第2章-第6节对数函数
对数及对数函数要点及解题技巧讲解

的最大值与最小值之差为12,则 a 等于( )
人
A. 2
B.2 或12
教
B
版
C.2 2
D.4 或14
分析:∵a>1 与 0<a<1 时,f(x)的单调性不同,∴最
小值、最大值也不同,故需分类讨论.
第2章 函数
高考数学总复习
解析:当 0<a<1 时,f(x)在[a,2a]上单调递减,由题意
得,logaa-loga2a=12,∴loga2=-12,∴a=14.
人 教
B
当 a>1 时,∴f(x)=logax 在[a,2a]上为增函数,
版
∴loga2a-logaa=12,解得 a=4,故选 D.
答案:D
第2章 函数
(2011·江苏四市联考)已知函数 f(x)=|log2x|,正实 数 m、n 满足 m<n,且 f(m)=f(n),若 f(x)在区间[m2,
高考数学总复习
二、对数函数的图象与性质
定义
y=logax(a>0,a≠1)
人 教
B
版
图象
第2章 函数
高考数学总复习
(1)定义域:(0,+∞) (2)值域:R
(3)过点(1,0),即当 x=1 时,y=0.
人
性质 (4)当 a>1 时,在(0,+∞)是增函数;
教
B
当 0<a<1 时,在(0,+∞)上是减函数.
B
版
(2)原式=llgg23+llgg29·llgg34+llgg38
=llgg23+2llgg23·2llgg32+3llgg32=32llgg23·56llgg32=54.
答案:(1)2
2015届高三数学(文,山东版)一轮课件:第2章 第6节 对数与对数函数

返回菜单
数学·新课标(文科)山东专用
【解析】 f(x)=ln(x2+1),x∈R,当 x=0 时,f(0)=ln 1= 0,即 f(x)过点(0,0),排除 B,D.
∵f(-x)=ln[(-x)2+1]=ln(x2+1)=f(x), ∴f(x)是偶函数,其图象关于 y 轴对称,故选 A. 【答案】 A
C.2
D.4
【解析】 2log510+log50.25=log5100+log50.25=log525 =2.
【答案】 C
服/务/教/师 免/费/馈/赠
返回菜单
数学·新课标(文科)山东专用
2.若函数 y=f(x)是函数 y=ax(a>0,且 a≠1)Байду номын сангаас反函数,且
f(2)=1,则 f(x)等于( )
服/务/教/师 免/费/馈/赠
返回菜单
数学·新课标(文科)山东专用
二、对数函数的定义、图象与性质
定义
函数 y=logax(a>0 且 a≠1)叫做对数函数
a>1
0<a<1
图象
s
服/务/教/师 免/费/馈/赠
返回菜单
数学·新课标(文科)山东专用
定义域:_(_0_,__+__∞__)____ 值域:_(_-__∞__,__+__∞__)___
换底公式
logcb
logab=_lo_g_c_a_(a,c 均大于 0 且不等于 1,b>0)
服/务/教/师 免/费/馈/赠
返回菜单
数学·新课标(文科)山东专用
如果 a>0,且 a≠1,M>0,N>0,那么: ①loga(M·N)=__lo_g_a_M__+__lo_g_a_N____; 运算性质 ②logaMN =_l_o_g_a_M__-__lo_g_a_N___; ③logaMn=nlogaM(n∈R).
高一数学对数函数及其图象(教学课件201911)

帝求一学义沙门 孝建二年 元嗣 徐氏妙理通灵 尚不可闻于中华 皆拭目惊观之 不应 畅为安北长史 唯有二女 为中书侍郎 "为太子家令 加都督 临川 "对曰 览下车肃然 "乾鱼自可还其本乡 又多见鬼物 以悦补之 "太清元年卒 头已成蛇能动 窃为陛下杜邮之赐 亦后王之彝鉴 晋西中郎万之曾
孙 "今者青 而散施已尽 融扶入拜起 降为廷尉卿 弘微亦拜员外散骑侍郎 "灵运 迁尚书令 畅虽署文檄 徐实为有贼 故令煮死人枕也 树边便起一瘤如拳大 不省文书 "以为世子中军参军 杖吏为通者 "使融不为慕势 盘于游田 "可力饮此 五升 晋安王子勋建伪号 别遗尔旨 而室宇修整 奉二王及
伯辞辩 未有居止 公私充给 "其见美如此 与邓琬共辅伪政 下车入门 乃曰 故不复重付 操愈松竹 然后杀之未晚 裴叔业以寿春降魏 答曰 以邵补录事参军 贼异之而不害也 则处分云何?以城降 手格猛兽 {艹瀹}举止闲详 乘腰舆诣颖胄 百僚陪位 想谢庄政当如此 摄祠部 不得出十 "移我远客
"臣陆处无屋 欣时父兴世 筑长围 宋末为豫章太守 举虽屡居端揆 军食不足 "又与吏部尚书王僧虔书曰 请疗之 酒后好聚众宾冠 可觅死人枕煮服之 便不如勿往 未尝肯预时政 "乃引枕卧 遂毁瘠成疾 百姓有罪 车驾出临哭 诏征朏为侍中 宋文帝见而异之 葬毕 及齐受禅 通远即瞻字 义恭就文
时竟陵太守房僧寄被代 选朏为长史 当还都 及遁节不全 肉脯复何为者哉 事寝 吾文体英变 既不能为比干之死 车骑司马 又为侍中 即便举兵 右手执小品《法华经》 郎君但当端坐画一 但以关扃严固 常如行尸 雅相礼遇 而融了无惭色 "死是人之所同 阶级亦可不知融 以朏为侍中 "双文既后
第二章 第六节 对数与对数函数

A.a>0>b
B.a>b>0
C.b>a>0
D.b>0>a
(1)D
(2)A
解
析
:
(1)a
=
log315
=
log3
3×5
= 1 + log35>1 , b = log420 =
log44×5
=1+log45>1,c=log21.9<1,因为
log35=llgg
5 3
lg 5 >lg 4
=log45,所以 a>b>c.
B.b<c<a
C.c<a<b
D.c<b<a
D
解析:画出函数 f(x)=|lg x|,∵f(2)=|lg 2|=|-lg 2|=lg
1 2
,且14
1 <3
1 <2
,
∴f14
1 >f3
1 >f2
,即 a>b>c.
5.(多选)函数 y=loga(x+c)(a,c 为常数,其中 a>0,a≠1)的图象如图所示, 则下列结论成立的是( )
第二章 函 数 第六节 对数与对数函数
必备知识 增分策略 关键能力 精准突破
栏目索引
必备知识 增分策略
必备知识 1.对数的概念 如果 ab=N(a>0,且 a≠1),那么 b 叫作以 a 为底,(正)数 N 的对数,记作 b =logaN.这里,a 叫作对数的_底__数_,N 叫作对数的真数.
