气敏传感器

合集下载

气敏传感器

气敏传感器

1.2 主要特性参数
1.回路电压 测试气敏传感器的回路所加的电压称为回路电压。
2.标定气体电压
在标定气体中,气敏传感器负载电阻的电压称为标定气体电压,
用UCS 表示。显然,UCS 与传感器工作电阻 RS、负载电阻 RL 及回路电压UC
有关,即
U CS
UC RL RS RL
(6-1)
3.洁净空气电压
(a)实物 (b)引脚图 (c)符号
f—加热电极; A、B—气敏电极
按照结构的不同,电阻型半导体式气敏传感器的敏感元件又可分为烧结型、薄膜型和厚膜型
(1)烧结型气敏元件。 工艺最成熟,且应用最广泛。
(2)薄膜型气敏元件。
优点:颗粒较小,且具有灵 敏度高、响应速度快、机械 性能好和成本低等。
图6-4 烧结型气敏元件的结构
洁净空气电压是指在洁净空气中气敏传感器负载电阻上的电压,用 UO 表示。
UO 与固有电阻 R0、负载电阻 RL 及回路电压UC 的关系可表示为
UOUC RL R0 RL Nhomakorabea(6-2)
4.固有电阻和工作电阻
固有电阻 表示气敏传感器在正常空气条件下(或洁净空气条件下)的阻 值,又称正常电阻;工作电阻 则表示气敏传感器在一定浓度的检测气体中的 阻值。
传感器原理与应用
1.1 工作原理和分类
1.半导体式气敏传感器
按照半导体物理特性的不同,可将其分为电阻型和非电阻型两类。
电阻型半导体式气敏传感器中,气敏半导体材料吸附气体时,其阻值会产生 变化,利用这一原理,便可通过测量阻值的变化而检测气体的成分或浓度。
(a)
(b)
(c)
图6-3 电阻型半导体式气敏传感器
图6-5 薄膜型气敏元件的结构

气敏传感器

气敏传感器
BZ
蜂鸣器
R1
气敏传感器
R3
SCR
~U
R6
R2
R4
W
R5
氖管 NTC电阻
PTC电阻 氖管 B R2
R3
BCR BZ 蜂鸣器 R4
~U
气敏传感器
R1
图为正温度系数热敏电阻(R2)的延时电路。 刚通电时,其电阻值也小,电流大部分经热敏电阻回到变压 器,蜂鸣器(BZ)不发出报警。当通电1~2min后,阻值急剧 增大,通过蜂鸣器的电流增大,电路进入正常的工作状态。
3.2 应用举例
例1:家用可燃性气体报警器电路。
B
R
~220V 氖管Biblioteka 气敏传感器BZ 蜂鸣器
家用可燃性气体报警器电路
图是设有串联蜂鸣器的应用电路。随着环境中可燃性气体浓 度的增加,气敏元件的阻值下降到一定值后,流入蜂鸣器的 电流,足以推动其工作而发出报警信号。
例2:实用酒精测试仪(测试驾驶员醉酒的程度)。
(2)薄膜型
在石英基片上蒸发或溅射一层半导体薄膜
制成(厚度0.1μm以下)。上下为输出电极和加
热电极,中间为加热器。 金属氧化物 输出极 加热器
薄膜型
加热电极
2.3 工作原理
元件加热到稳定状态,当有气体吸附时,吸附分子在气敏元 件表面自由扩散(物理吸附),一部分吸附分子被蒸发掉,一部 分吸附分子产生热分解固定在吸附处(化学吸附)。 当半导体的功函数大于吸附分子的离解能,吸附分子向半导 体释放电子成为正离子吸附,半导体载流子数增加,半导体 电阻率减少,阻值降低。具有正离子吸附倾向的气体被称为 还原性气体(例H2、CO、炭氢化合物和酒类等)。 当半导体的功函数小于吸附分子的电子亲和力,吸附分子从 半导体夺走电子成为负离子吸附,半导体载流子数减少,电 阻率增大,阻值增大。具有负离子吸附倾向的气体被称为氧 化性气体(例O2、NOx等)。

