《第二十五章概率初步复习》教案

合集下载

初中数学《概率初步-复习课》教案

初中数学《概率初步-复习课》教案

“三部五环”教学模式设计《第25章复习课》教学设计1.教材内容义务教育课程标准实验教科书(人教版)《数学》八年级上册第25章单元小结。

2.知识背景分析在现代社会里,人们面临着更多的机会和选择,常常需要在不确定情境中做出合理的决策。

统计观念、概率思想已成为人们进行信息处理的必要数学观念,而概率(与统计)是课程改革中新增的唯一一块培养学生从不确定的角度观察、认识社会,让学生了解可能性是普遍的,有助于他们理解社会的数学内容。

学生已学完本章,通过小结,可使所学知识系统化。

3.学情背景分析教学对象是九年级学生,学生已经学习本章知识,本节课的重点在于查缺补漏,使所学知识系统化。

4.学习目标4.1知识与技能目标全面复习本章内容,使所学知识系统化。

4.2过程与方法目标通过复习,培养学生归纳总结能力。

4.3情感态度与价值观目标通过练习,培养学生探究问题、分析问题、解决问题的能力。

5、学习重、难点5.1学习重点系统复习本章知识,查缺补漏。

5.2学习难点解答练习,提高学生解决实际问题的能力。

6.教法设计与学法指导6.1 教法选择根据本节教材内容特点,针对八年级学生的认知结构和心理特征,本节教学注重学生自我反思,经历观察、归纳、总结的过程,全面系统掌握本章知识。

6.2学法指导在本节课为复习课,注重指导学生自我反思、归纳总结,指导学生用数学建模思想解决实际问题。

7.学习环境与资源设计7.1学习环境:多媒体教室。

7.2学习资源:教材、教学课件(多媒体课件)。

8.教学评价设计为了最大限度地做到面向全体学生,充分关注学生的个性差异,在本节教学中,力求通过学生自评、生生互评和教师概括引领、激励测进式点评有机结合的评价方式帮助学生认识自我、建立自信,使其逐步养成独立思考、自主探索、合作交流的学习习惯。

评价方式为:随堂提问、作品展评、作业反馈。

9.教学流程设计10.教学过程设计甲乙4.桌子上放有6张扑克牌,全都正面朝下,其中恰有两张是老K.两人做游戏,游戏规则是:随机取2张牌并把它们翻开,若2张牌中没有老K,则红方胜,否则蓝方胜.你愿意充当红方还是蓝方?与同伴实际做一做.活动5 推荐作业,延伸新知必做题:复习题25 1、3题选做题:复习题25 2、5题[师生互动]教师提出要求,学生按要求选择完成作业。

第25章概率初步复习教案

第25章概率初步复习教案

• 1本章的主要内容是随机事件的定义,概率 的定义; • 2.计算简单事Байду номын сангаас概率(古典概率类型)的方 法,主要是列举法(包括列表法和画树形 图法);. • 3利用频率估计概率(试验概率)即通过大 量重复试验,对获得的数据进行统计整理, 求出频率,然后进行研究分析,得出某一 随机事件发生的概率。
1.下列事件中必然发生的是( ) A.随意翻到一本书的某页,这页的页码是奇数 B.地球上,抛出的铁球最后总往下落 C.购买一张彩票,中奖 D.篮球队员在罚球线上投篮一次,投中 2.给甲乙丙三人打电话,若打电话的顺序是任 意的,则第一个打电话给甲的概率为( ) A. 1/6 B. 1/3 C. 1/2 D. 2/3
例1、下列事件中,是必然事件的是( ) A.购买一张彩票中奖一百万 B.打开电视机,任选一个频道,正在播新闻 C.在地球上,上抛出去的篮球会下落 D.掷两枚质地均匀的骰子,点数之和一定大于6 例2.在一场足球比赛前,甲教练预言说:“根据我掌 握的情况,这场比赛我们队有60%的机会获胜”意思 最接近的是( ) A.这场比赛他这个队应该会赢 B.若两个队打100场比赛,他这个队会赢60场 C.若这两个队打10场比赛,这个队一定会赢6场比赛. D.若这两个队打100场比赛,他这个队可能会赢60场 左右.
第25章
概率初步复习
• • • • • • • • •
1.基本概念 (1)必然事件 (2)不可能事件 (3)随机事件 (4)随机事件的可能性 (5)概率 (6)可能性与概率的关系 (7)古典概率 (8)几何图形的概率
• 2.概率的理论计算方法有: • 3.通过大量重复实验得到的频率估计事件发 生概率的值 • 4.利用概率的知识解决一些实际问题,如利 用概率判断游戏的公平性等

人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第2课时教案

人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第2课时教案

人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第2课时教案一. 教材分析本节课的主要内容是随机事件与概率的初步概念。

学生需要了解随机事件的定义,以及如何用概率来描述事件的可能发生性。

教材通过大量的实例来帮助学生理解概率的概念,并培养学生的实际应用能力。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于一些基本的概念和原理能够理解和掌握。