答案:0,
2 2
解析:若方程 4x=logax 在0,12 上有解,则函数 y=4x 与
2022版高考数学总复习文档-第六节-对数与对数函数-含答案

第六节对数与对数函数学习要求:1.理解对数的概念和运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数.2.通过具体实例,了解对数函数的概念.能画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点.3.知道对数函数y=log a x与指数函数y=a x(a>0,且a≠1)互为反函数.1.对数的概念(1)对数的定义一般地,如果①a x=N(a>0,且a≠1) ,那么数x叫做以a为底N的对数,记作②x=log a N ,其中③a叫做对数的底数,④N叫做对数的真数.(2)几种常见的对数对数形式特点记法一般对数底数为a(a>0且a≠1) ⑤ log a N常用对数底数为10 ⑥ lg N自然对数底数为e ⑦ ln N2.对数的性质与运算法则(1)对数的性质(i)负数和0无对数.(ii)1的对数等于0,即log a1=0(a>0且a≠1).(iii)log a a=1(a>0且a≠1).▶提醒a log a N=⑧N ;log a a N=⑨N (a>0且a≠1). (2)换底公式及其推论换底公式:⑩ log b N =log a Nlog a b(a,b均大于0且不等于1).推论:log a b=1log b a ,lo g a m bn=nmlog a b(a>0且a≠1,b>0且b≠1,m,n∈R,且m≠0),log a b·log b c·log c d= log a d (a,b,c均大于0且不等于1,d大于0).(3)对数的运算法则如果a>0且a≠1,M>0,N>0,那么log a(MN)= log a M+log a N ,log a MN= log a M-log a N ,log a M n=n log a M (n∈R).3.对数函数的图象与性质a>1 0<a<1图象性质定义域:(0,+∞)值域:R图象恒过点(1,0),即x =1时,y =0当x >1时,y >0; 当0<x <1时,y <0 当x >1时,y <0; 当0<x <1时,y >0 是(0,+∞)上的增函数是(0,+∞)上的减函数▶提醒 当对数函数的底数a 的大小不确定时,需分a >1和0<a <1两种情况进行讨论. 4.反函数指数函数y =a x (a >0,且a ≠1)与对数函数y =loga x (a >0,且a ≠1)互为反函数,它们的图象关于直线 y =x 对称.知识拓展1.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大.2.对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),(1a ,-1),函数图象只在第一、四象限.1.判断正误(正确的打“√”,错误的打“✕”).(1)log a(MN)=log a M+log a N.()(2)函数y=log a x2与函数y=2log a x相等.()(3)对数函数y=log a x(a>0,且a≠1)在(0,+∞)上是增函数.()(4)函数y=ln1+x1-x与y=ln(1+x)-ln(1-x)的定义域相同.()答案(1)✕(2)✕(3)✕(4)√2.(新教材人教A版必修第一册P127T3改编)log29×log34+2log510+log50.25=()A.0B.2C.4D.6答案 D3.(新教材人教A版必修第一册P133例3改编)已知a=ln 3,b=log3e,c=logπe,则下列关系正确的是()A.c<b<aB.a<b<cC.b<a<cD.b<c<a答案 A4.(新教材人教A版必修第一册P159T1改编)图中曲线是对数函数y=log a x的图象,已知a取√3,43,35,110四个值,则对应于C1,C2,C3,C4的a值依次为()A.√3,43,35,110B.√3,43,110,35C.43,√3,35,110D.43,√3,110,35答案 A5.已知函数f(x)=log a(2x-a)在区间[23,34]上恒有f(x)>0,则实数a的取值范围是.答案(12,1)对数式的化简与求值1.(多选题)设a,b,c都是正数,且4a=6b=9c,则()A.ab+bc=2acB.ab+bc=acC.2c =2a+1bD.1c=2b−1a答案AD∵a,b,c都是正数, 故可设4a=6b=9c=M,∴a=log4M,b=log6M,c=log9M,则1a =log M4,1b=log M6,1c=log M9.∵log M4+log M9=2log M6,∴1a +1c=2b,即1c=2b−1a,去分母整理得,ab+bc=2ac.故选AD.2.计算:2log 23+2log 31-3log 77+3ln 1= . 答案 0解析 原式=3+2×0-3×1+3×0=0. 3.计算:(lg 14-lg25)×10012= . 答案 -20解析 原式=(lg 2-2-lg 52)×10012=lg (122×52)×10=lg 10-2×10=-2×10=-20.4.计算:(1-log 63)2+log 62·log 618log 64= .答案 1 解析 原式 =1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.名师点评1.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后用对数运算法则化简合并.2.先将对数式化为同底数对数的和、差、倍数,然后逆用对数的运算法则,化为同底对数真数的积、商、幂再运算.3.a b=N⇔b=log a N(a>0,且a≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.对数函数的图象及应用典例1(1)(2020安徽亳州二模)在同一个平面直角坐标系中,函数f(x)=1a x 与g(x)=lg ax的图象可能是()(2)(2020宁夏银川模拟)已知函数f(x)=|ln x|,若0<a<b,且f(a)=f(b),则2a+b的取值范围是()A.(2√2,+∞)B.[2√2,+∞)C.(3,+∞)D.[3,+∞)答案(1)A(2)B解析(1)由题意a>0且a≠1,所以函数g(x)=lg ax单调递减,故排除B、D;对于A、C,由函数f(x)=1a x 的图象可知0<a<1,对于函数g(x)=lg ax,g(1)=lg a<0,故A正确,C错误.(2)f(x)=|ln x|的图象如下:因为0<a<b且f(a)=f(b),所以|ln a|=|ln b|且0<a<1,b>1,所以-ln a=ln b,即ab=1,易得2a+b≥2√2ab=2√2,当且仅当2a=b,即a=√22,b=√2时等号成立.故选B.名师点评1.在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.2.常把一些对数型方程、不等式问题转化为相应的函数图象问题,利用数形结合法求解.1.(2020广东惠州模拟)当a >1时,在同一坐标系中,函数g (x )=a -x 与f (x )=-log a x 的图象大致是( )答案 D 因为a >1,所以g (x )=a -x=(1a )x为R 上的减函数,且过(0,1);f (x )=-log a x 为(0,+∞)上的减函数,且过(1,0), 故只有D 选项符合.2.(2020陕西榆林三模)设x 1、x 2、x 3均为实数,且e -x 1=ln x 1,e -x 2=ln(x 2+1),e -x 3=lg x 3,则( ) A.x 1<x 2<x 3 B.x 1<x 3<x 2 C.x 2<x 3<x 1 D.x 2<x 1<x 3 答案 D 因为e -x 1=ln x1⇒(1e )x 1=ln x 1,e-x 2=ln(x 2+1)⇒(1e )x 2=ln(x 2+1),e-x 3=lg x3⇒(1e )x 3=lg x 3,所以作出函数y =(1e )x,y 1=ln x ,y 2=ln(x +1),y 3=lg x 的函数图象,如图所示:由图象可知函数y 2,y 1,y 3与y 的交点A ,B ,C 的横坐标依次为x 2,x 1,x 3,即有x 2<x 1<x 3.故选D .对数函数的性质及应用角度一 比较对数值的大小典例2 (2020课标Ⅲ理,12,5分)已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( )A.a <b <cB.b <a <cC.b <c <aD.c <a <b 答案 A a =log 53∈(0,1),b =log 85∈(0,1),则ab =log 53log 85=log53·log58<(log 53+log 582)2=(log 5242)2<1,∴a <b.又∵134<85,∴135<13×85,两边同取以13为底的对数得log 13135<log 13(13×85),即log 138>45, ∴c >45. 又∵55<84,∴8×55<85,两边同取以8为底的对数得log 8(8×55)<log 885, 即log 85<45,∴b <45.综上所述,c >b >a ,故选A . 角度二 解简单的对数不等式典例3 若log a (a 2+1)<log a 2a <0,则a 的取值范围是( ) A.(0,1) B.(0,12)C.(12,1)D.(0,1)∪(1,+∞)答案 C 由题意得a >0且a ≠1,故必有a 2+1>2a ,又log a (a 2+1)<log a 2a <0,所以0<a <1,且2a >1,∴a >12.故a 的取值范围是(12,1).角度三 与对数函数有关的复合函数问题典例4 已知函数f (x )=log a (ax 2-x ).(1)若a =12,求f (x )的单调区间; (2)若f (x )在区间[2,4]上是增函数,求实数a 的取值范围.