《气敏传感器》课件

《气敏传感器》课件

相对误差
指传感器测量值与真 实值之间的差距,较 小的相对误差表示传 感器的测量精度较高。
工作温度范围
指传感器能够正常工 作的温度范围,对应 不同应用场景需要选 择适合的工作温度范 围。
响应时间
指传感器从检测到气 体变化到输出检测结 果所需的时间,较短 的响应时间意味着传 感器更加敏捷。
气敏传感器的应用
• 空气质量监测 • 工业制程控制 • 安全监测 • 智能家居
气敏传感器的发展趋势
1 微型化
2 智能化
ห้องสมุดไป่ตู้
随着技术的进步,气敏传感器正在朝着更小、 更集成的趋势发展,以适应日益复杂的应用 场景。
借助人工智能和物联网技术,气敏传感器正 在实现智能化,能够自动分析和判断气体状 况,并提供准确的监测结果。
3 多功能化
《气敏传感器》PPT课件
本课件介绍气敏传感器的原理、分类、制备方法、性能指标、应用和未来发 展趋势,帮助你深入了解这一重要领域。
什么是气敏传感器
气敏传感器是一种可以感知气体成分、浓度或相应的物理性质的装置。通过 检测气体的变化,它可以帮助我们了解环境中的气体状况。
气敏传感器的分类
基于传感材料分类
1 薄膜制备法
通过沉积敏感材料在基底上,形成薄膜结构的制备方法。
2 溶胶凝胶法
将溶胶中的成分凝胶化,制备敏感材料的方法。
3 高压方法
利用高压技术将材料转变为具有特殊结构和性质的制备方法。
气敏传感器的性能指标
灵敏度
指传感器对气体的响 应程度,越高说明相 同浓度的气体变化能 够被传感器更好地捕 捉到。
根据传感器所使用的敏感材 料的不同,可以将气敏传感 器分为多种类型,如金属氧 化物传感器、半导体传感器 等。

气敏传感器实训报告心得

气敏传感器实训报告心得

一、引言气敏传感器作为一种重要的检测元件,在环境保护、工业生产、医疗健康等领域发挥着重要作用。

为了深入了解气敏传感器的原理、应用及其在实际工作中的应用,我们参加了为期两周的气敏传感器实训。

通过本次实训,我对气敏传感器有了更深刻的认识,现将实训心得体会如下。

二、实训内容1. 气敏传感器原理及分类实训中,我们首先学习了气敏传感器的原理和分类。

气敏传感器是一种能够将气体浓度转化为电信号的传感器,主要分为半导体型、金属氧化物型和催化燃烧型三种。

半导体型气敏传感器具有体积小、响应速度快、成本低等优点,广泛应用于工业、环保等领域。

2. 气敏传感器制作工艺实训过程中,我们亲手制作了一个简单的气敏传感器。

首先,我们了解了气敏传感器的制作工艺,包括传感器元件的选取、电路设计、封装等环节。

然后,我们按照指导老师的指导,完成了传感器的制作。

3. 气敏传感器性能测试在完成传感器制作后,我们对其性能进行了测试。

测试内容包括灵敏度、响应时间、恢复时间等。

通过对比实验数据,我们分析了传感器性能的影响因素,并提出了优化方案。

4. 气敏传感器应用案例分析实训过程中,我们还学习了气敏传感器在环保、工业、医疗等领域的应用案例。

通过这些案例,我们了解到气敏传感器在实际工作中的应用价值,以及如何针对不同应用场景选择合适的传感器。

三、实训心得体会1. 提高动手能力本次实训让我深刻体会到动手能力的重要性。

在制作气敏传感器过程中,我学会了如何使用各种工具和仪器,掌握了传感器的制作工艺。

这些技能将在今后的学习和工作中发挥重要作用。

2. 培养团队合作精神实训过程中,我们小组共同完成了传感器的制作和测试。

在这个过程中,我们相互协作,共同解决问题。

通过这次实训,我深刻体会到团队合作精神的重要性,以及如何在团队中发挥自己的优势。

3. 深化专业知识通过实训,我对气敏传感器的原理、分类、制作工艺、性能测试等方面的知识有了更加深入的了解。

这些知识将为我今后的学习和工作奠定坚实的基础。

气敏传感器用途

气敏传感器用途

气敏传感器用途气敏传感器是一种能够感知气体浓度的传感器,它可以将气体的浓度转化为电信号输出。

气敏传感器的用途非常广泛,下面将从以下几个方面介绍气敏传感器的用途。

1. 空气质量监测气敏传感器可以用于监测室内和室外的空气质量。

在室内,气敏传感器可以监测有害气体的浓度,如甲醛、苯等有害物质的浓度,以保障人们的健康。

在室外,气敏传感器可以监测环境中的污染气体的浓度,如二氧化硫、氮氧化物等,以评估空气质量,并为环境保护部门提供数据支持。

2. 工业安全监测气敏传感器可以用于工业场所的安全监测。

在化工厂、煤矿等危险场所,气敏传感器可以监测可燃气体的浓度,如甲烷、乙炔等,及时发现并预警潜在的爆炸危险。

同时,气敏传感器也可以监测有毒气体的浓度,如硫化氢、氰化氢等,以保障工人的生命安全。

3. 智能家居气敏传感器可以应用于智能家居系统中,实现对家庭环境的监测和控制。

通过安装气敏传感器,可以实时监测室内空气中的有害气体浓度,如一氧化碳、烟雾等,当浓度超过安全阈值时,系统可以自动报警并采取相应的措施,如打开新风系统、关闭燃气阀门等,以保障家人的安全。