但是,由于概率是一个相对抽象的概念,对于一些学生来说,理解起来可能会有难度。

因此,在教学过程中,需要通过大量的实例和实际操作来帮助学生理解和掌握概率的概念。

三. 教学目标1.了解随机事件的定义,理解必然事件、不可能事件和不确定事件的概念。

2.掌握概率的基本计算方法,能够计算简单事件的概率。

3.能够运用概率的知识解决实际问题。

四. 教学重难点1.随机事件的定义和分类。

2.概率的计算方法。

3.概率在实际问题中的应用。

五. 教学方法1.采用问题驱动的教学方法,通过提出问题,引导学生思考和探索,培养学生的思维能力。

2.使用多媒体教学,通过动画和实例的展示,帮助学生直观地理解概率的概念。

3.采用分组讨论的教学方法,让学生通过合作和交流,共同解决问题,培养学生的团队协作能力。

六. 教学准备1.多媒体教学设备。

2.教学课件和教学素材。

3.分组讨论的准备。

七. 教学过程1.导入(5分钟)通过一个简单的实例,如抛硬币实验,引导学生思考事件的可能发生性,并引入随机事件的定义。

2.呈现(10分钟)介绍必然事件、不可能事件和不确定事件的概念,并通过实例进行解释和展示。

3.操练(10分钟)让学生进行一些简单的概率计算练习,如抛硬币实验的概率计算,以及一些简单的实际问题的概率计算。

4.巩固(10分钟)通过一些实际问题,让学生运用概率的知识进行解决,巩固所学的知识。

5.拓展(10分钟)引导学生思考概率在实际生活中的应用,如彩票、赌博等,让学生了解概率在生活中的重要性。

第25章《概率初步》教案

第25章《概率初步》教案
教学目标 教学重点 教学难点
25.1.1 随机事件 1 通过对生活中各种事件的判断,归纳出必然事件,不可能事件 和随机事件的特点, 并根据这些特点对有关事件作出准确判断。 随机事件的特点 对生活中的随机事件作出准确判断 课 堂 教 学 程 序 设 计 讨论完善
一、创设情境,引入 1.问题情境 下列问题哪些是必然发生的?哪些是不可能发生的? (1)太阳从西边下山; (2)某人的体温是 100℃; (3)a2+b2=-1(其中 a,b 都是实数); (4)水往低处流; (5)酸和碱反应生成盐和水; (6)三个人性别各不相同; (7)一元二次方程 x2+2x+3=0 无实数解。 2.引发思考 我们把上面的事件(1) 、 (4) 、 (5) 、 (7)称为必然事件, 把事件(2) 、 (3) 、 (6)称为不可能事件,那么请问:什么是 必然事件?什么又是不可能事件呢?它们的特点各是什么? 二、引导两个活动,自主探索新知 活动 1:5 名同学参加演讲比赛,以抽签方式决定每个人 的出场顺序。签筒中有 5 根形状大小相同的纸签,上面分别 标有出场的序号 1,2,3,4,5。小军首先抽签,他在看不 到的纸签上的数字的情况从签筒中随机(任意)地取一根纸 签。请考虑以下问题: (1)抽到的序号是 0,可能吗?这是什么事件? (2)抽到的序号小于 6,可能吗?这是什么事件? (3)抽到的序号是 1,可能吗?这是什么事件? (4)你能列举与事件(3)相似的事件吗? 根据学生回答的具体情况,教师适当地加点拔和引导。 活动 2:小伟掷一个质地均匀的正方形骰子,骰子的六 个面上分别刻有 1 至 6 的点数。请考虑以下问题,掷一次骰 子,观察骰子向上的一面:
第二十五章 概率初步第 3 页
得到结果 2 的组数
4、进行大量重复试验,验证猜测的正确性。 教师请同学们进行 400 次重复的“摸球”试验,教师提 问: 如果把刚才各小组的 20 次 “摸球”合并在一起是否等同 于 400 次“摸球”?这样做会不会影响试验的正确性? 待学生回答后,教师把结果统计在表中。 事件 A 发生的次数 事件 B 发生的次数 400 次摸球 5、对表中的数据进行分析,得出结论。 提问:通过上述试验,你认为,要判断同一试验中哪个 事件发生可能性的较大,必须怎么做? 先让学生回答,回答时教师注意纠正学生的不准确的用 语,最后由教师总结:要判断随机事件发生的可能性大小, 必须经过大量重复试验。 6、对试验结果作定性分析。 在经过大量重复摸球以后,我们可以确定,事件 A 发生 的可能性大于事件 B 发生的可能性,请同学们分析一下其原 因是什么? 三、练习反馈 1、一个袋子里装有 20 个形状、质地、大小一样的球, 其中 4 个白球,2 个红球,3 个黑球,其它都是黄球,从中任 摸一个,摸中哪种球的可能性最大? 2、一个人随意翻书三次,三次都翻到了偶数页,我们能 否说翻到偶数页的可能性就大? 3、袋子里装有红、白两种颜色的小球,质地、大小、形 状一样,小明从中随机摸出一个球,然后放回,如果小明 5 次摸到红球,能否断定袋子里红球的数量比白球多?怎样做 才能判断哪种颜色的球数量较多? 4、已知地球表面陆地面积与海洋面积的比均为 3:7。 如果宇宙中飞来一块陨石落在地球上, “落在海洋里”与“落 在陆地上”哪个可能性更大? 四、小结 作业设计 教 学 反 思

新人教版数学第二十五章__概率初步全章教学设计

新人教版数学第二十五章__概率初步全章教学设计

第二十五章概率初步全章教学目标:本章教材的设计以下列目标为出发点:1、理解什么是必然发生的事件、不可能发生的事件,什么是随机事件。

2、在具体中了解概率的意义,体会概率是描述不确定现象发生可能性大小的数学概念,理解概率取值范围的意义。

3、能够运用列举法(包括列表、画树形图)计算简单事件发生的概率。

4、能够通过实验,获得事件发生的概率知道大量重复实验的频率可作为事件发生概率的估计值,理解频率与概率的区别和联系。

5、通过实例进一步丰富对概率的认识,并解决一些实际问题。

6、了解进行模拟实验的必要性,能根据问题的实际背景实际合理的模拟实验。

【课标要求】1、能通过列表、画树状图等方法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果,了解事件的概率。

2、知道通过大量地重复试验,可以用频率来估计概率。

教学重点1、了解必然发生的事件、不可能发生的事件、随机事件的特点。

2、在具体情境中了解概率意义。

3、理解P(A)=nm (在一次试验中有n种可能的结果,其中A包含m种)的意义。

4、学习运用列表法或树形图法计算事件的概率。

5、利用频率估计出的概率是近似值。

教学难点1、判断现实生活中哪些是必然事件事件,那些事件是随机事件。

2、对频率与概率关系的初步理解。

3、通过实验理解P(A)= nm 并应用它解决一些具体题目。

4、能根据不同情况选择恰当的方法进行列举,解决较复杂事件概率的计算问题。

5、利用频率估计出的概率是近似值。

课时安排本章教学时间约12课时,具体分配如下(仅供参考)25.1 概率 2 课时25.2用列举法求概率 2课时25.3 利用频率估计概率 1课时25.4 课题学习 1课时课题: 25.1 随机事件与概率教学目标:知识技能目标了解必然发生的事件、不可能发生的事件、随机事件的特点.数学思考目标学生经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力.解决问题目标能根据随机事件的特点,辨别哪些事件是随机事件.情感态度目标引领学生感受随机事件就在身边,增强学生珍惜机会,把握机会的意识.教学重点:随机事件的特点.教学难点:判断现实生活中哪些事件是随机事件.教学过程知识一:我探究,我发现。

第二十五章 概率初步 章末复习小结(1) 基本知识 教学设计

第二十五章  概率初步 章末复习小结(1) 基本知识  教学设计

第二十五章概率初步章末复习小结(1)基本知识教学设计教学目标1.复习与回顾本章的重要知识点和知识结构.2.熟悉本章重要的知识要点和解题方法.3.熟练地用列举法和频率估算法求随机事件的概率.教学重点对本章知识进行梳理归纳.教学难点应用列举法和频率估算法求随机事件的概率.教学过程知识一:事件的分类在一定的条件下,必然会发生的事件——必然事件确定性事件在一定的条件下,必然不会发生的事件——不可能事件在一定的条件下,可能发生也可能不发生的事件——随机事件——不确定性事件1.一个不透明的盒子中装有2个黑球和4个白球,这些球除颜色外其他均相同,从中任意摸出3个球,下列事件为必然事件的是( A )A.至少有1个白球 B.至少有2个白球 C.至少有1个黑球 D.至少有2个黑球2.下列语句所描述的事件是随机事件的是( D )A.任意画一个四边形,其内角和为180° B.经过任意两点画一条直线C.任意画一个菱形,是中心对称图形 D.过平面内任意三点画一个圆知识二:概率的定义及基本性质一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的_概率_,记为__P(A)_.一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m种结果,那么事件A发生的概率P(A)=______.练习:下列说法正确的是( A )A.367人中至少有2人生日相同 B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是1/3 C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖知识三:用列表法求概率硬币的正反面——直接列举法——掷骰子的点数——列表法在运用列表法求概率时,应注意各种结果出现的可能性相等,要注意列表时事件(或数据)的顺序不能随意混淆.用列表法求概率适用于事件中涉及两个因素,并且可能出现的结果数目较多的概率问题.练习: 如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为_____23_____;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字.求这两个数字之和是3的倍数的概率.(2)列表如下:由表可知,共有9种等可能的结果,其中这两个数字之和是3的倍数的有3种,所以这两个数字之和是3的倍数的概率为P =39 =13. 知识四:画树状图法求概率一般地,当一次试验要涉及两个因素(或两个步骤),且可能出现的结果数目较多时,可用“__列表法”, 当一次试验要涉及三个或更多的因素(或步骤)时,可采用“_树形图法_”.用树形图求概率的基本步骤:1.明确试验的几个步骤及顺序;2.画树形图列举试验的所有等可能的结果;3.计算得出m,n 的值;4.计算随机事件的概率.练习:端午节是我国传统佳节,小峰同学带了4个粽子(除粽馅不同外,其他均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友小悦.(1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;(2)请你计算小悦拿到的两个粽子都是肉馅的概率.解:(1)肉馅粽子记为A 、红枣馅粽子记为B 、豆沙馅粽子记为C ,由题意画树状图如下:(2)由(1)可得,小悦拿到的两个粽子都是肉馅的概率是21= 126,即小悦拿到的两个粽子都是肉馅的概率是1 6 .知识五:用频率估计概率在大量重复试验中,事件A发生的频率会稳定在某个常数附近.只要试验的次数_足够大_,我们就可以用事件A发生的_频率__去估计__概率_.练习:某瓷砖厂在相同条件下抽取部分瓷砖做耐磨试验,结果如表:则这个厂生产的瓷砖是合格品的概率估计值是___0.95__.(精确到0.01)六、课堂小结谈谈你本节课的收获.七、作业布置见精准作业布置单.八、板书设计。

