD 上一动点,以AP 为边向右侧作等边APE △,点E 的位置随点P 的位置变化而变化.(1)如图1,当点E 在菱形ABCD 内部或边上时,连接CE ,BP 与CE 的数量关系是,CE 与AD 的位置关系是;(2)当点E 在菱形ABCD 外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2图3中的一种情况予以证明或说理).(3)如图4,当点P 在线段BD 的延长线上时,连接BE ,若23AB =,219BE =,求四边形ADPE 的面积.23.(本小题满分12分)小贤与小杰在探究某类二次函数问题时,经历了如下过程:求解体验(1)已知抛物线23y x bx =-+-经过点()1,0-,则b =,顶点坐标为,该抛物线关于点(0,1)成中心对称的抛物线表达式是;抽象感悟我们定义:对于抛物线()20y ax bx c a =++≠,以y 轴上的点()0,M m 为中心,作该抛物线关于点M 对称的抛物线y ',则我们又称抛物线y '为抛物线y 的“衍生抛物线”,点M 为“衍生中心”.(2)已知抛物线225y x x =--+关于点(0,)m 的衍生抛物线为y ',若这两条抛物线有交点,求m 的取值范围;问题解决(3)已知抛物线22(0)y ax ax b a =+-≠.①若抛物线y 的衍生抛物线为222(0)y bx bx a b '=-+≠,两抛物线有两个交点,且恰好是它们的顶点,求a ,b 的值及衍生中心的坐标;②若抛物线y 关于点2(01)k +,的衍生抛物线为1y ,其顶点为1A ;关于点2(0,2)k +的衍生抛物线为2y ,其顶点为2A ;…;关于点2(0,)k n +的衍生抛物线为n y ,其顶点数学试卷第9页(共28页)数学试卷第10页(共28页)为n A ;…(n 为正整数).求()1n n A A +的长(用含n 的式子表示).江西省2018年中等学校招生考试数学答案解析第Ⅰ卷一、选择题1.【答案】B【解析】2-的绝对值是2,故选B .【考点】绝对值的概念2.【答案】A 【解析】2222()b b a a b a a -==,故选A .【考点】分式的运算3.【答案】D【解析】从左面看该几何图,看到的是一个矩形,且看不到的棱用虚线表示,故选D .【考点】几何体的左视图4.【答案】C【解析】A 中,最喜欢足球的人数最多,故错误;B 中,最喜欢羽毛球的人数是最喜欢乒乓球人数的43,故错误;C 中,全班学生总人数为122084650++++=(名),故正确;D 中,最喜欢田径的人数占总数的4100%8%50⨯=,故错误,故选C .【考点】频数分布直方图5.【答案】C【解析】如图所示,正方形ABCD 可以向上、向下、向右以及沿AC 所在直线、沿BD 所在直线平移,且平移前后的两个正方形可组成轴对称图形,故选C .【考点】利用轴对称设计图案,平移的性质6.【答案】D【解析】A 中,因为双曲线3y x=的图象位于第一、三象限,且m 与2m +不全为0,所以直线1l 和2l 中总有一条与双曲线相交,故正确;B 中,当1m =时,直线1l 与双曲线交点为(1,3),直线2l 与双曲线交点为(3,1),到原点的距离,故当1m =时两直线与双曲线的交点到原点的距离相等,故正确;C 中,当20m -<<时,直线2l 与双曲线的交点位于第三象限,在y 轴的左侧,直线2l 与双曲线的交点位于第一象限,在y 轴的右侧,故正确;D 中,反比例函数3y x=的图象是曲线,根据直角三角形中斜边长大于直角边长,故当两直线与双曲线都有交点时,这两交点的最短距离必大于2,故错误,故选D .【考点】反比例函数的图象与性质第Ⅱ卷二.填空题7.【答案】1x ≠【解析】依题意,10x -≠,解得1x ≠.【考点】分式有意义的条件8.【答案】4610⨯【解析】460000610=⨯.【考点】科学记数法9.【答案】5210258x y x y +=⎧⎨+=⎩【解析】由5头牛、2只羊、值金10量可得5210x y +=,由2头牛、5只羊、值金8量可得258x y +=,可列出方程组5210258x y x y +=⎧⎨+=⎩,.数学试卷第11页(共28页)数学试卷第12页(共28页)【考点】二元一次方程组的应用10.【答案】【解析】∵四边形ABCD 为矩形,∴AD BC =,o90D ∠=由旋转的性质可知AB AE =,BC EF =∴3EF AD ==.∵DE EF =∵3DE =.在Rt ADE △中,AE ===∴AB =.【考点】矩形的性质,旋转的性质,勾股定理11.【答案】2【解析】把1x x =代入一元二次方程2420x x -+=中,得211420x x -+=,∴21142x x -=-根据根与系数的关系,得122x x = ,∴2222=-+⨯=原式.【考点】一元二次方程根与系数的关系,代数式求值12.【答案】2,【解析】(1)当点P 在正方形的边上时,①当点P 在AD 边上时,如图1,11233AP AD AB ===;②当点P 在AB 边上时,如图2,设AP x =,则2PD x =,∴2226(2)x x +=解得x =③点P 不可能在BC ,CD上.