4. 智慧城市建设气敏传感器可以用于智慧城市建设中的环境监测。

通过在城市各个角落安装气敏传感器,可以实时监测环境中的有害气体浓度,并将数据传输到中心控制系统,以实现对城市空气质量的动态监测和评估。

这些数据可以用于城市规划和环境政策的制定,以改善城市居民的生活质量。

5. 农业温室控制气敏传感器可以应用于农业温室中,实现对温室环境的监测和控制。

通过安装气敏传感器,可以实时监测温室内的二氧化碳浓度、湿度等参数,并根据监测到的数据调节温室的通风、加湿等系统,以提供最适宜的生长环境,提高农作物的产量和质量。

总结:气敏传感器的用途非常广泛,主要包括空气质量监测、工业安全监测、智能家居、智慧城市建设和农业温室控制等领域。

随着技术的不断进步,气敏传感器的应用将会越来越广泛,为人们的生活和工作带来更多的便利和安全。

气敏传感器

气敏传感器

气敏传感器气敏传感器是一种检测特定气体的传感器,用来检测气体类别、浓度和成分。

它主要包括半导体气敏传感器、接触燃烧式气敏传感器和电化学气敏传感器等,其中用的最多的是半导体气敏传感器。

它的应用主要有:一氧化碳气体的检测、瓦斯气体的检测、煤气的检测、氟利昂(R11、R12)的检测、呼气中乙醇的检测、人体口腔口臭的检测等等。

它将气体种类及其与浓度有关的信息转换成电信号,根据这些电信号的强弱就可以获得与待测气体在环境中的存在情况有关的信息,从而可以进行检测、监控、报警;还可以通过接口电路与计算机组成自动检测、控制和报警系统。

由于气体种类繁多, 性质各不相同,不可能用一种传感器检测所有类别的气体,因此,能实现气-电转换的传感器种类很多,按构成气敏传感器材料可分为半导体和非半导体两大类。

目前实际使用最多的是半导体气敏传感器,因此本文主要讲述半导体气敏元件的有关原理及应用。

半导体气敏传感器是利用待测气体与半导体表面接触时,产生的电导率等物理性质变化来检测气体的。

按照半导体与气体相互作用时产生的变化只限于半导体表面或深入到半导体内部,可分为表面控制型和体控制型,前者半导体表面吸附的气体与半导体间发生电子接受,结果使半导体的电导率等物理性质发生变化,但内部化学组成不变;后者半导体与气体的反应,使半导体内部组成发生变化,而使电导率变化。

按照半导体变化的物理特性,又可分为电阻型和非电阻型,电阻型半导体气敏元件是利用敏感材料接触气体时,其阻值变化来检测气体的成分或浓度;非半导体式气敏元件则是根据气体的吸附和反应,使其某些关系特性发生改变,来对气体进行直接或间接的检测,如二极管伏安特性和场效应晶体管的阈值电压变化来检测被测气体的。

表1为半导体气敏元件的分类:表1 半导体气敏元件的分类气敏传感器是暴露在各种成分的气体中使用的,由于检测现场温度、湿度的变化很大,又存在大量粉尘和油雾等,所以其工作条件较恶劣,而且气体对传感元件的材料会产生化学反应物,附着在元件表面,往往会使其性能变差。

气敏传感器

– 工艺简单,价格便宜,使用方便; – 气体浓度发生变化时响应迅速; – 即使是在低浓度下,灵敏度也较高。
• 缺点:
– 稳定性差,老化较快,气体识别能力不强,各器件之间的特性 差异大等。
SnO2半导体气敏元件特点
(1)气敏元件灵敏度特性 烧结型、薄膜型和厚膜型SnO2气敏器件对 气体的灵敏度特性如右图所示。气敏元件 的阻值RC 与空气中被测气体的浓度C成对 数关系: log RC=m logC+n 式中n与气体检测灵敏度有关,除了随材料 和气体种类不同而变化外,还会由于测量 温度和添加剂的不同而发生大幅度变化。 m为气体的分离度,随气体浓度变化而变 1 化,对于可燃性气体, m 1 。
气敏传感器的分类
类 型 原 理 检测对象
还原性气体、城市排 放气体、丙烷气等