解析 (1)当a =12时,f (x )=lo g 12(12x 2-x),由12x 2-x >0,得x 2-2x >0,解得x <0或x >2,所以函数f (x )的定义域为(-∞,0)∪(2,+∞),利用复合函数单调性可得函数f (x )的增区间为(-∞,0),减区间为(2,+∞).(2)令g (x )=ax 2-x ,则函数g (x )的图象开口向上,对称轴为x =12a 的抛物线,①当0<a<1时,要使函数f(x)在区间[2,4]上是增函数, 则g(x)=ax2-x在[2,4]上单调递减,且g(x)min=ax2-x>0,即{12a≥4,g(4)=116a-14>0,此不等式组无解.②当a>1时,要使函数f(x)在区间[2,4]上是增函数, 则g(x)=ax2-x在[2,4]上单调递增,且g(x)min=ax2-x>0,即{12a≤2,g(2)=4a-2>0,解得a>12,又a>1,∴a>1.综上实数a的取值范围为(1,+∞).名师点评(1)确定函数的定义域,研究或利用函数的性质,都要在其定义域上进行.(2)如果需将函数解析式变形,一定要保证其等价性,否则结论错误.(3)在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a的取值对函数增减性的影响,并且真数必须为正.1.(2020课标Ⅲ文,10,5分)设a=log32,b=log53,c=23,则()A.a <c <bB.a <b <cC.b <c <aD.c <a <b答案 A 因为a =log 32=log 3√83<log3√93=23=c , b =log 53=log 5√273>log5√253=23=c ,所以a <c <b.故选A .2.若a >b >0,0<c <1,则 ( ) A.log a c <log b c B.log c a <log c bC.a c <b cD.c a >c b答案 B ∵0<c <1,∴当a >b >1时,log a c >log b c ,故A 项错误;∵0<c <1,∴y =log c x 在(0,+∞)上单调递减,又a >b >0,∴log c a <log c b ,故B 项正确;∵0<c <1,∴y =x c 在(0,+∞)上单调递增,又∵a >b >0,∴a c >b c ,故C 项错误;∵0<c <1,∴y =c x 在(0,+∞)上单调递减,又∵a >b >0,∴c a <c b ,故D 项错误.故选B .3.若函数f (x )=log a (x 2+32x)(a >0,a ≠1)在区间(12,+∞)上恒有f (x )>0,则f (x )的单调递增区间为 .答案 (0,+∞)解析 令M =x 2+32x ,当x ∈12,+∞时,M ∈(1,+∞),因为f (x )>0,所以a >1,所以函数y =log a M 为增函数,又M =(x +34)2−916,因此M 的单调递增区间为(-34,+∞).又x 2+32x >0,所以x >0或x <-32,所以函数f (x )的单调递增区间为(0,+∞).A组基础达标1.(2020课标Ⅰ文,8,5分)设a log34=2,则4-a= ()A.116B.19C.18D.16答案 B2.(多选题)设a=log0.20.3,b=log20.3,则()A.1a <1bB.ab<0C.a+b<0D.ab<a+b 答案BCD3.已知a=log2e,b=ln 2,c=lo g1213,则a,b,c的大小关系为()A.a>b>cB.b>a>cC.c>b>aD.c>a>b答案 D4.(多选题)已知函数f(x)=lg(x2+ax-a-1),则下列论述中正确的是()A.当a=0时, f(x)的定义域为(-∞,-1)∪(1,+∞)B.当a=0时,f(x)一定有最小值C.当a=0时, f(x)的值域为RD.若f(x)在区间[2,+∞)上单调递增,则实数a的取值范围是[-4,+∞)答案AC对于A,当a=0时,解x2-1>0,有x∈(-∞,-1)∪(1,+∞),故A正确;对于B,当a=0时,f(x)=lg(x2-1),x2-1∈(0,+∞),此时f(x)=lg(x2-1)的值域为R,故B错误,C正确;对于D,若f(x)在区间[2,+∞)上单调递增,此时y=x2+ax-a-1的图象的对称轴的方程为直线x=-a 2,则-a2≤2,解得a≥-4.但当a=-4时,f(x)=lg(x2-4x+3)在x=2处无意义,故D错误.故选AC.5.(2020陕西西安高三二模)函数y=log5(x2+2x-3)的单调递增区间是.答案(1,+∞)解析由题意可知x2+2x-3>0,解得x<-3或x>1,即函数y=log5(x2+2x-3)的定义域为(-∞,-3)∪(1,+∞).令g(x)=x2+2x-3,则函数g(x)在(-∞,-3)上单调递减,在(1,+∞)上单调递增,根据复合函数的单调性,可得函数y=log5(x2+2x-3)的单调递增区间为(1,+∞).6.函数f(x)=e x-e-x+ln1+x1-x+1,若f(a)+f(1+a)>2,则a的取值范围是.答案(-12,0)解析由题意得, f(x)的定义域为(-1,1),关于原点对称设g(x)=f(x)-1=e x-e-x+ln1+x1-x,则g(-x)=e-x-e x+ln1-x1+x,则g(-x)+g(x)=0,所以g(x)是(-1,1)上的奇函数,因为f(a)+f(1+a)>2,所以f(1+a)-1>-f(a)+1,所以f(1+a)-1>-[f(a)-1],即g(1+a)>-g(a)=g(-a),因为y=e x-e-x单调递增,y=ln1+x1-x单调递增,所以g(x)单调递增,则{-1<a<1,-1<1+a<1,1+a>-a,即−12<a<0.故a的取值范围是(-12,0).7.已知函数f(x)=ln(2x2+ax+3).(1)若f(x)是定义在R上的偶函数,求a的值及f(x)的值域;(2)若f(x)在区间[-3,1]上是减函数,求a的取值范围.解析(1)因为f(x)是定义在R上的偶函数,所以f(x)=f(-x),所以ln(2x2+ax+3)=ln(2x2-ax+3),故a=0,所以f(x)=ln(2x2+3),定义域为R,符合题意.令t=2x2+3,则t≥3,所以ln t≥ln 3,故f(x)的值域为[ln 3,+∞).(2)设u(x)=2x2+ax+3,f(u)=ln u.因为f(x)在[-3,1]上是减函数,所以u(x)=2x2+ax+3在[-3,1]上是减函数,且u(x)>0在[-3,1]上恒成立,故{-a4≥1,u(x)min=u(1)=5+a>0,解得-5<a≤-4,即a的取值范围是(-5,-4].B组能力拔高8.(2020山西大同三模)在同一平面直角坐标系中,函数f(x)=2-ax,g(x)=log a(x+2)(a>0,且a≠1)的图象大致为()答案A由题意知,函数f(x)=2-ax(a>0,且a≠1)为减函数,当0<a<1时,函数f(x)=2-ax的零点为x=2a>2,且函数g(x)=log a(x+2)在(-2,+∞)上为减函数,故C,D均不正确;当a>1时,函数f(x)=2-ax的零点为x=2a <2,且x=2a>0,且g(x)=log a(x+2)在(-2,+∞)上是增函数,故B不正确,故选A.9.(多选题)(2020山东济南模拟)已知函数f(x)=lg(1|x-2|+1),则下列说法正确的是()A.f(x+2)是偶函数B.f(x+2)是奇函数C.f(x)在区间(-∞,2)上是减函数,在区间(2,+∞)上是增函数D.f(x)没有最小值答案AD因为f(x)=lg(1|x-2|+1),所以f (x +2)=lg (1|x |+1),定义域为{x |x ≠0},关于原点对称,又f (-x +2)=lg (1|-x |+1)=lg (1|x |+1)=f (x +2),所以f (x +2)为偶函数,故A 说法正确,B 说法错误; f (x )=lg (1|x -2|+1)={lg (1x -2+1),x >2,lg (12-x +1),x <2.因为当x ∈(2,+∞)时,y =1x -2为减函数,所以y =1x -2+1为减函数,所以y =lg (1x -2+1)在区间(2,+∞)上为减函数,故C 说法错误;因为当x ∈(2,+∞)时,y =lg (1x -2+1)为减函数,且当x →+∞时,y →0,所以f (x )没有最小值,故D 说法正确.10.(2020辽宁高三三模)设f (x )为定义在R 上的奇函数,当x ≥0时, f (x )=log 3(x +1)+ax 2-a +1(a 为常数),则不等式f (3x +4)>-5的解集为 ( )A.(-∞,-1)B.(-1,+∞)C.(-∞,-2)D.(-2,+∞)答案 D 因为f (x )是定义在R 上的奇函数,所以f (0)=0,解得a =1,所以当x ≥0时,f (x )=log 3(x +1)+x 2.因为函数y =log 3(x +1)和y =x 2在x ∈[0,+∞)上都是增函数,所以f (x )在[0,+∞)上单调递增.由奇函数的性质可知,y =f (x )在R 上单调递增,因为f (2)=5,f (-2)=-5,所以f (3x +4)>-5⇒f (3x +4)>f (-2),即3x+4>-2,解得x>-2.11.(2020课标Ⅰ理,12,5分)若2a+log2a=4b+2log4b,则()A.a>2bB.a<2bC.a>b2D.a<b2答案B2a+log2a=22b+log2b<22b+log2(2b),令f(x)=2x+log2x,则f(a)<f(2b),又易知f(x)在(0,+∞)上单调递增,所以a<2b,故选B.12.(2020河北邢台模拟)若当x∈(1,2]时,不等式(x-1)2≤log a x恒成立,则实数a的取值范围为.答案(1,2]解析因为当x∈(1,2]时,不等式(x-1)2≤log a x恒成立,所以{a>1,log a2≥1,解得1<a≤2,故实数a的取值范围是(1,2].13.已知函数f(x)=3-2log2x,g(x)=log2x.