(2)当点P 在对角线上时,①当点P 在对角线BD 上时(不与点B 重合),如图3,∵2PD OA <,AP OA ≥,∴点P 在BD 上不存在2PD AP =;②当点P 在对角线AC 上时,如图4,设AP x =,则2PD x =,32OP x =-,32OD =在Rt OPD △中,222(32)2)(2)x x +=,解得114262x =<,2142x =-(舍去).综上所述,2AP =,23142-.【考点】正方形的性质、勾股定理、分类讨论思想三、解答题13.【答案】(1)45a -(2)6x ≥【解析】(1)221(44)45a a a a =---+=-原式.(2)去分母,得2226x x --+≥解得6x ≥.【考点】整式的混合运算,一元一次不等式的解法14.【答案】4AE =【解析】∵BD 平分ABC ∠.数学试卷第13页(共28页)数学试卷第14页(共28页)∴ABD CBD ∠=∠∵AB CD ∥,∴ABD D ∠=∠,ABE CDE ~△△.∴CBD D ∠=∠,AB AECD EC =∴BC CD=∵8AB =,6CA =,4CD BC ==,∴846AE AE =-.∴4AE =.【考点】平分线的定义、平分线的性质、相似三角形的判定与性质15.【答案】画法如图所示.(1)AF即为所求(2)BF即为所求【解析】画法如图所示.(1)AF即为所求(2)BF即为所求【考点】考查作图、全等三角形的判定与性质、三角形的重心.16.【答案】(1)不可能,随机,14.(2)解法一:根据题意,可以画出如下的树状图:小悦小悦小惠小悦小悦小艳小倩小艳小艳小艳小悦小悦小惠小惠小惠小倩小倩由树状图可以得出,所有可能出现的结果共有12种,这些结果出现的可能性相等,“小惠被抽中”的结果共有6种,所以61()122P ==小惠被抽中.解法二:根据题意,可以列出表格如下:小悦小惠小艳小倩小悦小悦、小惠小悦、小艳小悦、小倩小惠小惠、小悦小惠、小艳小惠、小倩数学试卷第15页(共28页)数学试卷第16页(共28页)小艳小艳、小悦小艳、小惠小艳、小倩小倩小倩、小悦小倩、小惠小倩、小艳由上表可以得出,所有可能出现的结果共有12种,这些结果出现的可能性相等,“小惠被抽中”的结果共有6种,所以61()122P ==小惠被抽中.【解析】(1)根据随机事件和不可能事件的概念及概率公式解答可得;(2)用列表法或树状图法得到所有等可能的结果,再找出符合条件的结果,根据概率公式求解即可。
2018年中考第1次模拟考试数学试卷(含答案)
2018年初三第一次模拟考试数学试题一、选择题(本大题共16题,1-8小题,9-16小题,每题3分,共40分) 1.如图,数轴上表示-2的相反数的点是( ) A.点P B.点Q C.点M D.点N 2.下列运算正确的是( ) A.9=±3B. 532)(m m =C. 532a a a =⋅D.222)(y x y x +=+3.如图,AD 与BC 相交于点O,AB//CD,如果∠B =20°,∠D =40° ,那么∠BOD 为( ) A. 40° B.50° C.60° D.70°4.估计18-的值在( )A. 0到1之间B. 1到2之间C.2到3之间D. 3至4之间 5.用配方法解一元二次方程0542=-+x x ,此方程可变形( ) A. 9)2(2=+xB. 9)2(2=-xC. 1)2(2=+xD. 1)2(2=-x6.下列各因式分解正确的是( ) A.22)1(12-=-+x x xB.)2)(2()2(22+-=-+-x x xC.)2)(2(43-+=-x x x x xD.22)1(22++=+x x x7.若a>b,则下列式子一定成立的是( )A.0>+b aB. 0>-b aC.0>abD.0>ba8.△ABC 中,已知AB=8,∠C=90°,∠A=30°,DE 是中位线,则DE 的长是( ) A. 4B. 5C.32D. 29.若关于x 的一元一次不等式组⎩⎨⎧>-<-001a x x 无解,则a 的取值范围是( )A.1≥aB.1>aC. 1≤aD.1-<a 10.已知点A ),(11y x ,B ),(22y x 是反比例函数xy 2=图像上的点,若210x x >>,则一定成立的是( ) A.021>>y yB.210y y >>C.210y y >>D.120y y >>11.如图是王老师去公园锻炼及原路返回家的距离y (千米)与时间t (分钟)之间的函数图像,根据图像信息,下列说法正确的是( ) A. 王老师去时所用时间少于回家的时间 B. B. 王老师在公园锻炼了40分钟C. 王老师去时走上坡路,回家时走下坡路D. D.王老师去时速度比回家时的速度慢12.如图,CD 是Rt △ABC 斜边AB 边上的高,将△BCD 沿CD 折叠,B 点恰好落在AB 的中点E 处,则∠A 等于( ) A. 60° B.45° C. 30° D.25° 13.如图,在Rt △ABC 中,∠C =90°,AC=4cm ,BC=6cm ,动点P 从点C 沿CA,以1cm/s 的速度向点A 运动,同时动点O 从点C 沿CB,以2cm/s 的速度向点B 运动,其中一个动点运动到终点时,另一个动点也停止运动。
2018年河北省中考数学试卷和答案(word版)