半导体式
若气体接触到加热的金属 氧化物(SnO2 、Fe2O3 、ZnO2 等), 电阻值会增大或减小
灵敏度高,构造与电路简 单,但输出与气体浓度不 成比例 输出与气体浓度成比例, 但灵敏度较低
接触燃烧式
可燃性气体接触到氧气就会 燃烧,使得作为气敏材料的铂 丝温度升高,电阻值相应增大
还 原型
吸 气时
图 7-20 N型半导体吸附气体时器件阻值变化图
规则总结:
• 氧化型气体+N型半导体:载流子数下降, 电阻增加 • 还原型气体+N型半导体:载流子数增加, 电阻减小 • 氧化型气体+P型半导体:载流子数增加, 电阻减小 • 还原型气体+P型半导体:载流子数下降, 电阻增加
7.2.3 半导体气敏传感器类型及结构
7.2 气 敏 传 感 器
7.2.1 概述 气敏传感器是用来检测气体类别、浓度和成分的传 感器。它将气体种类及其浓度等有关的信息转换成电信 号,根据这些电信号的强弱便可获得与待测气体在环境

气敏传感器的分类

气敏传感器的分类气敏传感器是一种常用的传感器,用于测量气体浓度和其他气体特性。

气敏传感器根据其感知材料类型和传感器结构可以分成多种类型。

一、基于感知材料分类1.半导体气敏传感器半导体气敏传感器的感知材料是一种硫化锡(SnO2)、氧化锌(ZnO)、钨三氧化物(WO3)等半导体材料。

在气体进入传感器后,半导体材料表面的电子结构会产生变化,导致电阻率发生变化,从而实现测量气体浓度的目的。

半导体气敏传感器体积小、响应速度快、能耗低、价格相对较低。

2.电化学气敏传感器电化学气敏传感器的感知材料通常是一种贵金属或其合金,如白金、铂铑合金等,其原理是将气体与电解液接触后,气体分为氧化或还原的反应,被感知材料所吸收或反应。

这种传感器具有高灵敏度和高选择性,但价格相对较高,且需要在特定的环境中使用。

光学气敏传感器的感知材料是一种可以与气体反应的荧光分子,当气体进入传感器后,荧光分子会产生变化,从而导致光学信号的变化,通过检测光学信号的变化可以实现气体浓度的测量。

这种传感器具有高灵敏度和高选择性,但价格相对较高。

二、基于传感器结构分类红外型气敏传感器是一种基于红外吸收原理的传感器,它可以测量气体的分子结构。

当气体进入传感器后,红外光源发出红外光束,气体会吸收其中的特定波长,通过检测红外光束的强度变化可以实现气体浓度的测量。

电容型气敏传感器是一种将电容作为感知元件的传感器。

当气体进入传感器后,感知元件所在区域的介电常数会发生变化,从而导致电容值发生变化,通过检测电容值的变化可以实现气体浓度的测量。

总之,气敏传感器可以根据其感知材料类型、传感器结构等多方面的因素进行分类。

不同类型的气敏传感器在其应用领域和技术特点方面有所不同,具体的使用需要根据实际需求进行选择。

气敏传感器主要参数

气敏传感器主要参数
气敏传感器是一种用于检测气体浓度的传感器,具有灵敏度高、
响应速度快等特点,广泛应用于环境监测、工业生产等领域。

其主要
参数包括灵敏度、响应时间、反应范围等,下面给大家详细介绍。

一、灵敏度:
灵敏度是气敏传感器的一个重要参数,可以衡量传感器对于目标
气体的检测灵敏程度。

一般来说,灵敏度越高,传感器对于目标气体
的检测能力就越强。

而气敏传感器的灵敏度主要由其敏感材料决定,
不同的敏感材料适用于不同的目标气体。

二、响应时间:
响应时间是指气敏传感器从接收到目标气体到输出信号变化所需
要的时间。

一般来说,响应时间越短,传感器的实时性就越高。

然而,响应时间短也会导致传感器对于噪声和干扰的抗干扰能力下降,需要
在使用时做出平衡。

三、反应范围:
反应范围是气敏传感器对目标气体检测的浓度范围。

反应范围应
当覆盖到目标气体浓度的实际使用范围,过高或过低的浓度均不利于
传感器的使用。

同时,传感器的反应范围也会受到环境参数的影响,
要在具体使用场景中进行细化调整。

综上所述,气敏传感器的灵敏度、响应时间和反应范围三大主要参数根据具体应用场景的需求进行不同程度的调整。

在使用过程中,也需要对传感器进行定期检测、校准和维护,以确保其在长期使用过程中能够正常稳定地发挥作用,为环境监测、工业生产等领域提供准确可靠的数据支持。

气敏传感器_实验报告

一、实验目的1. 了解气敏传感器的工作原理和基本特性;2. 掌握气敏传感器的检测方法及实验操作步骤;3. 分析气敏传感器在不同气体环境下的响应特性。

二、实验原理气敏传感器是一种将气体浓度转换为电信号的传感器。

其基本原理是:当气体分子与半导体材料发生作用时,会引起半导体材料电阻率的变化,从而实现气体的检测。

气敏传感器主要分为半导体气敏传感器和金属氧化物气敏传感器两大类。

三、实验仪器与材料1. 气敏传感器:MQ-2、MQ-3、MQ-5等;2. 气体发生装置:酒精、甲烷、丙烷等;3. 信号发生器:直流稳压电源、信号放大器等;4. 测量仪器:数字多用表、示波器等;5. 实验装置:气敏传感器实验台、实验电路等。