2017年秋九年级数学上册(人教版)第二十五章概率初步(教案)

(五)总结回顾(用时5分钟)
今天的学习,我们了解了概率的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对概率的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在上完这节课后,我认真回顾了整个教学过程,发现了一些值得思考的地方。首先,关于概率的基本概念,我觉得在讲解时还需要更加生动形象,用更多生活中的实例来说明,帮助学生更好地理解。比如,在解释必然事件、不可能事件、随机事件时,可以结合学生感兴趣的篮球比赛、抽奖活动等,让他们感受到概率就在身边。
1.理论介绍:首先,我们要了解概率的基本概念。概率是反映事件发生机会的大小的量。它是分析随机现象、做出合理决策的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。通过抛硬币实验,分析出现正面和反面的概率,展示概率在实际中的应用。
3.重点难点解析:在讲授过程中,我会特别强调必然事件、不可能事件、随机事件这三个重点。对于难点部分,如互斥事件与独立事件的区别,我会通过举例和比较来帮助大家理解。
二、核心素养目标
1.培养学生的数据分析观念,使其能够运用概率知识对随机现象进行合理描述和分析;
2.培养学生的逻辑推理能力,使其能够理解事件之间的包含与排除关系,掌握概率的基本性质;
3.培养学生的数学建模素养,使其能够运用概率知识构建简单的数学模型,解决实际问题;
4.培养学生的数学抽象能力,使其能够从具体实例中抽象出概率的一般规律,形成概念框架。
1.讨论主题:学生将围绕“概率在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。

九年级数学上册 第25章 概率初步章末复习教案 新人教版

概率初步章末复习一、复习导入1.导入课题:同学们,通过对本章的学习,你对本章的知识结构和重要知识点及其运用是否有一个清晰的认识呢?为了强化同学们对本章的知识认知和应用,下面我们一起来对本章学习内容进行回顾总结.2.复习目标:(1)通过复习,进一步认清本章的知识结构.(2)熟悉本章重要的知识要点和解题方法.(3)熟练地用列举法和频率估算法求随机事件的概率.3.复习重、难点:重点:巩固准确运用两种求概率的方法以及用频率估计概率的方法.难点:用列表法或树形图法求概率的合理选用.4.复习指导:(1)复习内容:教材127页到第151页的内容.(2)复习时间:10分钟.(3)复习要求:对照本章的知识展开图重新看课本重点知识点的讲解,边看书,边记忆,边归纳,对存在疑问的地方进行交流.(4)复习参考提纲:①说说必然事件、不可能事件和随机事件有什么本质区别.必然事件一定发生;不可能事件一定不发生;随机事件有可能发生,也有可能不发生.②必然事件、不可能事件和随机事件的概率各是多少?必然事件的概率为1,不可能事件的概率为0,随机事件的概率介于0和1之间.③在什么事件中适合用P(A)=mn得到事件的概率?随机事件④求一个事件的概率,如果发生的可能结果数目较多时且涉及两个因素,通常适合采用什么方法?列表法⑤用画树状图的方法求一个随机事件的概率时,事件涉及的因素应满足什么条件?因素等于或多于两个.⑥事件发生的概率与事件发生的频率有何关系?概率是指这件事发生的可能性.频率表示事件发生的次数与总次数的比值.频率不等同于概率.但当重复实验的次数逐渐增大时,频率逐渐趋近于概率.二、自主复习学生可参照自学指导进行自学.三、互助复习1.师助生:(1)明了学情:倾听学生讨论的问题,看学生完成提纲的情况.(2)差异指导:对学生在自学中的方法和认识理解偏差进行指导,帮助学生理顺知识网络.2.生助生:学生之间相互交流,帮助整理和解决疑难问题.四、强化1.知识结构图表:2.3.4.5.练习:已知电流在一定时间内正常通过电子元件的概率是0.5,分别求在一定时间段内,A,B之间和C,D之间电流能够正常通过的概率.(提示:在一次试验中,每个电子元件的状态有两个可能(通电,断开),并且这两种状态的可能性相等,用列举的方法可以得出电路的四种可能状态.解:设A,B之间从左到右的两个电子元件依次为R1和R2,则在A,B之间的电路有4种可能状态:(R1通电、R2通电),(R1通电、R2断开),(R1断开、R2通电),(R1断开、R2断开).其中只有1种状态,即R1和R2都通电时A,B之间的电流才正常通过,所以P(A,B之间电流能够正常通过)=14.设C,D之间从上到下的两个元件依次为R3和R4,则在C,D之间的电路也有4种可能状态:(R3通电、R4通电),(R3通电、R4断开),(R3断开、R4通电),(R3断开、R4断开),其中前三种状态都能使C,D之间的电流正常通过,所以P(C,D之间电流能够正常通过)=34.五、评价1.学生的自我评价(围绕三维目标):各小组学生代表交流自己的学习收获和学后体会.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成效及不足进行点评.(2)纸笔评价:课堂评价作业.3.教师的自我评价(教学反思):本节课一方面对全章知识进行系统归纳与总结,提升学生的整体观念,另一方面是对前面新课学习的回顾.本节课重点复习了用列举法求概率、用频率估计概率.通过实际问题的解答,提高学生分析问题的能力,增强了用数学解决问题的意识.同时让学生通过本课的复习,掌握运用概率知识的一些基本方法和步骤.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)下列事件中,不是随机事件的是(D )A.篮球队员在罚球线上投篮一次,未投中B.经过某一有交通信号灯路口,遇到了红灯C.小伟掷两次硬币,每次向上的都是正面D.测量一下三角形的三个内角,其和为360°2.(10分)从1,2,3,4,5,6,7,8,9,10这十个数中随机取出一个数,取出的数是3的倍数的概率是(D ) A. 15 B. 16 C. 13 D. 3103.(10分)如图所示,有两个可以自由转动的均匀转盘A ,B ,转盘A 被均匀地分成4等份,每份分别标上1,2,3,4四个数字;转盘B 被均匀地分成6等份,每份分别标上1,2,3,4,5,6六个数字,分别转动转盘A 和B ,A 盘停止后指针指向奇数的概率和B 盘停止后指针指向奇数的概率哪个大?为什么?(如果指针恰好指在分格线上,取分格线右边的数字.)解:A 转盘停止后,指针指向奇数的概率为=2142.B 转盘停止后,指针指向奇数的概率为=3162,所以两者相等. 4.(30分)一个批发商从某服装制造公司购进了50包型号为L 的衬衫,由于包装工人的疏忽,在包裹中混进了型号为M 的衬衫,每一包中混入的M 号衬衫数见下表:M 号衬衫数0145791011包数7310155433一位零售商从50包中任意选取了一包,求下列事件的概率:(1)包中没有混入的M 号衬衫;(2)包中混入的M 号衬衫数不超过7;(3)包中混入的M 号衬衫数超过10.解:(1)P (包中没有混入M 号衬衫)=750. (2)P (包中混入M 号衬衫数不超过7)=++++=73101554505. (3)P (包中混入的M 号衬衫数超过10)=350. 5.(10分)同时掷两枚质地均匀的骰子,求点数和小于5的概率.解:同时投掷两枚骰子,点数和的所有可能的结果列表如下:共有36种可能性相等的结果,其中点数和小于5的结果有6种,所以P (点数和小于5)==61366. 二、综合应用(20分)6.(20分) 随机抛掷图中均匀的正四面体(正四面体的各面依次标有1,2,3,4四个数字),并且自由转动图中的转盘(转盘被分成面积相等的五个扇形区域,如果指针恰好指在分格线上,取分格线右边的数字).(1)求正四面体着地的数字与转盘指针所指区域的数字之积为4的概率;(2)设正四面体着地的数字为a ,转盘指针所指区域内的数字为b ,求关于x 的方程b ax x ++=2304有实数根的概率. 解:(1)用树状图表示二者的数字之积为4的结果如下:由上图可知,共有20种可能性相等的结果,其中数字之积为4(记为事件A )的结果有3种,所以()P A =320. (2)若方程b ax x ++=2304有实数根(记为事件B ),则9-ab≥0,即ab≤9,由(1)可知满足ab≤9的结果有14种,所以()P B ==1472010. 三、拓展延伸(10分)7.(10分)把三张形状、大小相同但画面不同的风景图片,都按同样的方式剪成相同三段,然后将上、中、下三段分别混合洗匀,从三堆图片中随机地各抽出一张,求这三张图片恰好组成一张完整风景图片的概率.解:不妨设三张风景图片为A ,B ,C ,各自平均剪成的三段分别为A 上,A 中,A 下, B 上,B 中,B 下,C 上,C 中,C 下,用树状图表示从三堆中随机地各抽出一张后的搭配结果.由图可知共有27种搭配结果,其中三张图片恰好组成一张完整风景图片(记为事件M )的结果有(A 上,A 中,A 下),(B 上,B 中,B 下),(C 上,C 中,C 下)三种.所以()P M ==31279. 如有侵权请联系告知删除,感谢你们的配合!。