2018年省中考数学试卷一、选择题(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分)1.(3分)(2018•)下列图形具有稳定性的是()A.B.C.D.2.(3分)(2018•)一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为()A.4 B.6 C.7 D.103.(3分)(2018•)图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1B.l2C.l3D.l44.(3分)(2018•)将9.52变形正确的是()A.9.52=92+0.52B.9.52=(10+0.5)(10﹣0.5)C.9.52=102﹣2×10×0.5+0.52D.9.52=92+9×0.5+0.525.(3分)(2018•)图中三视图对应的几何体是()A.B.C.D.6.(3分)(2018•)尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ7.(3分)(2018•)有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A.B.C.D.8.(3分)(2018•)已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C9.(3分)(2018•)为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:==13,==15:s甲2=s丁2=3.6,s乙2=s丙2=6.3.则麦苗又高又整齐的是()A.甲B.乙C.丙D.丁10.(3分)(2018•)图中的手机截屏容是某同学完成的作业,他做对的题数是()A.2个B.3个C.4个D.5个11.(2分)(2018•)如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°12.(2分)(2018•)用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm13.(2分)(2018•)若2n+2n+2n+2n=2,则n=()A.﹣1 B.﹣2 C.0 D.14.(2分)(2018•)老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁15.(2分)(2018•)如图,点I为△ABC的心,AB=4,AC=3,BC=2,将∠ACB 平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5 B.4 C.3 D.216.(2分)(2018•)对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3或4,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17~18小题各3分:19小题有2个空,每空3分,把答案写在题中横线上)17.(3分)(2018•)计算:= .18.(3分)(2018•)若a,b互为相反数,则a2﹣b2= .19.(6分)(2018•)如图1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC为角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC为角,可作出一个边长为1的正方形,此时∠BPC=90°,而=45是360°(多边形外角和)的,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是.三、解答题(本大题共7小题,共计66分)20.(8分)(2018•)嘉淇准备完成题目:发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21.(9分)(2018•)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.22.(9分)(2018•)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.23.(9分)(2018•)如图,∠A=∠B=50°,P为AB中点,点M为射线AC上(不与点A重合)的任意一点,连接MP,并使MP的延长线交射线BD于点N,设∠BPN=α.(1)求证:△APM≌△BPN;(2)当MN=2BN时,求α的度数;(3)若△BPN的外心在该三角形的部,直接写出α的取值围.24.(10分)(2018•)如图,直角坐标系xOy中,一次函数y=﹣x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC ﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.25.