四、实验步骤1. 准备实验装置,将气敏传感器连接到实验电路中;2. 设置实验参数,包括气体种类、浓度、温度等;3. 通电预热气敏传感器,使其达到稳定状态;4. 调节气体发生装置,控制气体浓度;5. 测量气敏传感器的输出电压或电流,记录数据;6. 分析气敏传感器的响应特性,绘制响应曲线。

五、实验结果与分析1. 气敏传感器在不同气体环境下的响应特性(1)MQ-2气敏传感器对酒精的响应特性实验结果表明,MQ-2气敏传感器对酒精的检测灵敏度高,在低浓度下即可检测到酒精。

随着酒精浓度的增加,气敏传感器的输出电压逐渐增大。

在酒精浓度为0.5%时,气敏传感器的输出电压达到最大值。

(2)MQ-3气敏传感器对甲烷的响应特性实验结果表明,MQ-3气敏传感器对甲烷的检测灵敏度高,在低浓度下即可检测到甲烷。

随着甲烷浓度的增加,气敏传感器的输出电压逐渐增大。

在甲烷浓度为0.5%时,气敏传感器的输出电压达到最大值。

(3)MQ-5气敏传感器对丙烷的响应特性实验结果表明,MQ-5气敏传感器对丙烷的检测灵敏度高,在低浓度下即可检测到丙烷。

随着丙烷浓度的增加,气敏传感器的输出电压逐渐增大。

在丙烷浓度为0.5%时,气敏传感器的输出电压达到最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Laboratory Thin-Film Encapsulation of Air-Sensitive Organic Semiconductor DevicesSamuel P.Subbarao,Student Member,IEEE,Matthias E.Bahlke,Student Member,IEEE,andIoannis Kymissis,Member,IEEEAbstract—We present an approach,which is compatible with both glass and polymer substrates,to in-laboratory handling and intra-laboratory shipping of air-sensitive organic semiconductors. Encapsulation approaches are presented using polymer/ceramic and polymer/metal thin-film barriers using commercially avail-able materials and generally available laboratory equipment.A technique for depositing an opaque vapor barrier,a transparent vapor barrier,and an approach to storing and shipping air-sensitive thin-film organic semiconductor devices on both polymer and glass substrates are presented.Barrier performance in air was tested using organic light-emitting diodes(OLEDs)as test devices. The half-life performance of OLEDs on plastic substrates in air exceeded700h,and that on glass mercially available heat-seal barrier bag systems for device shipping and storage in air were tested using a thinfilm of metallic calcium to test water permeation.More than four months of storage of a metallic calciumfilm in a heat-sealed foil bag was demonstrated in the best storage system.These approaches allow for the encap-sulation of samples for longer duration testing and transportation than otherwise possible.Index Terms—Encapsulation,lifetime,organic,organic light-emitting diode(OLED),oxide,polymer,semiconductor.I.I NTRODUCTIONO RGANIC semiconductors are used in a variety of de-vices,including organic light-emitting diodes(OLEDs), organic photovoltaics,organic photodetectors,and organic field-effect transistors(OFETs).These semiconductors are of-ten sensitive to water vapor and oxygen and need to be en-capsulated[1]–[3].For devices on transparent polymerflexible substrates,which are not natively impermeable to water vapor and oxygen,it is also important that any barrier used be me-chanicallyflexible and transparent to visible light on the light-emitting side.Traditional epoxy/getter approaches,which have been effective on glass-substrate-based devices,are not suitable for transparentflexible organic devices.Mechanicallyflexible thin-film approaches are required.Manuscript received June2,2009;revised October9,2009.First published November24,2009;current version published December23,2009.This work was supported by AFOSR through STTR FA9550-07-C-0056under a subcontract with QD Vision,Inc.The review of this paper was arranged by Editor M.J.Kumar.S.P.Subbarao is with BAE Systems Inc.,Soldier and Vehicle Solutions, Austin,TX78725USA(e-mail:samuel.subbarao@).M.E.Bahlke is with the Department of Electrical Engineering and Computer Science,Massachusetts Institute of Technology,Cambridge,MA02139-4307 USA(e-mail:matthias.bahlke@).I.Kymissis is with the Columbia Laboratory for Unconventional Electron-ics,Department of Electrical Engineering,Columbia University,New York, NY10027USA.Digital Object Identifier10.1109/TED.2009.2034804There are generally two goals for any barrier:to improve storage lifetime and to enhance continuous-use lifetime.This paper focuses on storage lifetime—i.e.,a device’s ability to maintain its performance after a certain storage time.The acceptable lifetime will vary based on the type of device and the tester’s performance needs.In this paper,we use an OLED as the test device and measure the time to50%of the initial brightness.This is a common measure of OLED life and has been used to evaluate other barriers in the literature[4],[5]. Several methods have been presented in the literature to encapsulate OLEDs and other organic-semiconductor-based devices that use a glass substrate.Burrows et al.