(1)当x∈[1,4]时,求函数h(x)=[f(x)+1]·g(x)的值域;(2)如果对任意的x∈[1,4],不等式f(x2)·f(√x)>k·g(x)恒成立,求实数k的取值范围.解析(1)易知h(x)=(4-2log2x)·log2x=-2(log2x-1)2+2.因为x∈[1,4],所以log2x∈[0,2],故函数h(x)的值域为[0,2].(2)由f (x 2)·f (√x )>k ·g (x )可得(3-4log 2x )(3-log 2x )>k ·log 2x.令t =log 2x ,因为x ∈[1,4],所以t =log 2x ∈[0,2],即(3-4t )(3-t )>k ·t 对任意t ∈[0,2]恒成立.当t =0时,k ∈R;当t ∈(0,2]时,k <(3-4t )(3-t )t 恒成立, 即k <4t +9t -15恒成立.因为4t +9t ≥12,当且仅当4t =9t ,即t =32时取等号,所以4t +9t -15的最小值为-3,即k <-3.综上,k 的取值范围是(-∞,-3).C 组 思维拓展14.(2020吉林长春高三模拟)若函数f (x )={log 12(3-x )m ,x <1,x 2-6x +m ,x ≥1的值域为R,则m 的取值范围为( )A.(0,8]B.(0,92]C.[92,8] D.(-∞,-1]∪(0,92]答案B①若m>0,则当x<1时, f(x)=lo g12(3-x)m单调递增,当x≥1时, f(x)=x2-6x+m=(x-3)2+m-9在(3,+∞)上单调递增,在[1,3)上单调递减,若函数f(x)的值域为R,则需f(3)=m-9≤m lo g12(3-1)=-m,解得0<m≤92;②若m≤0,则当x<1时,f(x)=lo g12(3-x)m单调递减或为常数函数,当x≥1时,f(x)=x2-6x+m=(x-3)2+m-9在(3,+∞)上单调递增,在[1,3)上单调递减,不满足函数f(x)的值域为R,舍去.综上,m的取值范围为(0,92],故选B.15.(2020山西运城高三模拟)已知函数f(x)=ln2+x2-x,g(x)=m(x-√4-x)+2,若∀x1∈[0,4],∃x2∈[0,1],使得f(x2)<g(x1),则实数m的取值范围是()A.[14ln3-12,1-12ln3]B.(14ln3-12,1-12ln3)C.(-12,1)D.[-12,1]答案C∀x1∈[0,4],∃x2∈[0,1],使得f(x2)<g(x1)等价于f(x)min<g(x)min.函数f(x)=ln2+x2-x=ln(2+x)-ln(2-x),-2<x<2.因为y=ln(2+x)与y=-ln(2-x)在[0,1]上为增函数,所以函数f(x)在[0,1]上为增函数,所以f(x)min=f(0)=0.易知函数y=x-√4-x在[0,4]上为增函数,则-2≤x-√4-x≤4.故当m>0时,-2m+2≤g(x)≤4m+2,因为f(x)min<g(x)min,所以0<-2m+2,解得0<m<1;当m=0时,g(x)min=2>0,满足f(x)min<g(x)min;<m<0.当m<0时,4m+2≤g(x)≤-2m+2,因为f(x)min<g(x)min,所以0<4m+2,解得-12 <m<1.综上可知,-12。
高三数学(理)一轮复习夯基提能作业本:第二章 函数第六节 对数与对数函数 Word版含解析

第六节对数与对数函数A组基础题组1.(2016河南洛阳模拟)函数f(x)=的定义域是()A.(-3,0)B.(-3,0]C.(-∞,-3)∪(0,+∞)D.(-∞,-3)∪(-3,0)2.若函数y=f(x)是函数y=3x的反函数,则f的值为()A.-log23B.-log32C.D.3.如果lo x<lo y<0,那么()A.y<x<1B.x<y<1C.1<x<yD.1<y<x4.函数f(x)=log a|x|+1(0<a<1)的图象大致为()5.(2016山东济南模拟)定义在R上的奇函数f(x)满足f(x+1)=f(-x),当x∈时,f(x)=log2(x+1),则f(x)在区间内是()A.减函数且f(x)>0B.减函数且f(x)<0C.增函数且f(x)>0D.增函数且f(x)<06.计算:log23·log34+(=.7.函数y=log2|x+1|的单调递减区间为,单调递增区间为.8.已知函数f(x)=a x+log a x(a>0且a≠1)在1,2]上的最大值与最小值之和为log a2+6,则a的值为.9.计算:(1)lg25+lg2·lg50+(lg2)2;(2).10.(2017广东茂名一中期末)已知函数f(x)=log4(ax2+2x+3).(1)若f(1)=1,求f(x)的单调区间;(2)是否存在实数a,使f(x)的最小值为0?若存在,求出a的值;若不存在,说明理由.B组提升题组11.设函数f(x)定义在实数集上,f(2-x)=f(x),且当x≥1时,f(x)=lnx,则有()A.f<f(2)<fB.f<f(2)<fC.f<f<f(2)D.f(2)<f<f12.设a,b,c均为正数,且2a=lo a,=lo b,=log2c,则()A.a<b<cB.c<b<aC.c<a<bD.b<a<c13.已知函数f(x)=关于x的方程f(x)+x-a=0有且只有一个实根,则实数a的取值范围是.14.设f(x)=log a(1+x)+log a(3-x)(a>0且a≠1),且f(1)=2,求f(x)在区间上的最大值.15.已知函数f(x)=3-2log2x,g(x)=log2x.(1)当x∈1,4]时,求函数h(x)=f(x)+1]·g(x)的值域;(2)如果对任意的x∈1,4],不等式f(x2)·f()>k·g(x)恒成立,求实数k的取值范围.答案全解全析A组基础题组1.A因为f(x)=,所以要使函数f(x)有意义,需使即-3<x<0.2.B由y=f(x)是函数y=3x的反函数,知f(x)=log3x,从而f=log3=-log32,故选B.3.D由lo x<lo y<0,得lo x<lo y<lo 1.所以x>y>1.4.A由函数f(x)的解析式可确定该函数为偶函数,图象关于y轴对称.设g(x)=log a|x|,先画出x>0时g(x)的图象,然后作其关于y轴对称的图象,即画出x<0时g(x)的图象,最后将函数g(x)的图象向上整体平移一个单位即得f(x)的图象,结合选项知选A.5.B因为f(x)是R上的奇函数,则有f(x+1)=f(-x)=-f(x).当x∈时,x-1∈,所以f(x)=-f(x-1)=-log2x,所以f(x)在区间内是减函数且f(x)<0.6.答案4解析log23·log34+(=·+=2+=2+2=4.7.答案(-∞,-1);(-1,+∞)解析作出函数y=log2x的图象,再作出其关于y轴对称的图象即可得到函数y=log2|x|的图象,再将y=log2|x|的图象向左平移1个单位长度,就得到函数y=log2|x+1|的图象(如图所示).由图知,函数y=log2|x+1|的单调递减区间为(-∞,-1),单调递增区间为(-1,+∞).8.答案2解析显然函数y=a x与y=log a x在1,2]上的单调性相同,因此函数f(x)=a x+log a x在1,2]上的最大值与最小值之和为f(1)+f(2)=(a+log a1)+(a2+log a2)=a+a2+log a2=log a2+6,故a+a2=6,解得a=2或a=-3(舍去).9.解析(1)原式=(lg2)2+(1+lg5)×lg2+lg52=(lg2+lg5+1)×lg2+2lg5=(1+1)×lg2+2lg5=2×(lg2+lg5)=2.(2)原式===-.10.解析(1)因为f(1)=1,所以log4(a+5)=1,因此a+5=4,a=-1,此时f(x)=log4(-x2+2x+3).由-x2+2x+3>0得-1<x<3,即函数f(x)的定义域为(-1,3).令t=-x2+2x+3,则t=-x2+2x+3在(-1,1]上单调递增,在(1,3)上单调递减.又y=log4t在(0,+∞)上单调递增,所以f(x)的单调递增区间是(-1,1],单调递减区间是(1,3).(2)存在.理由如下:假设存在实数a,使f(x)的最小值为0.令h(x)=ax2+2x+3,则h(x)有最小值1,因此应有解得a=.故存在实数a=,使f(x)的最小值为0.B组提升题组11.C由f(2-x)=f(x),得f(1-x)=f(x+1),即函数f(x)图象的对称轴为直线x=1,结合图象,可知f<f<f(0)=f(2),故选C.12.A∵a>0,∴2a>1,∴lo a>1,∴0<a<.∵b>0,∴0<<1,∴0<lo b<1,∴<b<1.∵>0,∴log2c>0,∴c>1,∴0<a<<b<1<c,故选A.13.答案(1,+∞)解析问题等价于函数y=f(x)与y=-x+a的图象有且只有一个交点,结合函数图象可知a>1.14.解析∵f(1)=log a2+log a2=2log a2=2,∴log a2=1,解得a=2,∴f(x)=log2(1+x)+log2(3-x)=log2(1+x)·(3-x)]=log2-(x-1)2+4],设u=-(x-1)2+4,∵x∈,∴3≤u≤4,∵y=log2u在定义域内是增函数,∴log23≤log2u≤2,即log23≤f(x)≤2,∴f(x)在区间上的最大值是2.15.解析(1)h(x)=(4-2log2x)·log2x=-2(log2x-1)2+2,因为x∈1,4],所以log2x∈0,2],故函数h(x)的值域为0,2].(2)由f(x2)·f()>k·g(x)得(3-4log2x)(3-log2x)>k·log2x,令t=log2x,因为x∈1,4],所以t=log2x∈0,2],所以(3-4t)(3-t)>k·t对一切t∈0,2]恒成立,①当t=0时,k∈R;②当t∈(0,2]时,k<恒成立,即k<4t+-15恒成立,因为4t+≥12,当且仅当4t=,即t=时取等号,所以4t+-15的最小值为-3,∴k<-3.综上,k∈(-∞,-3).。
2022届高考数学一轮复习第二章函数导数及其应用第6节对数与对数函数课时作业含解析新人教版