人教版数学九年级上册 第25章--概率初步 复习教案设计

集体备课教案
1.下列说法正确的是( )
A.要了解一批灯泡的使用寿命,应采用普查的方式
B.若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖
C.甲、乙两组数据的样本容量与平均数分别相同,若方差
s

2
=0.1,s

2
=0.2,则甲组数据比乙组数据稳定
D.“掷一枚硬币,正面朝上”是必然事件
2.请写出一个概率小于的随机事件:.
【主题训练2】如图,有四张背面相同的纸牌A,B,C,D,其正面分别是红桃,方块,黑桃,梅花,其中红桃、方块为红色,黑桃、梅花为黑色,小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张洗匀后再摸出一张.
(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A,B,C,D表示).
(2)求摸出的两张纸牌同为红色的概率
【备选例题】甲、乙两人用手指玩游戏,规则如下:(ⅰ)每次游戏时,两人同时随机各伸出一根手指; (ⅱ)两人伸出的手指中,大拇指只胜食指,食指只胜中指,中指只胜无名指,无名指只胜小拇指,小拇指只胜大拇指,否则不分胜负,依据上述规则,当甲、乙两人同时随机地各伸出一根手指时.(1)求甲伸出小拇指取胜的概率.(2)求乙取胜的概率.
【主题升华】求随机事件概率的类型及策略
1
2。