[5]presented an epoxy and glass seal.This is a serial process in which the adhesive is applied by a syringe and can be detrimental to the device if the epoxy contacts the semiconductor layers.Al–Li and HDPE multilayer barriers have also been used with half-lives of63h on glass[6].Other groups have used a combination of oxide,polymer,and epoxy seals[7]for OLEDs on glass with a half-life of over1000h.More recent barriers have produced significantly better ing a plasma-deposited sil-icon oxide/silicone hybrid barrier on glass,Mandlik et al.[4] demonstrated an accelerated(65◦C and85%RH)measured half-life at7500h,using active area rather than light intensity as the metric.There are also a number of encapsulation techniques that are suitable forflexible substrates.Polymerfilm encapsulation using CVD poly-p-xylylene(Parylene N)and/or poly-2-chloro-p-xylylene(Parylene C)was shown to improve lifetime by four times over that of unencapsulated[8]samples.Vitex has presented a proprietary barrier coating on PET with more than 2000-h half-life[9].A lamination process for encapsulating OLEDs on plastic(PES)has shown a half-life at230h[10]. Despite the aforementioned work,it has been proven chal-lenging for groups tofind a satisfactory encapsulation solution that can be deployed in a laboratory setting using commercially available substrates and equipment,particularly for testing and analysis of sensitive devices.There are no commercially avail-able solutions that are accessible to research and development laboratories for encapsulating thin-film organic -mercial solutions typically require specialized equipment and intellectual property licenses,and laboratory-equipment-based solutions to date have exhibited inadequate performance. There is a significant demand for techniques that are able to preserve device characteristics for air-sensitive devices in the laboratory during testing and also for exchanging samples between laboratories for cross-testing.This has been proven to be a particularly important issue for organic-solar-cell and0018-9383/$26.00©2009IEEEFig.1.OLED stack:PEDOT:PSS(85nm),spiro-TPD(50nm),Alq3(50nm), and Mg:Ag/Ag(50/50nm).organic-solid-state-lighting efficiency testing,in which testing at centralized laboratories is a requirement for device valida-tion.In these centralized facilities,devices are often placed in a queue for several weeks before evaluation.Storage and shipping solutions that are accessible to R&D groups and that are able to preserve device characteristics during that time are essential.II.OLED F ABRICATION AND T ESTINGTo test encapsulation performance,we use the efficiency of an OLED driven with a low duty cycle.The length of time until the OLED output intensity halves determines the half-life performance of encapsulation.The stack used is shown in Fig.1and consists of an85-nm layer of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS, Baytron P VPCH8000purchased from H.C.Starck),which is spun on and baked at110◦C prior to transport layer evapora-tion:50nm of spiro-TPD(E105purchased from Luminescence Technology Corporation).Fifty nanometers of aluminum tris-hydroxy quinolate(AlQ3:LT-E401from Luminescence Tech-nology Corporation),and a Mg:Ag(10:1)/Ag(50-nm/50-nm) cathode are then evaporated to complete the stack.Two sizes of OLEDs were fabricated:a40×40mm OLED on a50×50mm substrate,and a set of4,5×5mm OLEDs on a50×50mm substrate.The smaller OLEDs were used for testing lifetime.The larger OLEDs were used to test large-area coverage.III.OLED ON G LASS S UBSTRATEA.Substrate Processing and CleaningThe indium tin oxide(ITO)-coated glass(40Ω/square)was purchased from Luminescence Technology Corporation.The substrate was spin cleanedfirst with acetone,isopropanol,and methanol and then coated with HMDS and AZ4620photoresist. The resist was exposed,developed,and postbaked at110◦C for15min.The ITO was then etched using aqua regia(3:1, hydrochloric acid:nitric acid).The ITO was then cleaned using acetone,isopropanol,methanol,and treated with an O2plasma for2minutes.B.OLED StackImmediately after the plasma treatment,the ITO was coated with PEDOT:PSS and baked at110◦C for15min inside a glove box with direct access to the evaporation and CVD chambers.The organic semiconductors were then deposited on the substrate:50nm of spiro-TPD,followed by50nm of Alq3. The cathode used was50nm of10:1Mg:Ag alloy,followed by 50nm ofAg.Fig.2.OLED encapsulation for(a)glass and(b)plastic.ZnO(50nm), Parylene C(2μm),and Al(50nm).C.EncapsulationThe glass