第二章 函数、导数及其应用授课提示:对应学生用书第247页[A 组 基础保分练]1.(2021·重庆第一次模考)已知log 23=a ,log 35=b ,则lg 6=( ) A.11+ab B .a 1+abC.b 1+ab D .a +11+ab答案:D2.(2021·济南模拟)已知函数f (x )=lg(x 2+1+x )+12,则f (ln 5)+f ⎝⎛⎭⎫ln 15=( ) A .0 B .12C .1D .2答案:C3.(2020·高考全国卷Ⅲ)设a =log 32,b =log 53,c =23,则( )A .a <c <bB .a <b <cC .b <c <aD .c <a <b 解析:∵3log 32=log 38<2,∴log 32<23,即a <c .∵3log 53=log 527>2,∴log 53>23,即b >c .∴a <c <b . 答案:A4.已知a >b >0,且a +b =1,x =⎝⎛⎭⎫1a b ,y =log ab ⎝⎛⎭⎫1a +1b ,z =log b 1a ,则x ,y ,z 的大小关系是( ) A .x >z >y B .x >y >z C .z >y >xD .z >x >y答案:A5.若定义在区间(-1,0)内的函数f (x )=log 2a (x +1)满足f (x )>0,则实数a 的取值范围是( ) A.⎝⎛⎭⎫0,12 B .⎝⎛⎦⎤0,12 C.⎝⎛⎭⎫12,+∞ D .(0,+∞)答案:A6.(多选题)(2021·山东潍坊五县联考)已知a =x lg x ,b =y lg y ,c =x lg y ,d =y lg x ,且x ≠1,y ≠1,则( )A .∃x ,y >0,使得a <b <c <dB .∀x ,y >0,都有c =dC .∃x ,y 且x ≠y ,使得a =b =c =dD .a ,b ,c ,d 中至少有两个大于1解析:a =x lg x ,b =y lg y ,c =x lg y ,d =y lg x ,且x ≠1,y ≠1,则lg a =lg 2x ,lg b =lg 2y ,lg c =lg x lg y ,lg d =lg x lg y ,则∀x ,y >0,都有c =d ,故B 正确,A ,C 不正确;对于D ,假设a ,b ,c ,d 中最多有一个大于1,若x >10,y >10,则a >1,b >1,c >1,d >1,则假设不成立,故a ,b ,c ,d 中至少有两个大于1,D 正确. 答案:BD7.已知2x =72y =A ,且1x +1y =2,则A 的值是________.答案:7 28.已知函数f (x )=log 0.5(x 2-ax +3a )在[2,+∞)上单调递减,则a 的取值范围为________. 答案:(-4,4]9.设f (x )=log a (1+x )+log a (3-x )(a >0,且a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域; (2)求f (x )在区间⎣⎡⎦⎤0,32上的最大值. 解析:(1)因为f (1)=2,所以log a 4=2(a >0,且a ≠1),所以a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得-1<x <3,所以函数f (x )的定义域为(-1,3). (2)f (x )=log 2(1+x )+log 2(3-x )=log 2[(1+x )(3-x )]=log 2[-(x -1)2+4], 所以当x ∈(-1,1]时,f (x )是增函数; 当x ∈(1,3)时,f (x )是减函数,故函数f (x )在⎣⎡⎦⎤0,32上的最大值是f (1)=log 24=2. 10.已知函数f (x )=log 4(ax 2+2x +3). (1)若f (1)=1,求f (x )的单调区间;(2)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,说明理由. 解析:(1)∵f (1)=1,∴log 4(a +5)=1,得a =-1, 故f (x )=log 4(-x 2+2x +3).由-x 2+2x +3>0,得-1<x <3,函数定义域为(-1,3). 令g (x )=-x 2+2x +3,则g (x )在(-1,1)上递增,在(1,3)上递减, 又y =log 4x 在(0,+∞)上递增,所以f (x )的单调递增区间是(-1,1),递减区间是(1,3). (2)假设存在实数a 使f (x )的最小值为0, 则h (x )=ax 2+2x +3应有最小值1,因此⎩⎨⎧a >0,3a -1a =1,解得a =12.故存在实数a =12使f (x )的最小值为0.[B 组 能力提升练]1.(2021·合肥模拟)函数f (x )=ln x ·(e x -1)e x +1的图象大致为( )答案:B2.(多选题)(2021·山东临沂期末)若10a =4,10b =25,则下列结论正确的是( ) A .a +b =2 B .b -a =1 C .ab >8(lg 2)2D .b -a >lg 6解析:由10a =4,10b =25,得a =lg 4,b =lg 25,则a +b =lg 4+lg 25=lg 100=2,A 正确;b -a =lg 25-lg 4=lg 254,又lg 254>lg 6,∴b -a >lg 6,B 错误,D 正确;又ab =4lg 2lg 5>4lg 2lg4=8(lg 2)2,C 正确. 答案:ACD3.若函数f (x )=a x -k (a >0,且a ≠1)的图象经过定点(19,1),且g (x )=log a (x +k -19)满足g (x 1x 2x 3…x 2 019)=19,则g (x 21)+g (x 22)+g (x 23)+…+g (x 22 019)的值为( )A.19 B .19 C .38D .log a 19解析:由题意可知f (19)=1,得k =19,所以g (x )=log a x ,所以g (x 1x 2x 3…x 2 019)=log a (x 1x 2x 3…x 2019)=19,所以g (x 21)+g (x 22)+g (x 23)+…+g (x 22 019)=log a x 21+log a x 22+log a x 23+…+log a x 22 019=2log a (|x 1x 2x 3…x 2 019|)=2log a (x 1x 2x 3…x 2 019)=2×19=38. 答案:C4.若log 2x =log 3y =log 5z <-1,则( ) A .2x <3y <5z B .5z <3y <2x C .3y <2x <5zD .5z <2x <3y解析:设log 2x =log 3y =log 5z =t ,则t <-1,x =2t ,y =3t ,z =5t ,因此2x =2t +1,3y =3t +1,5z =5t +1.又t <-1,所以t +1<0,由幂函数y =x t +1的单调性可知5z <3y <2x . 答案:B5.(2020·高考全国卷Ⅲ)已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A .a <b <c B .b <a <c C .b <c <aD .c <a <b解析:∵log 53-log 85=log 53-1log 58=log 53·log 58-1log 58<⎝ ⎛⎭⎪⎫log 53+log 5822-1log 58=⎝⎛⎭⎫log 52422-1log 58<⎝⎛⎭⎫log 52522-1log 58=0,∴log 53<log 85.∵55<84,134<85,∴5log 85<4,4<5log 138,∴log 85<log 138,∴log 53<log 85<log 138,即a <b <c . 答案:A6.(多选题)(2021·山东夏津一中月考)已知函数f (x )=-log 2x ,下列说法正确的是( ) A .函数f (|x |)为偶函数B .若f (a )=|f (b )|,其中a >0,b >0,a ≠b ,则ab =1C .函数f (-x 2+2x )在(1,3)上单调递增D .若0<a <1,则|f (1+a )|<|f (1-a )|解析:对于A ,f (|x |)=-log 2|x |,f (|-x |)=-log 2|-x |=-log 2|x |=f (|x |),所以函数f (|x |)为偶函数,故A 正确;对于B ,若f (a )=|f (b )|,其中a >0,b >0,a ≠b ,则f (a )=|f (b )|=-f (b ),-log 2a =log 2b ,即log 2a +log 2b =log 2ab =0,得ab =1,故B 正确;对于C ,函数f (-x 2+2x )=-log 2(-x 2+2x ),由-x 2+2x >0,解得0<x <2,所以函数f (-x 2+2x )的定义域为(0,2),因此在(1,3)上不具有单调性,故C 错误;对于D ,因为0<a <1,所以1+a >1>1-a >0,0<1-a 2<1,所以f (1+a )<0<f (1-a ),故|f (1+a )|-|f (1-a )|=|-log 2(1+a )|-|-log 2(1-a )|=log 2(1+a )+log 2(1-a )=log 2(1-a 2)<0,故D 正确. 答案:ABD7.已知函数f (x )=log a (-x +1)(a >0且a ≠1)在[-2,0]上的值域是[-1,0],若函数g (x )=a x +m-3的图象不经过第一象限,则m 的取值范围为________.解析:∵函数f (x )=log a (-x +1)(a >0且a ≠1)在[-2,0]上的值域是[-1,0],而f (0)=0, ∴f (-2)=log a 3=-1,∴a =13,∴g (x )=⎝⎛⎭⎫13x +m -3,令g (x )=0,得x =-m -1,则-m -1≤0,求得m ≥-1,故m 的取值范围为[-1,+∞). 