(10分)(2018•)如图,点A在数轴上对应的数为26,以原点O为圆心,OA为半径作优弧,使点B在O右下方,且tan∠AOB=,在优弧上任取一点P,且能过P作直线l∥OB交数轴于点Q,设Q在数轴上对应的数为x,连接OP.(1)若优弧上一段的长为13π,求∠AOP的度数及x的值;(2)求x的最小值,并指出此时直线l与所在圆的位置关系;(3)若线段PQ的长为12.5,直接写出这时x的值.26.(11分)(2018•)如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于点B,与滑道y=(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t(秒)的平方成正比,且t=1时h=5,M,A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值围),及y=13时运动员与正下方滑道的竖直距离;米/秒.当甲距(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v的围.乙参考答案1-10、ABCCC DABDA 11-16、ABADB D 17、 2 18、 0 19、14 2120、21、22、23、24、25、. .26、. . .。
2018年中考数学试卷含答案(精选4套真题)40
初中毕业、升学统一考试数学试题说明:1.本试卷共6页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题,共20题)两部分。
本卷满分150分,考试时间为120分钟,考试结束后,请将本试卷和答题卡一并交回。
2.答题前,考生务必将自己的姓名、准考证号填写在答题卡相应的位置上,同时务必在试卷的装订线内将本人的姓名、准考证号、毕业学校填写好,在试卷第一面的右下角写好座位号。
3.所有的试题都必须在专用的“答题卡”上作答,选择题用2B铅笔作答、非选择题在指定位置用0.5毫米的黑色笔作答。
在试卷或草稿纸上答题无效。
4.如有作图需要,请用2B铅笔作答,并请加黑加粗,描写清楚。
一、选择题(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上)1.与-2的乘积为1的数是()A.2 B.-2 C.12D.12-2.函数1y x=-中自变量x的取值范围是( ) A.x>1B.x≥1C.x<1D.x≤1 3.下列运算正确的是( ) A.2233x x-=B.33a a a?C.632a a a?D.236()a a=4.下列选项中,不是..如图所示几何体的主视图、左视图、俯视图之一的是()(第4题)DCBA5.剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是( )A B C D6.某社区青年志愿者小分队年龄情况如下表所示:年龄(岁)18 19 20 21 22 人数2 5 2 2 1 则这12名队员年龄的众数、中位数分别是 ( )A .2,20岁B .2,19岁C .19岁,20岁D .19岁,19岁7.已知219M a =-,279N a a =-(a 为任意实数),则M 、N 的大小关系为( )A .M <NB .M=NC .M >ND .不能确定8.如图,矩形纸片ABCD 中,AB=4,BC=6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题跟踪突破13 反比例函数与几何图形综合题
1.(导学号:01262176)(2018·自贡)如图,已知A(-4,n),B(2,-4)是一次函数y =kx +b 和反比例函数y =m
x 的图象的两个交点.
(1)求一次函数和反比例函数的解析式;
(2)观察图象,直接写出方程kx +b -m
x =0的解; (3)求△AOB 的面积;
(4)观察图象,直接写出不等式kx +b -m
x <0的解集.
解:(1)∵B(2,-4)在y =m
x 上,∴m =-8.∴反比例函数的解析式为y =-8x .∵点A(-4,n)在y =-8
x 上,∴n =2.∴A(-4,2).∵y
=kx +b 经过A(-4,2),B(2,-4),∴⎩⎪⎨⎪⎧-4k +b =2,2k +b =-4,解得⎩⎪⎨
⎪⎧k =-1,
b =-2,
∴一次函数的解析式为y =-x -2
(2)∵A(-4,n),B(2,-4)是一次函数y =kx +b 的图象和反比例函数y =m x 的图象的两个交点,∴方程kx +b -m
x =0的解是x 1=-4,x 2=2
(3)∵当x =0时,y =-2.∴点C(0,-2).∴OC =2.∴S △AOB =S △ACO +S △BCO
=12×2×4+1
2×2×2=6
(4)不等式kx +b -m
x <0的解集为-4<x <0或x >2
2.(导学号:01262177)(2018·枣庄)如图,在矩形OABC 中,OA =3,OC =2,F 是AB 上的一个动点(F 不与A ,B 重合),过点F 的反比例函数y =k
x (k >0)的图象与BC 边交于点E.
(1)当F 为AB 的中点时,求该函数的解析式;
(2)当k 为何值时,△EFA 的面积最大,最大面积是多少?