substrate on which the OLED is fabricated is an excellent water vapor and oxygen barrier.The cathode area, however,is permeable to water vapor and oxygen.To protect the organics against attack from the cathode side,the sample was coated with2μm of Parylene C and then100nm of Al (masked so that the device is not shorted).Parylene deposition does not significantly degrade OLEDs and has been used in similar multilayer barrier stacks for OLEDs and other device architectures[7],[11].This parylene–Al stack is repeated twice.The encapsulation cross section is schematically shown in Fig.2(a).D.Testing MethodA low-duty-cycle test was performed in order to determine the storage performance of the barrier.The OLEDs were turned on for1s(sampled ten times during this1s)and then turned off for10min(0.166%duty cycle).Prior to testing,the OLEDs were burned in for30s to minimize the increase in brightness immediately after turn-on.The low-duty-cycle testing allowed us to separate coulombic OLED degradation from degradation by water and oxygen penetration.Lifetime testing of100% duty cycle and400cd/m2was also conducted in parallel in encapsulated devices and devices stored in the glove box,and both were found to be limited by the OLED lifetime,which, in this case,is shorter than the storage lifetime.The tester was a homemade voltage-controlled current source in a light-absorbing enclosure,which was connected to a data acquisition controller(LabJack U3-HV)controlled by LabView.The bias current was set prior to the collection of data so that the OLED intensity was350cd/m2as measured by a Konica-Minolta LS-100Luminance Meter.E.ResultsThe lifetime of the OLED on glass is shown in Fig.3.Half-life was measured with respect to the75-h mark,which would correspond to390cd/m2starting out.Half-life occurs at600h at196cd/m2.This gives a half-life of525h.IV.OLED ON P LASTIC S UBSTRATEA.Substrate Processing and CleaningTo fabricate OLEDs on polyethylene naphthalate(PEN, Dupont Teijin Films),the process followed was similar toSUBBARAO et al.:LABORATORY THIN-FILM ENCAPSULATION OF AIR-SENSITIVE ORGANIC SEMICONDUCTOR DEVICES155156IEEE TRANSACTIONS ON ELECTRON DEVICES,VOL.57,NO.1,JANUARY2010concern for the OLED community in both commercial settings and research laboratories.While laboratory uses,such as ship-ping incomplete samples and testing,do not often require the extended lifetimes that commercial products demand,degra-dation can be an obstacle to sample processing in multiple laboratories or measuring device performance in a calibrated environment,such as a national standard laboratory or cross-checking laboratories.This paper has presented a straightforward approach to handling air-sensitive organic-semiconductor-based devices on both glass and plastic substrates using generally available lab-oratory equipment.Devices that can tolerate an opaque and conducting barrier(e.g.,devices on glass and the back of polymer-substrate-based devices)can be encapsulated using a multilayer polymer/metalfilm.Devices that require a transpar-ent or insulating barrier(e.g.,OLEDs on plastic or OFETs)can be protected using a polymer/ceramicfilm.A combination of approaches can also be employed.We have demonstrated that it is possible to use a commercially sourced ITOfilm and apply encapsulation on the front side to form aflexible transparent barrier in conjunction with the opaque barrier on the rear of the device.Encapsulation performance was tested using OLEDs, and performance in air was extended to more than500h for both devices,which is adequate for most laboratory efficiency performance testing.A commercially available laminated foil barrier bag for storing and shipping devices has also been presented and tested using a calciumfilm.A lifetime extension of more than four additional orders of magnitude has been achieved with this storage system.A CKNOWLEDGMENTThe authors would like to thank K.Dronson for the as-sistance in writing the LabView code for the lifetime tester. S.P.Subbarao and M.E.Bahlke contributed equally to this paper.R EFERENCES[1]J.McElvain,H.Antoniadis,M.R.Hueschen,ler,D.M.Roitman,J.R.Sheats,and R.L.Moon,“Formation and growth of black spots in organic light-emitting diodes,”J.Appl.Phys.,vol.80,no.10,pp.6002–6007,Nov.1996.[2]B.H.Cumpston,I.D.Parker,and K.F.Jensen,“In situ characterization ofthe oxidative degradation of a polymeric light emitting device,”J.Appl.Phys.,vol.81,no.8,pp.3716–3720,Apr.1997.