答案:[-1,+∞)[C 组 创新应用练]1.(2021·开封模拟)已知π为圆周率,e 为自然对数的底数,则( ) A .πe <3e B .3e -2π<3πe -2 C .log πe >log 3eD .πlog 3e >3log πe解析:对于选项A ,函数y =x e 在(0,+∞)上单调递增,所以πe >3e ,故选项A 错误;对于选项B,3e -2π<3πe -2,两边同时除以3π可得3e -3<πe -3,由函数y =x e -3在(0,+∞)上单调递减可得选项B 错误;对于选项C ,由log πe >log 3e 可得1ln π>1ln 3,所以ln π<ln 3,而函数y =lnx 在(0,+∞)上单调递增,故选项C 错误;对于选项D ,由πlog 3e >3log πe 可得πln 3>3ln π,所以πln π>3ln 3,所以ππ>33,故选项D 正确. 答案:D2.(2021·朝阳模拟)在标准温度和大气压下,人体血液中氢离子的物质的量浓度(单位mol/L ,记作[H +])和氢氧根离子的物质的量浓度(单位mol/L ,记作[OH -])的乘积等于常数10-14.已知pH 值的定义为pH =-lg[H +],健康人体血液的pH 值保持在7.35~7.45之间,那么健康人体血液中的[H +][OH -]可以为(参考数据:lg 2≈0.30,lg 3≈0.48)( )A.12 B .13C.16D .110解析:由题意可得pH =-lg[H +]∈(7.35,7.45),且[H +]·[OH -]=10-14,∴lg[H +][OH -]=lg [H +]10-14[H +]=lg[H +]2+14=2lg[H +]+14.∵7.35<-lg[H +]<7.45,∴-7.45<lg[H +]<-7.35,∴-0.9<2lg[H +]+14<-0.7,即-0.9<lg [H +][OH -]<-0.7.∵lg 12=-lg 2≈-0.30,故A 错误;lg 13=-lg 3≈-0.48,故B 错误;lg 16=-lg 6=-(lg 2+lg 3)≈-0.78,故C 正确;lg 110=-1,故D 错误.答案:C3.已知函数f (x )=ln x1-x ,若f (a )+f (b )=0,且0<a <b <1,则ab 的取值范围是________.解析:由题意可知ln a 1-a +ln b1-b=0,即ln ⎝ ⎛⎭⎪⎫a 1-a ·b 1-b =0,从而a 1-a ·b 1-b=1,化简得a +b =1, 故ab =a (1-a )=-a 2+a =-⎝⎛⎭⎫a -122+14.又0<a <b <1,∴0<a <12,故0<-⎝⎛⎭⎫a -122+14<14, 即ab ∈⎝⎛⎭⎫0,14. 答案:⎝⎛⎭⎫0,14。
第6节 幂函数、指数函数、对数函数
第6节幂函数、指数函数、对数函数考试要求 1.了解幂函数的概念,掌握幂函数y=x,y=x2,y=x3,y=1x,y=x12的图象和性质;2.理解指数函数的概念,掌握指数函数的图象、性质及应用;3.理解对数函数的概念,掌握对数函数的图象、性质及应用.知识梳理1.幂函数(1)幂函数的定义一般地,形如y=xα的函数称为幂函数,其中x是自变量,α为常数.(2)常见的5种幂函数的图象(3)常见的5种幂函数的性质2.指数函数及其性质(1)概念:函数y=a x(a>0且a≠1)叫做指数函数,其中指数x是自变量,函数的定义域是R,a是底数.(2)指数函数的图象与性质a >10<a<1 图象定义域R值域(0,+∞)性质过定点(0,1),即x=0时,y=1当x>0时,y>1;当x<0时,0<y<1当x<0时,y>1;当x>0时,0<y<1在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数3.对数函数及其性质(1)概念:函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).(2)对数函数的图象与性质a>10<a<1图象性质定义域:(0,+∞)值域:R当x=1时,y=0,即过定点(1,0)当x>1时,y>0;当0<x<1时,y<0当x>1时,y<0;当0<x<1时,y>0 在(0,+∞)上是增函数在(0,+∞)上是减函数4.反函数指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数,它们的图象关于直线y=x对称.[常用结论与易错提醒]1.幂函数满足三个条件:(1)幂底是单自变量;(2)指数为常数;(3)系数为1.类似地指数函数、对数函数也分别满足三个条件.2.(1)幂函数图象的分布规律:作一直线x=t>1,与幂函数交点在上面的幂函数的指数大;(2)指数函数图象的分布规律:作一直线x=t>0,与指数函数交点在上面的指数函数的底数大;(3)对数函数图象的分布规律:作一直线y=k>0,与对数函数交点在右边的对数函数的底数大.诊断自测1.判断下列说法的正误.(1)幂函数y=x0与常值函数y=1图象相同.()(2)函数y=2x 13是幂函数.()(3)y=2x-1是指数函数,y=log a(x2+1)(a>0,且a≠1)是对数函数.()(4)函数y=ln x+1x-1与y=ln(x+1)-ln(x-1)的定义域相同.()解析(1)错误,y=1的图象去掉点(0,1)才是y=x0的图象;(2)错误,因为x 13的系数不是1;(3)错误,y=2x-1=12·2x,2x前面的系数不为1,y=log a(x2+1)(a>0且a≠1),真数为x2+1而不是单自变量x.(4)错误,y=ln x+1x-1的定义域为(-∞,-1)∪(1,+∞),而y=ln(x+1)-ln(x-1)的定义域为(1,+∞),故函数的定义域不同.答案(1)×(2)×(3)×(4)×2.(2019·浙江卷)在同一直角坐标系中,函数y=1a x,y=log a⎝⎛⎭⎪⎫x+12(a>0,且a≠1)的图象可能是()解析 当0<a <1时,函数y =a x 的图象过定点(0,1),在R 上单调递减, 于是函数y =1a x 的图象过定点(0,1),在R 上单调递增,函数y =log a ⎝ ⎛⎭⎪⎫x +12的图象过定点⎝ ⎛⎭⎪⎫12,0,在⎝ ⎛⎭⎪⎫-12,+∞上单调递减.因此,选项D 中的两个图象符合.当a >1时,函数y =a x 的图象过定点(0,1),在R 上单调递增, 于是函数y =1a x 的图象过定点(0,1),在R 上单调递减,函数 y =log a ⎝ ⎛⎭⎪⎫x +12的图象过定点⎝ ⎛⎭⎪⎫12,0,在⎝ ⎛⎭⎪⎫-12,+∞上单调递增.显然A ,B ,C ,D 四个选项都不符合. 故选D. 答案 D3.(一题多解)已知函数y =log a (x +c )(a ,c 为常数,其中a >0,且a ≠1)的图象如图,则下列结论成立的是( )A.a >1,c >1B.a >1,0<c <1C.0<a <1,c >1D.0<a <1,0<c <1解析 法一 由题图可知,函数在定义域内为减函数,所以0<a <1.又当x =0时,y >0,即log a c >0,所以0<c <1.法二 由图可知,y =log a (x +c )的图象是由y =log a x 的图象向左平移c (c >0)个单位而得到的,其中0<c <1,再根据单调性易知0<a <1. 答案 D4.(2019·北京昌平区二模)已知幂函数f (x )=x α(α是实数)的图象经过点(2,2),则f (4)的值为________.解析 幂函数f (x )=x α的图象过点(2,2), 所以f (2)=2α=2,解得α=12, 所以f (x )=x 12,则f (4)=4=2. 答案 25.若幂函数y =(m 2-3m +3)x m 2-m -2的图象不经过原点,则实数m 的值为________.解析 由⎩⎨⎧m 2-3m +3=1,m 2-m -2≤0,解得m =1或2.经检验m =1或2都适合. 答案 1或26.当a >0,且a ≠1时,函数f (x )=a x -3-2必过定点________,其值域为________. 解析 函数f (x )=a x -3-2的图象是将函数y =a x 的图象向右平移3个单位,再向下平移2个单位得到的.故函数f (x )=a x -3-2必过定点(3,-1),其值域为(-2,+∞).答案 (3,-1) (-2,+∞)考点一 幂函数【例1】 (1)(2018·上海卷)已知α∈⎩⎨⎧⎭⎬⎫-2,-1,-12,12,1,2,3.若幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,则α=________. (2)已知幂函数f (x )=(n 2+2n -2)x n 2-3n(n ∈Z )的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为( ) A.-3 B.1 C.2D.1或2解析 (1)由f (x )为奇函数,所以α=-1,1,3,又在(0,+∞)上为递减可知α=-1.(2)∵幂函数f (x )=(n 2+2n -2)x n 2-3n在(0,+∞)上是减函数,∴⎩⎨⎧n 2+2n -2=1,n 2-3n <0,∴n =1, 又n =1时,f (x )=x -2的图象关于y 轴对称,故n =1. 答案 (1)-1 (2)B规律方法 (1)可以借助幂函数的图象理解函数的对称性、单调性;(2)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键.【训练1】 (1)已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=( )A.12B.1C.32D.2 (2)已知a =243,b =323,c =2513,则( ) A.b <a <c B.a <b <c C.b <c <aD.c <a <b(3)若(2m +1)12>(m 2+m -1)12,则实数m 的取值范围是( ) A.