解:(1)∵在矩形OABC 中,OA =3,OC =2,∴B(3,2),∵F
为AB 的中点,∴F(3,1),∵点F 在反比例函数y =k
x (k >0)的图象上,∴k =3,∴该函数的解析式为y =3
x (x >0)
(2)由题意知E ,F 两点坐标分别为E(k 2,2),F(3,k
3),∴S △EFA =12AF ·BE =12×13k(3-12k)=12k -112k 2=-112(k 2-6k +9-9)=-1
12(k -3)2
+34,当k =3时,S 有最大值,S 最大值=34
3.(导学号:01262178)(2018·资阳)如图,在平行四边形ABCD 中,点A ,B ,C 的坐标分别是(1,0),(3,1),(3,3),双曲线y =k
x (k ≠0,x >0)过点D.
(1)求双曲线的解析式;
(2)作直线AC 交y 轴于点E ,连接DE ,求△CDE 的面积.
解:(1)∵在平行四边形ABCD 中,点A ,B ,C 的坐标分别是(1,0),(3,1),(3,3),∴点D 的坐标是(1,2),∵双曲线y =k
x (k ≠0,x
>0)过点D ,∴2=k 1,解得k =2,即双曲线的解析式是y =2
x
(2)∵直线AC 交y 轴于点E ,∴S △CDE =S △EDA +S △ADC =(2-0)×12+(2-0)×(3-1)
2
=1+2=3,即△CDE 的面积是3
4.(导学号:01262186)(2018·东营)如图,在平面直角坐标系中,直线AB 与x 轴交于点B ,与y 轴交于点A ,与反比例函数y =m
x 的图象在第二象限交于点C ,CE ⊥x 轴,垂足为点E ,tan ∠ABO =1
2,OB =4,OE =2.
(1)求反比例函数的解析式;
(2)若点D 是反比例函数图象在第四象限上的点,过点D 作DF ⊥y 轴,垂足为点F ,连接OD ,BF.如果S △BAF =4S △DFO ,求点D 的坐标.
解:(1)∵OB =4,OE =2,∴BE =OB +OE =6.∵CE ⊥x 轴,∴∠CEB =90°.在Rt △BEC 中,∠CEB =90°,BE =6,tan ∠ABO =1
2,∴CE =BE ·tan ∠ABO =6×1
2=3,结合函数图象可知点C 的坐标为(-2,3).∵点C 在反比例函数y =m
x 的图象上,∴m =-2×3=-6,∴反比例函数的解析式为y =-6
x
(2)∵点D 在反比例函数y =-6
x 第四象限的图象上,∴设点D 的坐标为(n ,-6
n )(n >0).在Rt △AOB 中,∠AOB =90°,OB =4,tan ∠ABO =12,∴OA =OB ·tan ∠ABO =4×12=2.∵S △BAF =1
2AF ·OB =12(OA +OF)·OB =12(2+6n )×4=4+12
n .∵点D 在反比例函数y =-6x 第四象限的图象上,
∴S △DFO =12×|-6|=3.∵S △BAF =4S △DFO ,∴4+12
n =4×3,解得n =32,经验证n =32是分式方程4+12
n =4×3的解,∴点D 的坐标为(3
2,-4)
5.(导学号:01262187)(2018·泰州)如图,点A(m,4),B(-4,
n)在反比例函数y=k
x(k>0)的图象上,经过点A,B的直线与x轴相交于点C,与y轴相交于点D.
(1)若m=2,求n的值;
(2)求m+n的值;
(3)连接OA,OB,若tan∠AOD+tan∠BOC=1,求直线AB的函数关系式.
解:(1)当m=2,则A(2,4),把A(2,4)代入y=k
x得k=2×4
=8,所以反比例函数解析式为y=8
x,把B(-4,n)代入y=8
x得,-
4n=8,解得n=-2
(2)因为点A(m ,4),B(-4,n)在反比例函数y =k
x (k >0)的图象上,所以4m =k ,-4n =k ,所以4m +4n =0,即m +n =0
(3)作AE ⊥y 轴于E ,BF ⊥x 轴于F ,如图,在Rt △AOE 中,tan ∠AOE =AE OE =m 4,在Rt △BOF 中,tan ∠BOF =BF OF =-n
4,而tan ∠AOD +tan ∠BOC =1,所以m 4+-n
4=1,而m +n =0,解得m =2,n =-2,则A(2,4),B(-4,-2),设直线AB 的解析式为y =px +q ,
把A(2,4),B(-4,-2)代入得⎩⎪⎨⎪⎧2p +q =4,-4p +q =-2,解得⎩⎪⎨⎪⎧p =1,
q =2,
所以直
线AB 的解析式为y =x +2。