九年级数学上册 第25章 概率初步章末复习教案 (新版)新人教版

概率初步章末复习一、复习导入1.导入课题:同学们,通过对本章的学习,你对本章的知识结构和重要知识点及其运用是否有一个清晰的认识呢?为了强化同学们对本章的知识认知和应用,下面我们一起来对本章学习内容进行回顾总结.2.复习目标:(1)通过复习,进一步认清本章的知识结构.(2)熟悉本章重要的知识要点和解题方法.(3)熟练地用列举法和频率估算法求随机事件的概率.3.复习重、难点:重点:巩固准确运用两种求概率的方法以及用频率估计概率的方法.难点:用列表法或树形图法求概率的合理选用.4.复习指导:(1)复习内容:教材127页到第151页的内容.(2)复习时间:10分钟.(3)复习要求:对照本章的知识展开图重新看课本重点知识点的讲解,边看书,边记忆,边归纳,对存在疑问的地方进行交流.(4)复习参考提纲:①说说必然事件、不可能事件和随机事件有什么本质区别.必然事件一定发生;不可能事件一定不发生;随机事件有可能发生,也有可能不发生.②必然事件、不可能事件和随机事件的概率各是多少?必然事件的概率为1,不可能事件的概率为0,随机事件的概率介于0和1之间.③在什么事件中适合用P(A)=mn得到事件的概率?随机事件④求一个事件的概率,如果发生的可能结果数目较多时且涉及两个因素,通常适合采用什么方法?列表法⑤用画树状图的方法求一个随机事件的概率时,事件涉及的因素应满足什么条件?因素等于或多于两个.⑥事件发生的概率与事件发生的频率有何关系?概率是指这件事发生的可能性.频率表示事件发生的次数与总次数的比值.频率不等同于概率.但当重复实验的次数逐渐增大时,频率逐渐趋近于概率.二、自主复习学生可参照自学指导进行自学.三、互助复习1.师助生:(1)明了学情:倾听学生讨论的问题,看学生完成提纲的情况.(2)差异指导:对学生在自学中的方法和认识理解偏差进行指导,帮助学生理顺知识网络.2.生助生:学生之间相互交流,帮助整理和解决疑难问题.四、强化1.知识结构图表:2.3.4.5.练习:已知电流在一定时间内正常通过电子元件的概率是0.5,分别求在一定时间段内,A,B之间和C,D之间电流能够正常通过的概率.(提示:在一次试验中,每个电子元件的状态有两个可能(通电,断开),并且这两种状态的可能性相等,用列举的方法可以得出电路的四种可能状态.解:设A,B之间从左到右的两个电子元件依次为R1和R2,则在A,B之间的电路有4种可能状态:(R1通电、R2通电),(R1通电、R2断开),(R1断开、R2通电),(R1断开、R2断开).其中只有1种状态,即R1和R2都通电时A,B之间的电流才正常通过,所以P(A,B之间电流能够正常通过)=14.设C,D之间从上到下的两个元件依次为R3和R4,则在C,D之间的电路也有4种可能状态:(R3通电、R4通电),(R3通电、R4断开),(R3断开、R4通电),(R3断开、R4断开),其中前三种状态都能使C,D之间的电流正常通过,所以P(C,D之间电流能够正常通过)=34.五、评价1.学生的自我评价(围绕三维目标):各小组学生代表交流自己的学习收获和学后体会.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成效及不足进行点评.(2)纸笔评价:课堂评价作业.3.教师的自我评价(教学反思):本节课一方面对全章知识进行系统归纳与总结,提升学生的整体观念,另一方面是对前面新课学习的回顾.本节课重点复习了用列举法求概率、用频率估计概率.通过实际问题的解答,提高学生分析问题的能力,增强了用数学解决问题的意识.同时让学生通过本课的复习,掌握运用概率知识的一些基本方法和步骤.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)下列事件中,不是随机事件的是(D )A.篮球队员在罚球线上投篮一次,未投中B.经过某一有交通信号灯路口,遇到了红灯C.小伟掷两次硬币,每次向上的都是正面D.测量一下三角形的三个内角,其和为360°2.(10分)从1,2,3,4,5,6,7,8,9,10这十个数中随机取出一个数,取出的数是3的倍数的概率是(D ) A. 15 B. 16 C. 13 D. 3103.(10分)如图所示,有两个可以自由转动的均匀转盘A ,B ,转盘A 被均匀地分成4等份,每份分别标上1,2,3,4四个数字;转盘B 被均匀地分成6等份,每份分别标上1,2,3,4,5,6六个数字,分别转动转盘A 和B ,A 盘停止后指针指向奇数的概率和B 盘停止后指针指向奇数的概率哪个大?为什么?(如果指针恰好指在分格线上,取分格线右边的数字.)解:A 转盘停止后,指针指向奇数的概率为=2142.B 转盘停止后,指针指向奇数的概率为=3162,所以两者相等. 4.(30分)一个批发商从某服装制造公司购进了50包型号为L 的衬衫,由于包装工人的疏忽,在包裹中混进了型号为M 的衬衫,每一包中混入的M 号衬衫数见下表:M 号衬衫数0145791011包数7310155433一位零售商从50包中任意选取了一包,求下列事件的概率:(1)包中没有混入的M 号衬衫;(2)包中混入的M 号衬衫数不超过7;(3)包中混入的M 号衬衫数超过10.解:(1)P (包中没有混入M 号衬衫)=750. (2)P (包中混入M 号衬衫数不超过7)=++++=73101554505. (3)P (包中混入的M 号衬衫数超过10)=350. 5.(10分)同时掷两枚质地均匀的骰子,求点数和小于5的概率.解:同时投掷两枚骰子,点数和的所有可能的结果列表如下:共有36种可能性相等的结果,其中点数和小于5的结果有6种,所以P (点数和小于5)==61366.二、综合应用(20分)6.(20分) 随机抛掷图中均匀的正四面体(正四面体的各面依次标有1,2,3,4四个数字),并且自由转动图中的转盘(转盘被分成面积相等的五个扇形区域,如果指针恰好指在分格线上,取分格线右边的数字).(1)求正四面体着地的数字与转盘指针所指区域的数字之积为4的概率;(2)设正四面体着地的数字为a ,转盘指针所指区域内的数字为b ,求关于x 的方程b ax x ++=2304有实数根的概率. 解:(1)用树状图表示二者的数字之积为4的结果如下:由上图可知,共有20种可能性相等的结果,其中数字之积为4(记为事件A )的结果有3种,所以()P A =320. (2)若方程b ax x ++=2304有实数根(记为事件B ),则9-ab≥0,即ab≤9,由(1)可知满足ab≤9的结果有14种,所以()P B ==1472010.三、拓展延伸(10分)7.(10分)把三张形状、大小相同但画面不同的风景图片,都按同样的方式剪成相同三段,然后将上、中、下三段分别混合洗匀,从三堆图片中随机地各抽出一张,求这三张图片恰好组成一张完整风景图片的概率.解:不妨设三张风景图片为A ,B ,C ,各自平均剪成的三段分别为A 上,A 中,A 下, B 上,B 中,B 下,C 上,C 中,C 下,用树状图表示从三堆中随机地各抽出一张后的搭配结果.由图可知共有27种搭配结果,其中三张图片恰好组成一张完整风景图片(记为事件M )的结果有(A 上,A 中,A 下),(B 上,B 中,B 下),(C 上,C 中,C 下)三种.所以()P M ==31279.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第25章 章末回顾一、本章思维导图二、典型例题讲解例1.已知关于x 的一元二次方程02=++c bx x ,从-1,2,3三个数中任取一个数,作为方程中b 的值,再从剩下的两个数中任取一个数作为方程中c 的值,能使该一元二次方程有实数根的概率是_________.【知识点】一元二次方程,用树状图或列表法求概率【解题分析】先利用列表或者树状图展示所有6种等可能的结果数,再根据判别式的意义得到当1,2-==c b ;1,3-==c b ;2,3==c b 时,该一元二次方程有实数根,然后根据概率公式计算.【解题过程】解:根据题意列表如下:b c -1 2 3-1(2,-1) (3,-1)2 (-1,2)(3,2) 3(-1,3) (2,3)∴一共6∵能使该一元二次方程有实数根,则042≥-ac b∴满足条件的占3种,即1,2-==c b ;1,3-==c b ;2,3==c b ∴)(一元二次方程有实数根P =63=21.故答案为21. 