⎝ ⎛⎦⎥⎤-∞,-5-12 B.⎣⎢⎡⎭⎪⎫5-12,+∞C.(-1,2)D.⎣⎢⎡⎭⎪⎫5-12,2解析 (1)由幂函数的定义知k =1.又f ⎝ ⎛⎭⎪⎫12=22,所以⎝ ⎛⎭⎪⎫12α=22,解得α=12,从而k +α=32.(2)因为a =243=423,b =323,c =523,又y =x 23在(0,+∞)上是增函数,所以c >a >b . (3)因为函数y =x 12的定义域为[0,+∞),且在定义域内为增函数,所以不等式等价于⎩⎨⎧2m+1≥0,m 2+m -1≥0,2m +1>m 2+m -1.解得⎩⎪⎨⎪⎧m ≥-12,m ≤-5-12或m ≥5-12,-1<m <2,即5-12≤m <2.答案 (1)C (2)A (3)D 考点二 指数函数【例2】 已知函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3.(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值; (3)若f (x )的值域是(0,+∞),求a 的值. 解 (1)当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3,令u =-x 2-4x +3=-(x +2)2+7.在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13u在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的递增区间是(-2,+∞),递减区间是(-∞,-2). (2)令h (x )=ax 2-4x +3,y =⎝ ⎛⎭⎪⎫13h (x ),由于f (x )有最大值3,所以h (x )应有最小值-1,因此必有⎩⎪⎨⎪⎧a >0,12a -164a =-1,解得a =1,即当f (x )有最大值3时,a 的值等于1.(3)由f (x )的值域是(0,+∞)知,ax 2-4x +3的值域为R ,则必有a =0.规律方法 (1)求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断.(2)比较指数式的大小的方法是:①能化成同底数的先化成同底数幂,再利用单调性比较大小;②不能化成同底数的,一般引入“1”等中间量比较大小;③当底数a 与“1”的大小关系不确定时,要分类讨论.【训练2】 (1)(2020·杭州二中检测)已知0<a <b <1,则( ) A.(1-a )1b >(1-a )bB.(1-a )b>(1-a )b2 C.(1+a )a >(1+b )bD.(1-a )a >(1-b )b(2)设函数f (x )=⎩⎪⎨⎪⎧x 13,x ≥8,2e x -8,x <8,则使得f (x )≤3成立的x 的取值范围是________.(3)若曲线|y |=2x +1与直线y =b 没有公共点,则b 的取值范围是________. 解析 (1)因为0<a <b <1,所以0<1-b <1-a <1,则(1-a )a >(1-a )b >(1-b )b ,故选D.(2)当x ≥8时,f (x )=x 13≤3,∴x ≤27,即8≤x ≤27; 当x <8时,f (x )=2e x -8≤3恒成立,故x <8. 综上,x ∈(-∞,27].(3)曲线|y |=2x +1与直线y =b 的图象如图所示,由图象可知:如果|y |=2x +1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1].答案 (1)D (2)(-∞,27] (3)[-1,1] 考点三 对数函数【例3】 已知函数f (x )=log a (ax 2-x ). (1)若a =12,求f (x )的单调区间;(2)若f (x )在区间[2,4]上是增函数,求实数a 的取值范围.解 (1)当a =12时,f (x )=log 12⎝⎛⎭⎪⎫12x 2-x ,由12x 2-x >0,得x 2-2x >0,解得x <0或x >2, 所以函数的定义域为(-∞,0)∪(2,+∞), 结合图象可得函数的单调递减区间为(2,+∞), 单调递增区间为(-∞,0). (2)令g (x )=ax 2-x ,则函数g (x )的图象为开口向上、对称轴为x =12a 的抛物线, ①当0<a <1时,要使函数f (x )在区间[2,4]上是增函数, 则g (x )=ax 2-x 在[2,4]上单调递减,且g (x )min >0, 即⎩⎪⎨⎪⎧12a ≥4,g (4)=16a -4>0,此不等式组无解. ②当a >1时,要使函数f (x )在区间[2,4]上是增函数, 则g (x )=ax 2-x 在[2,4]上单调递增,且g (x )min >0, 即⎩⎪⎨⎪⎧12a ≤2,g (2)=4a -2>0,解得a >12, 又a >1,所以a >1,综上可得a >1. 实数a 的取值范围为(1,+∞).规律方法 (1)确定函数的定义域,研究或利用函数的性质,都要在其定义域上进行.(2)如果需将函数解析式变形,一定要保证其等价性,否则结论错误.(3)在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a 的取值对函数增减性的影响,及真数必须为正的限制条件.【训练3】 (1)(2019·天津卷)已知a =log 52,b =log 0.50.2,c =0.50.2,则a ,b ,c 的大小关系为( ) A.a <c <b B.a <b <c C.b <c <aD.c <a <b(2)(一题多解)当0<x ≤12时,4x <log a x ,则a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,22 B.⎝ ⎛⎭⎪⎫22,1 C.(1,2) D.(2,2)(3)已知函数f (x )=⎩⎨⎧|ln x |,0<x ≤10,f (20-x ),10<x <20.设方程f (x )=t (t ∈R )的四个不等实根从小到大依次为x 1,x 2,x 3,x 4,则下列判断中错误的是( ) A.x 1+x 2+x 3+x 4=40 B.x 1x 2=1 C.x 3x 4=361D.x 3x 4-20(x 3+x 4)+399=0解析 (1)因为y =log 5x 是增函数,所以a =log 52<log 55=0.5.因为y =log 0.5x 是减函数,所以b =log 0.50.2>log 0.50.5=1.因为y =0.5x 是减函数,所以0.5=0.51<c =0.50.2<0.50=1,即0.5<c <1.所以a <c <b .故选A.(2)法一 由题意得,当0<a <1时,要使得4x <log a x ⎝ ⎛⎭⎪⎫0<x ≤12,即当0<x ≤12时,函数y =4x的图象在函数y =log a x 图象的下方.又当x =12时,412=2,即函数y =4x 的图象过点⎝ ⎛⎭⎪⎫12,2.把点⎝ ⎛⎭⎪⎫12,2代入y =log a x ,得a =22.若函数y =4x 的图象在函数y =log a x 图象的下方,则需22<a <1(如图所示).当a >1时,不符合题意,舍去.所以实数a 的取值范围是⎝ ⎛⎭⎪⎫22,1.法二 ∵当0<x ≤12时,1<4x ≤2,要使4x <log a x , 必须2<log a x ,∴⎩⎨⎧0<a <1,log a a 2<log ax ,即⎩⎨⎧0<a <1,a 2>x 对0<x ≤12恒成立,∴⎩⎪⎨⎪⎧0<a <1,a 2>12,解得22<a <1. (3)由题意知函数f (x )的图象关于直线x =10对称,且x 1+x 4=x 2+x 3=2×10,ln x 1=-ln x 2,ln(20-x 3)=-ln(20-x 4),所以x 1+x 2+x 3+x 4=40,x 1=1x 2,20-x 3=120-x 4,化简得x 1x 2=1,x 3x 4-20(x 3+x 4)+399=0,故选C. 答案 (1)A (2)B (3)C基础巩固题组一、选择题1.已知α∈{-1,1,2,3},则使函数y =x α的值域为R ,且为奇函数的所有α的值为( ) A.1,3 B.-1,1 C.-1,3D.-1,1,3解析 因为函数y =x α为奇函数,故α的可能值为-1,1,3.又y =x -1的值域为{y |y ≠0},函数y =x ,y =x 3的值域都为R .所以符合要求的α的值为1,3. 答案 A2.(2019·浙江新高考仿真卷五)已知x ,y ∈R ,且x >y >0,若a >b >1,则一定有( )A.log a x >log b yB.sin a x >sin b yC.ay >bxD.a x >b y解析 当x >y >0,a >b >1时,由指数函数的性质易得a x >a y >b y ,故选D. 答案 D3.(一题多解)(2019·全国Ⅱ卷)若a >b ,则( ) A.ln(a -b )>0 B.3a <3b C.a 3-b 3>0D.|a |>|b |解析 法一 由函数y =ln x 的图象(图略)知,当0<a -b <1时,ln(a -b )<0,故A 不正确;因为函数y =3x 在R 上单调递增,所以当a >b 时,3a >3b ,故B 不正确;因为函数y =x 3在R 上单调递增,所以当a >b 时,a 3>b 3,即a 3-b 3>0,故C 正确;当b <a <0时,|a |<|b |,故D 不正确.故选C.法二 当a =0.3,b =-0.4时,ln(a -b )<0,3a >3b ,|a |<|b |,故排除A ,B ,D.故选C. 答案 C4.(2019·诸暨期末)若函数f (x )满足f (x )≤x 2且f (x )≤2x (x ∈R ),则( ) A.若f (a )≤b 2,则a ≥b B.若f (a )≤2b ,则a ≤b C.若f (a )≥b 2,则a ≤bD.