[3]V.N.Bliznyuk,S.A.Carter,J.C.Scott,G.Klarner,ler,andler,“Electrical and photoinduced degradation of polyfluorenebasedfilms and light-emitting devices,”Macromolecules,vol.32,no.2, pp.361–369,Jan.1999.[4]P.Mandlik,J.Gartside,L.Han,I.C.Cheng,S.Wagner,J.A.Silvernail,R.Q.Ma,M.Hack,and J.J.Brown,“A single-layer permeation barrier for organic light-emitting displays,”Appl.Phys.Lett.,vol.92,no.10, p.103309,Mar.2008.[5]P. E.Burrows,V.Bulovic,S.R.Forrest,L.S.Sapochak,D.M.McCarty,and M.E.Thompson,“Reliability and degradationof organic light emitting devices,”Appl.Phys.Lett.,vol.65,no.23, pp.2922–2924,Dec.1994.[6]S.H.Kwon,S.Y.Paik,O.J.Kwon,and J.S.Yoo,“Triple-layer passi-vation for longevity of polymer light-emitting diodes,”Appl.Phys.Lett., vol.79,no.26,pp.4450–4452,Dec.2001.[7]A.P.Ghosh,L.J.Gerenser,C.M.Jarman,and J.E.Fornalik,“Thin-filmencapsulation of organic light-emitting devices,”Appl.Phys.Lett.,vol.86, no.22,p.223503,May2005.[8]K.Yamashita,T.Mori,and T.Mizutani,“Encapsulation of organic light-emitting diode using thermal chemical-vapour-deposition polymerfilm,”J.Phys.D,Appl.Phys.,vol.34,no.5,pp.740–743,Mar.2001.[9]A.B.Chwang,M.A.Rothman,S.Y.Mao,R.H.Hewitt,M.S.Weaver,J.A.Silvernail,K.Rajan,M.Hack,J.J.Brown,X.Chu,L.Moro, T.Krajewski,and N.Rutherford,“Thinfilm encapsulatedflexible organic electroluminescent displays,”Appl.Phys.Lett.,vol.83,no.3,pp.413–415,Jul.2003.[10]G.H.Kim,J.Oh,Y.S.Yang,L.M.Do,and K.S.Suh,“Laminationprocess encapsulation for longevity of plastic-based organic light-emitting devices,”Thin Solid Films,vol.467,no.1/2,pp.1–3,Nov.2004.[11]M.Schaepkens,T.W.Kim,A.G.Erlat,M.Yan,K.W.Flanagan,C.M.Heller,and P.A.McConnelee,“Ultrahigh barrier coating depositionon polycarbonate substrates,”J.Vac.Sci.Technol.A,Vac.Surf.Films, vol.22,no.4,pp.1716–1722,Jul.2004.[12]S.A.Jabarin and E.A.Lofgren,“Thermal stability of polyethyleneterephthalate,”Polym.Eng.Sci.,vol.24,no.13,pp.1056–1063, Sep.1984.Samuel P.Subbarao(S’06)received the B.S.degree(magna cum laude)in electrical engineering fromColumbia University,New York,NY,in2009,wherehe is currently working(part time)toward the M.S.degree in electrical engineering.While at Columbia,he was a Member of theColumbia Laboratory for Unconventional Electron-ics,Department of Electrical Engineering,ColumbiaUniversity,from2006to2009.He is currentlywith BAE Systems Soldier and Vehicle Solutions inAustin,TX.Mr.Subbarao was also the President of the CU Chapter of IEEE from2008 to2009.Matthias E.Bahlke(S’07)received the B.S.degreein electrical engineering from Columbia University,New York,NY,and the B.A.degree in physics fromBard College,Annandale-on-Hudson,NY,in2009.He is currently working toward the Ph.D.degreein electrical engineering and computer science withthe Department of Electrical Engineering andComputer Science,Massachusetts Institute of Tech-nology,Cambridge,working under the advisementof Prof.M.Baldo.While at Columbia University he was an Under-graduate Researcher with the Columbia Laboratory for Unconventional Elec-tronics,Department of ElectricalEngineering.Ioannis Kymissis(S’97–M’03)received the B.S.,M.Eng.,and Ph.D.degrees in electrical engineeringand computer science from the Massachusetts In-stitute of Technology(MIT),Cambridge,in1998,1999,and2003,respectively.He was a Postdoctoral Associate with the Labora-tory for Organic Optics and Electronics,MIT,wherehe was initially engaged in research on new process-ing strategies for highly integrated organic systems,and,later,with a small MIT-based startup,i.e.,QDVision,Inc.He is currently an Assistant Professor with the Department of Electrical Engineering,Columbia University,New York,NY,where he also leads the Columbia Laboratory for Unconventional Electronics.His current research interests include the application of organic FETs to large-area-compatible sensing and actuation systems.Prof.Kymissis is also the Chair of the IEEE Electron Devices Society/Solid-State Circuits Society,New York Section Chapter.He has served on the Pro-gram Committees of the Materials Research Society,the International Society for Optical Engineers,and several regional conferences.He was the recipient of the IEEE Paul Rappaport Award in2002for his contributions to organic FET technology,the Shoulders–Grey–Spindt Medal at the2002IVMC for his contributions to vacuum microelectronics,and the National Science Foundation CAREER Award in2006.。

相关文档
最新文档