【思路点拨】本题考查了列表法或树状图法:利用列表法或树状图法展示所有可能的结果数(注意此题是不放回试验),再从中选出符合事件A 的结果数,求出事件A 的概率.同时也综合考查了一元二次方程根的判别式.例2.盒中有x 个黑球和y 个白球,这些球除颜色外无其他差别.若从盒中随机取一个球,它是黑球的概率是52;若往盒中再放进1个黑球,这时取得黑球的概率变为21. (1)填空:x =_______,y =_______;(2)小王和小林利用x 个黑球和y 个白球进行摸球游戏.约定:从盒中随机摸取一个,接着从剩下的球中再随机摸取一个,若两球颜色相同则小王胜,若颜色不同则小林胜.求两个人获胜的概率各是多少?【知识点】解方程组,用树状图或列表法求概率【解题分析】(1)根据题意得:⎪⎪⎩⎪⎪⎨⎧=+++=+211152y x x y x x ,解此方程即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两球颜色相同、颜色不同的情况,再利用概率公式即可求得答案.【解题过程】解:(1)根据题意得:⎪⎪⎩⎪⎪⎨⎧=+++=+211152y x x y x x , 解得:⎩⎨⎧==32y x ;故答案为:2,3; (2)画树状图得:∵共有20种等可能的结果,两球颜色相同的有8种情况,颜色不同的有12种情况, ∴P (小王胜)=208=52,P (小林胜)=2012=53.【思路点拨】本题考查了列表法或树状图法:利用列表法或树状图法展示所有可能的结果数(注意此题是不放回试验),再从中选出符合事件A的结果数,求出事件A的概率.同时也综合考查了二元一次方程组的相关知识.例3.某中学组织网络安全知识竞赛活动,其中七年级6个班组每班参赛人数相同,学校对该年级的获奖人数进行统计,得到每班平均获奖15人,并制作成如图所示不完整的折线统计图.(1)请将折线统计图补充完整,并直接写出该年级获奖人数最多的班级是班;(2)若二班获奖人数占班级参赛人数的32%,则全年级参赛人数是人;(3)若该年级并列第一名有男、女同学各2名,从中随机选取2名参加市级比赛,请你用列表法或画树状图的方法求参加市级比赛的两位同学恰好是1男1女的概率.【知识点】线统计图,用树状图或列表法求概率【数学思想】数形结合【解题分析】(1)共有15×6=90人获奖,然后用90分别减去其他5个班的获奖人数即可得到三班获奖人数,然后将折线统计图补充完整,并且可得到四班有17人获奖,获奖人数最多;(2)先计算出二班参赛人数,然后乘以6即可得到全年级参赛人数;(3)先画树状图展示所有12种等可能的结果数,再找出恰好是1男1女所占的结果数,然后根据概率公式求解.【解题过程】解:(1)三班获奖人数=6×15﹣14﹣16﹣17﹣15﹣15=13,折线统计图如图,该年级获奖人数最多的班级为四班; (2)二班参赛人数=16÷32%=50(人), 所以全年级参赛人数=6×50=300(人); (3)根据题意列表为:共有12∴P (恰好是1男1女)=128=32. 【思路点拨】本题考查了折线统计图:折线图是用一个单位表示一定的数量,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.也考查了列表法与树状图法.第25章 本章检测题(肖莲琴)一、选择题(每小题4分,共48分)1.“抛一枚均匀硬币,落地后正面朝上”这一事件是( )A .必然事件B .随机事件C .确定事件D .不可能事件 【知识点】随机事件【解题过程】抛一枚均匀硬币,落地后有可能正面朝上、也有可能反面朝上,因此是随机事件 【思路点拨】本题考查了随机事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件. 【答案】B2.下列事件中属于不可能事件的是( ) A .某投篮高手投篮一次就进球B.打开电视机,正在播放世界杯足球比赛C.掷一次骰子,向上的一面出现的点数不大于6D.在一个标准大气压下,90℃的水会沸腾【知识点】不可能事件【解题过程】A.是随机事件,选项错误;B.是随机事件,选项错误;C.是必然事件,选项错误;D.正确.【思路点拨】本题考查了不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.【答案】D3.下列说法中,正确的是()A.不可能事件发生的概率为01B.随机事件发生的概率为2C.概率很小的事件不会发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【知识点】概率的意义【解题过程】A.不可能事件发生的概率为0,所以A选项正确;B.随机事件发生的概率在0与1之间,所以B选项错误;C.概率很小的事件不是不可能发生,而是发生的机会较小,所以C选项错误;D.投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D选项错误.【思路点拨】本题考查了概率的意义:一般地,对于随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A的概率,记为P(A);概率是对事件发生可能性大小的量的表现.必然发生的事件的概率P(A)=1;不可能事件的概率P(A)=0;随机事件的概率P(A)在0与1之间.【答案】A4.如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是()A .61 B .41 C .31 D .21【知识点】概率的计算【解题过程】∵有6张扑克牌,从中随机抽取一张,点数为偶数的有3种情况, ∴从中随机抽取一张,点数为偶数的概率是:2163 . 【思路点拨】此题考查了古典概型概率的计算(古典概型的事件满足以下两个条件:①在每一次试验中,可能出现的结果是有限的;②在每一次试验中,各种结果出现的可能性相同):概率=所求情况数与总情况数之比. 【答案】D5.一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相同.从中任意摸出一个球,摸到白球的概率为( ) A .61 B .31 C .21 D .32【知识点】概率的计算【解题过程】1个白球、2个黑球、3个红球一共是1+2+3=6个,从中任意摸出一个球,则摸出的球是白球的概率是1÷6=61. 【思路点拨】此题考查了古典概型概率的计算(古典概型的事件满足以下两个条件:①在每一次试验中,可能出现的结果是有限的;②在每一次试验中,各种结果出现的可能性相同):概率=所求情况数与总情况数之比. 【答案】A6.如图,小红随意在地板上踢毽子,则毽子恰好落在黑色方砖上的概率为( )A .51B .41C .31D .254【知识点】几何概率【解题过程】解:∵黑色方砖的面积为5,所有方砖的面积为20, ∴键子恰落在黑色方砖上的概率=41205 . 【思路点拨】此题考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比. 【答案】B7.转动下列各转盘,指针指向红色区域的概率最大的是( )A .B .C .D .【知识点】几何概率【解题过程】观察四个转盘,A 、B 、C 三个转盘中红色区域的面积均小于整个圆面积的一半,而D 转盘中红色区域的面积均等于整个圆面积的一半,因此指针指向红色区域的概率最大的是D 转盘.【思路点拨】此题考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比. 【答案】D8.某校学生小明每天骑自行车上学时都要经过一个十字路口,该十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为31,遇到黄灯的概率为91,那么他遇到绿灯的概率为( )A .31B .91C .32D .95【知识点】概率的计算【解题过程】由于十字路口只有红、黄、绿三色交通信号灯,因此三种情况的概率之和为1,又∵遇到红灯的概率为31,遇到黄灯的概率为91∴遇到绿灯的概率为1-31-91=95【思路点拨】概率除了可以利用公式可以计算外,也往往利用所有情况的概率之和为1,用1减去其它情况的概率就是所求事件的概率. 【答案】D9.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6,同时投掷这两枚骰子,记下朝上一面所标的数字,那么两个数字之和为9的概率是( )A .31B .61C .91D .121【知识点】用树状图或列表法求两步随机事件的概率 【解题过程】由题意可以列表如下:第一枚 第二枚 1234561 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2)3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3)4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4)5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) 6(1,6) (2,6) (3,6) (4,6) (5,6) (6,6)投掷这两枚骰子,共有36种等可能结果,其中点数之和为9的有(3,6),(4,5),(5,4),(6,3)共4种,所以,所求概率为:41369. 【思路点拨】先画树状图或列表展示36种等可能的结果数,然后找出各事件发生的结果数,即可以计算出该事件的概率. 【答案】C10.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为( ) A .52 B .53 C . 32 D .103【知识点】用树状图或列表法求两步随机事件的概率 【解题过程】画树状图得:∵共有20种等可能的结果,取到的是一个红球、一个白球的有12种情况, ∴取到的是一个红球、一个白球的概率为:532012=. 【思路点拨】先画树状图或列表展示20种等可能的结果数(注意此题是不放回试验),然后找出各事件发生的结果数,即可以计算出该事件的概率. 【答案】B11.如图,有以下3个条件:①AC =AB ,②AB ∥CD ,③∠1=∠2,从这3个条件中任选2个作为题设,另1个作为结论,则组成的命题是真命题的概率是( )A .0B .31C . 21D .1【知识点】概率与几何的综合应用【解题过程】所有等可能的情况有3种,分别为①②⇒③;①③⇒②;②③⇒①,其中组成命题是真命题的情况有:①②⇒③;①③⇒②;②③⇒①,则P=1.【思路点拨】根据题意找出组成命题的所有等可能的情况数,找出组成的命题是真命题的情况数,即可求出所求的概率.其中涉及到平行线的判定与性质;等腰三角形的判定与性质;命题与定理等内容. 【答案】D12.如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB =15,AC =9,BC =12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A .61 B .6π C . 8π D .5π【知识点】概率与几何的综合应用 【数学思想】数形结合【解题过程】∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2, ∴△ABC 为直角三角形, ∴△ABC 的内切圆半径3215912=-+=, ∴S △ABC =AC •BC =×12×9=54,S 圆=9π, ∴小鸟落在花圃上的概率6549ππ=. 【思路点拨】本题的关键是如何得到圆和三角形(猜测是直角三角形,但需注意题目没有直接告诉)的面积.不难发现15、12、9是勾股数,则△ABC 的面积容易得到;而圆的半径可以通过切线长定理求,也可以通过面积法来求. 【答案】B二、填空题(每题4分,共24分)13.小芳掷一枚硬币10次,出现了7次正面朝上,当她抛掷第11次时,出现正面朝上的概率为__________.【知识点】概率与频率的区别【解题过程】掷硬币每次可能出现的结果有两种,且这两种结果出现的可能性一样大,因此不管以前抛掷的结果,再抛掷硬币时,正面朝上的概率始终是21. 【思路点拨】掷一枚硬币10次,出现了7次正面朝上,只能说此时正面朝上的频率为107,但此时抛掷的次数较小,频率没有稳定在概率附近,误差较大,不能将此时的频率误当为概率. 【答案】2114.在一个不透明的口袋中,装有若干个除颜色不同外,其余都相同的小球.如果口袋中装有3个红球且从中随机摸出一个球是红球的概率为51,那么口袋中小球共有_______个.【知识点】概率计算公式的逆用 【解题过程】设小球共有x 个,则315x =,解得:x =15 【思路点拨】已知概率,可以逆用公式求小球的数量. 【答案】1515.在﹣2,﹣1,0,1,2这五个数中任取两数m ,n ,则二次函数n m x y +-=2)(的顶点在坐标轴上的概率为__________.【知识点】概率的计算与二次函数的综合 【解题过程】解:画树状图得:∵一共有20种等可能结果,其中取到0的有8种可能, ∴顶点在坐标轴上的概率为52208=. 【思路点拨】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及坐标轴上的点的情况,再利用概率公式即可求得答案. 【答案】5216.有长度分别为2cm ,3cm ,4cm ,7cm 的四条线段,任取其中三条能组成三角形的概率是__________.【知识点】列树状图求三步事件的概率 【解题过程】由题意可以列树状图如下:274272343747第三条23423247347第二条第一条开始一共有24种等可能结果,其中能组成三角形的有6种, ∴P (能组成三角形)=41246=. 【思路点拨】列表法只能求两步事件的概率,三步及三步以上事件的概率需要用树状图来解决. 【答案】4117.如图,在平面直角坐标系中,点A 1,A 2在x 轴上,点B 1,B 2在y 轴上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以A 1、A 2、B 1、B 2其中的任意两点与点O 为顶点作三角形,所作三角形是等腰三角形的概率是_________.【知识点】列表法与树状图法;等腰三角形的判定【解题过程】解:∵以A 1、A 2、B 1、B 2其中的任意两点与点O 为顶点作三角形, ∴画树状图得:共可以组成4个三角形,所作三角形是等腰三角形只有:△OA 1B 1,△OA 2B 2, 所作三角形是等腰三角形的概率是:2142=. 【思路点拨】根据题意画出树状图,进而得出以A 1、A 2、B 1、B 2其中的任意两点与点O 为顶点作三角形是等腰三角形的情况,求出概率即可. 【答案】21 18.从1-,0,1,2这四个数中,任取两个不同的数分别作为m ,n 的值,恰好使得关于x 的一元二次方程02=-+n mx x 有实数解的概率为 . 【知识点】概率的计算与一元二次方程的综合【解题过程】解:从1-,0,1,2这四个数中,任取两个不同的数分别作为m ,n 的值,所有情况列表如下:m n -1 0 1 2-1(0,-1) (1,-1) (2,-1)(-1,0)(1,0)(2,0)∴一共有12种等可能结果,其中使得一元二次方程02=-+n mx x 有实数解(即042≥+n m )有10种∴ P (一元二次方程02=-+n mx x 有实数解)=651210= 【思路点拨】先画树状图或列表展示36种等可能的结果数,然后找出各事件发生的结果数(即满足042≥+n m 的),即可以计算出该事件的概率. 【答案】65三、解答题(每题8分,共16分) 19.掷一枚均匀的正方体骰子,求 (1)“点数为5”的概率; (2)“点数为偶数”的概率; (3)“点数大于4”的概率; (4)“点数不小于3”的概率 【知识点】等可能试验的概率【解题过程】解:(1)∵一共有6种等可能结果,其中“点数为5”的结果只有1种,∴P (点数为5)=61(2)∵一共有6种等可能结果,其中“点数为偶数”的结果有3种, ∴P (点数为偶数)=2163= (3)∵一共有6种等可能结果,其中“点数大于4”的结果有2种, ∴P (点数大于4)=3162= (4)∵一共有6种等可能结果,其中“点数不小于3”的结果有4种, ∴P (点数不小于3)=3264= 【思路点拨】本题总结果数都是6种,所以关键是找出各事件发生的结果数,即可以计算出该事件的概率,注意“不小于”的含义.【答案】(1)61 (2)21 (3)31 (4)3220.学校有1张NBA 篮球比赛的门票,篮球队员喜羊羊和灰太狼都想获得这张门票,体育老师为他们出了一个主意,方法是:从印有数字1、2、3、4、4、5、6、7、8的9张扑克牌中任取一张,抽到比4大的牌,喜羊羊去;否则,灰太狼去.你认为这种方法对喜羊羊和灰太狼公平吗?请说明理由.如果不公平,请修改规则. 【知识点】等可能试验的概率、修改游戏规则 【解题过程】解:这个游戏不公平,理由如下: ∵一共有9种等可能结果,其中大于4的结果有4种,∴P (喜羊羊去)=94∴P (灰太狼去)=1-94=95 ∴P (喜羊羊去)<P (灰太狼去) 即对喜羊羊不公平修改规则:将印有数字4的牌抽出1张,再从剩下的8张牌里任取一张,抽到比4大的牌,喜羊羊去;否则,灰太狼去.【思路点拨】判断一个游戏是否公平,关键取决于游戏参与者获胜的概率是否相等.若不公平,我们修改游戏规则的目标也是使得游戏参与者获胜的概率变成相等的. 【答案】见上面解题过程四、解答题(每题10分,共40分)21.某篮球运动员进行3分投篮训练结果如下表:(1)计算表格中投篮50次、100次、150次、200次相应的命中频率,并填入表格中; (2)观察表格中的频率变化趋势,估计这个运动员投篮命中的概率是多少? (3)估计这个运动员3分球投篮15次能得多少分? 【知识点】用频率估计概率【解题过程】解:(1)0.5 0.65 0.6 0.6 (2)估计这个运动员投篮命中的概率是0.6(3)∵这个运动员投篮命中的概率是0.6 ∴15次大约能投进15×0.6=9(个) ∴得分估计为9×3=27(分)【思路点拨】观察表格中频率变化的趋势发现,当投篮次数增加时,频率逐渐稳定在0.6的附近,因此可以估计这个运动员投篮命中的概率是0.6. 【答案】见上面解题过程22.一个不透明的的袋中装有红、黄、白三种颜色球共40个,它们除颜色外其它都相同,其中黄球个数比白球个数的2倍少5个.已知:从袋中摸出一个球是红球的概率是310. (1)求袋中红球的个数;(2)从袋中摸出一个球是白球的概率;(3)取走10个球(其中有4个黄球)后,求从剩余的球中摸出一个球是黄球的概率. 【知识点】等可能事件的概率、方程【解题过程】解:(1)∵从袋中摸出一个球是红球的概率是310∴红球个数为:1210340=⨯(个) (2)设袋中白球个数为x ,则黄球个数为52-x ,由题意得405212=-++x x 解得:11=x ∴白球数量为11个 ∴摸到白球的概率为4011 (3)由(2)问知,白球数量为11个 ∴黄球数量是17个又∵取走了10个球,其中有4个黄球 ∴黄球有13个,总球数是30个 ∴摸到黄球的概率是3013 【思路点拨】(1)已知概率,可以逆用公式求红球的数量; (2)根据题意,先列方程求出白球的数量,再求摸到白球的概率;(3)分别计算取走了10个球以后的总球数和黄球数,再求摸到黄球的概率. 【答案】(1)12个 (2)4011 (3)301323.某校初三(1)班部分同学接受一次内容为“最适合自己的考前减压方式”的调查活动,收集整理数据后,老师将减压方式分为五类,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题.(1)初三(1)班接受调查的同学共有多少名;(2)补全条形统计图,并计算扇形统计图中的“体育活动C ”所对应的圆心角度数; (3)若喜欢“交流谈心”的5名同学中有三名男生和两名女生;老师想从5名同学中任选两名同学进行交流,请用树状图或列表法分析选取的两名同学都是女生的概率.【知识点】列表法与树状图法;扇形统计图;条形统计图. 【数学思想】数形结合 【解题过程】解:(1)由题意可得总人数为50%2010=÷名; (2)听音乐的人数为1285151050=----名, 补全统计图得:“体育活动C ”所对应的圆心角度数=︒=︒⨯1083605015(3)画树状图得:∵共有20种等可能的结果,选出都是女生的有2种情况, ∴选取的两名同学都是女生的概率=101202=. 【思路点拨】(1)利用“享受美食”的人数除以所占的百分比计算即可得解;(2)求出听音乐的人数即可补全条形统计图;由C 的人数即可得到所对应的圆心角度数; (3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选出两名同学都是女生的情况,再利用概率公式即可求得答案. 【答案】见上面解题过程24.有四张正面分别标有数字2,1,3-,4-的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数字记为m ,再随机地摸取一张,将卡片上的数字记为n . (1)请画出树状图并写出),(n m 所有可能的结果;(2)求所选出的m ,n 能使一次函数n mx y +=的图象经过第二、三、四象限的概率. 【知识点】列表法与树状图法;一次函数图象与系数的关系. 【解题过程】解:(1)画树状图得:则),(n m 共有12种等可能的结果:)1,2(,)3,2(-,)4,2(-,)2,1(,)3,1(-,)4,1(-,)2,3(-,)1,3(-,)4,3(--,)2,4(-,)1,4(-,)3,4(--;(2)∵所选出的m ,n 能使一次函数n mx y +=的图象经过第二、三四象限的有:)4,3(--,)3,4(--,∴所选出的m ,n 能使一次函数n mx y +=的图象经过第二、三四象限的概率为:61122=男生女生【思路点拨】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)首先可得所选出的m ,n 能使一次函数n mx y +=的图象经过第二、三四象限的有:)4,3(--,)3,4(--,再利用概率公式即可求得答案. 【答案】见上面解题过程五、解答题(第25题10分,第26题12分,共22分)25.一学期结束后,九年级对学生进行了综合素质评定.为了解年级的评定情况,现对九年级某班的学生进行了评定等级的调查,绘制了如下男女生等级情况折线统计图和全班等级情况扇形统计图.(1)直接写出该班的学生人数并补全女生等级评定的折线统计图;(2)根据调查情况,该班班主任从评定等级为合格和A 的学生中各选1名学生进行交流,了解他们的想法.请用树状图或表格求出刚好选中一名男生和一名女生的概率. 【知识点】列表法与树状图法;折线统计图;扇形统计图. 【数学思想】数形结合【解题过程】解:(1)被抽查学生人数=40%5.7)21(=÷+(人)女生获得2A 等级的有5人;获得3A 等级的有2人,获得4A 等级的有10人.补全统计图如图所示.男生女生(2)列表如下:种不同的可能,其中,恰好抽到一男一女的共有5种.∴95( 一男一女)P【思路点拨】(1)利用“合格”的男女生人数和除以“合格”人数所占的百分比计算即可得解;然后分别计算出2A 、3A 、4A 的男女生人数和,将这个人数和减去对应的男生的人数就能得到对应项目女生的人数,再补全折线统计图.(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与刚好选中一名男生和一名女生的结果,再利用概率公式即可求得答案. 【答案】见上面解题过程26.现在初中课本里所学习的概率计算问题只有以下类型:第一类是可以列举有限个等可能发生的结果的概率计算问题(一步试验直接列举,两步以上的试验可以借助树状图或表格列举),比如掷一枚均匀硬币的试验;第二类是用试验或者模拟试验的数据计算频率,并用频率估计概率的概率计算问题,比如掷图钉的试验;解决概率计算问题,可以直接利用模型,也可以转化后再利用模型. 请解决以下问题:(1)如图,类似课本的一个寻宝游戏,若宝物随机藏在某一块砖下(图中每一块砖除颜色外完全相同),则宝物藏在阴影砖下的概率是多少?(2)在1~9中随机选取3个整数,若以这3个整数为边长构成三角形的情况如下表:请你根据表中数据,估计从1~9中随机选取3个整数,以这3个整数为边长构成钝角三角形的概率是多少?(精确到百分位)【知识点】概率、频率的关系,利用频率估计概率【解题过程】解:(1)所有等可能的结果共有16种,藏在阴影砖下的结果共有4种,所以P (宝物藏在阴影砖下)=41164=. (2)各组实验中钝角三角形的频率依次是:第1组试验730.24300≈; 第2组试验 1550.26600≈;第3组试验 1910.21900≈; 第4组试验 2580.221200≈ ;第5组试验 3310.221500≈.所以估计P (构成钝角三角形)=0.22.【思路点拨】(1)根据列出条件所有等可能的结果和藏在阴影砖下的结果,得出结果.(2)根据概率和频率的关系,当重复试验的次数逐渐增大时,频率呈现出稳定性,逐渐稳定于某个常数,这个常数就是事件的概率.所以依次计算各组实验中钝角三角形的频率,估计构成钝角三角形的概率. 【答案】(1)41(2)0.22。

相关文档
最新文档