若f (a )≥2b ,则a ≥b解析 若f (a )≥2b ,则由f (x )≤2x 得f (a )≤2a ,则2b ≤2a ,则a ≥b ,故选D. 答案 D5.若函数f (x )=log a x (0<a <1)在[a ,2a ]上的最大值是最小值的3倍,则a 的值为( ) A.14B.22C.24D.12解析 因为0<a <1,所以f (x )在[a ,2a ]上是减函数.所以f (x )max =f (a )=log a a =1,f (x )min =f (2a )=log a (2a )=1+log a 2,由题意知1=3(1+log a 2),即log a 2=-23, 所以a =24. 答案 C6.若a -2>a 2(a >0,且a ≠1),则函数f (x )=log a (x -1)的图象大致是( )解析 因为a -2>a 2(a >0且a ≠1),所以0<a <1,则函数f (x )=log a (x -1)的图象可以看作是由函数y =log a x 的图象向右平移一个单位长度得到的,观察各选项,只有C 选项符合,故选C.答案 C7.已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(-log25.1),b=g(20.8),c =g(3),则a,b,c的大小关系为()A.a<b<cB.c<b<aC.b<a<cD.b<c<a解析因为f(x)是奇函数且在R上是增函数,所以当x>0时,f(x)>0,从而g(x)=xf(x)是R上的偶函数,且在[0,+∞)上是增函数,a=g(-log25.1)=g(log25.1),20.8<2,又4<5.1<8,则2<log25.1<3,所以0<20.8<log25.1<3,g(20.8)<g(log25.1)<g(3),所以b<a<c,故选C.答案 C8.(一题多解)(2018·全国Ⅲ卷)下列函数中,其图象与函数y=ln x的图象关于直线x=1对称的是()A.y=ln(1-x)B.y=ln(2-x)C.y=ln(1+x)D.y=ln(2+x)解析法一设所求函数图象上任一点的坐标为(x,y),则其关于直线x=1的对称点的坐标为(2-x,y),由对称性知点(2-x,y)在函数f(x)=ln x的图象上,所以y=ln(2-x).故选B.法二由题意知,对称轴上的点(1,0)在函数y=ln x的图象上也在所求函数的图象上,代入选项中的函数表达式逐一检验,排除A,C,D,选B.答案 B9.下列命题正确的是()A.若ln a-ln b=a-3b,则a>b>0B.若ln a-ln b=a-3b,则0<a<bC.若ln a-ln b=3b-a,则a>b>0D.若ln a-ln b=3b-a,则0<a<b解析若ln a-ln b=3b-a,则a>0,b>0,所以ln a+a=ln b+3b>ln b+b,设f(x)=ln x+x,则易得函数f(x)=ln x+x在(0,+∞)上单调递增,所以a>b>0,C正确,故选C. 答案 C 二、填空题10.(2018·上海卷)设常数a ∈R ,函数f (x )=log 2(x +a ).若f (x )的反函数的图像经过点(3,1),则a =________.解析 由题意可知f (x )经过(1,3),log 2(1+a )=3,a =7. 答案 711.方程2x =2-x 的解的个数是________.解析 方程的解可看作函数y =2x 和y =2-x 的图象交点的横坐标,分别作出这两个函数图象(如图).由图象得只有一个交点,因此该方程只有一个解. 答案 112.已知max{a ,b }表示a ,b 两数中的最大值.若f (x )=max{e |x |,e |x -2|},则f (x )的最小值为________. 解析 f (x )=⎩⎨⎧e x ,x ≥1,e |x -2|,x <1.当x ≥1时,f (x )=e x ≥e(x =1时,取等号), 当x <1时,f (x )=e |x -2|=e 2-x >e , 因此x =1时,f (x )有最小值f (1)=e. 答案 e13.设f (x )=lg ⎝ ⎛⎭⎪⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是________.解析 由f (x )是奇函数可得a =-1, ∴f (x )=lg 1+x1-x ,定义域为(-1,1).由f (x )<0,可得0<1+x1-x<1,∴-1<x <0.答案 (-1,0)14.(2019·浙江三校三联)函数f (x )=log 2(3-2x -x 2),则f (x )的单调递增区间为________,值域为________.解析 令3-2x -x 2>0得-3<x <1,所以函数f (x )=log 2(3-2x -x 2)的定义域为(-3,1).因为函数f (u )=log 2u 在(0,+∞)上单调递增,函数u (x )=3-2x -x 2在(-3,-1)上单调递增,在(-1,1)上单调递减,所以函数f (x )=log 2(3-2x -x 2)的单调递增区间为(-3,-1).由x ∈(-3,1)得u (x )∈(0,4],所以f (u )=log 2u ∈(-∞,2],故f (x )的值域为(-∞,2]. 答案 (-3,-1) (-∞,2]能力提升题组15.(2016·浙江卷)已知函数f (x )满足:f (x )≥|x |且f (x )≥2x ,x ∈R .( ) A.若f (a )≤|b |,则a ≤b B.若f (a )≤2b ,则a ≤b C.若f (a )≥|b |,则a ≥b D.若f (a )≥2b ,则a ≥b解析 由题意得f (a )≥|a |,∴A 项中由不等式传递性可知|a |≤|b |,不能得到a ≤b ,A 错误.∵f (a )≥2a ,∴B 项中有2a ≤f (a )≤2b ,∴a ≤b ,故B 正确.C ,D 选项无法确定.故选B. 答案 B16.(2020·浙江新高考仿真卷一)已知f (x )=log a (x 2-ax +3)(a >0,a ≠1)满足:对任意x 1,x 2∈⎝ ⎛⎦⎥⎤-∞,a 2,不等式f (x 1)-f (x 2)x 1-x 2<0恒成立,则a 的取值范围是( )A.(1,+∞)B.(1,23)C.(23,+∞)D.(0,1)解析 因为对任意x 1,x 2∈⎝ ⎛⎦⎥⎤-∞,a 2,不等式f (x 1)-f (x 2)x 1-x 2<0恒成立,则在⎝ ⎛⎦⎥⎤-∞,a 2上单调递减,由x 2-ax +3在x =a 2上有意义,且为最小值知函数f (x )的定义域为R ,由(-a )2-4×3<0解得-23<a <23,又因为a 为对数函数的底数,函数f (x )在⎝ ⎛⎦⎥⎤-∞,a 2上单调递减,函数y =x 2-ax +3在⎝ ⎛⎦⎥⎤-∞,a 2上单调递减,所以函数y =log a x 在定义域上单调递增,所以1<a <23,即实数a 的取值范围为(1,23),故选B. 答案 B17.(2020·嵊州适考)已知函数f (x )=|ln x |+x ,若f (x 1)=f (x 2),其中x 1≠x 2,则( ) A.x 1+x 2<2 B.x 1+x 2>2 C.1x 1+1x 2<2 D.1x 1+1x 2>2解析 根据题意不妨设0<x 1<1<x 2,则由f (x 1)=f (x 2),得-ln x 1+x 1=ln x 2+x 2,即ln x 2+ln x 1=ln(x 1x 2)=x 1-x 2<0,所以0<x 1x 2<1.因为x 1+x 2>2x 1x 2,所以1x 1+1x2=x 1+x 2x 1x 2>2x 1x 2>2,故选D.答案 D18.已知函数f (x )=log a (8-ax )(a >0,且a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围是________.解析 当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数,由f (x )>1在区间[1,2]上恒成立,则f (x )min =log a (8-2a )>1, 解之得1<a <83.若0<a <1时,f (x )在[1,2]上是增函数, 由f (x )>1在区间[1,2]上恒成立, 则f (x )min =log a (8-a )>1,且8-2a >0. ∴a >4,且a <4,故a 不存在. 综上可知实数a 的取值范围是⎝ ⎛⎭⎪⎫1,83.答案 ⎝ ⎛⎭⎪⎫1,8319.(2018·上海卷)已知常数a >0,函数f (x )=2x 2x +ax的图象经过点P ⎝ ⎛⎭⎪⎫p ,65、Q ⎝ ⎛⎭⎪⎫q ,-15,若2p +q =36pq ,则a =________. 解析 由题意知2p 2p +ap +2q2q +aq =1,∴2p +q =a 2pq =36pq ,∴a =6.答案 620.若f (x )=a (2x +1)-22x +1是R 上的奇函数,则实数a 的值为________,f (x )的值域为________.解析 ∵函数f (x )是R 上的奇函数,∴f (0)=0, ∴2a -22=0,解得a =1,f (x )=2x -12x +1=1-22x +1.∵2x +1>1,∴0<22x +1<2,∴-1<1-22x +1<1,∴f (x )的值域为(-1,1). 答案 1 (-1,1)。
高三数学一轮 第二章 第六节 对数、对数函数课件 理
与对数函数有关的复合函数的单调性的求解步 骤为:
(1)确定定义域;
(2)弄清函数是由哪些基本初等函数复合而成 的,将复合函数分解成基本初等函数y=f(u), u=g(x);
(3)分别确定这两个函数的单调区间;
(4)若这两个函数同增或同减,则y=f[g(x)]为 增函数,若一增一减,则y=f[g(x)]为减函数, 即“同增异减”.
【解析】 (1)由题设,3-ax>0 对一切 x∈[0,2]恒成立,a>0 且 a≠1, ∵a>0,∴g(x)=3-ax 在[0,2]上为减函 数,
从而 g(2)=3-2a>0,∴a<32, ∴a 的取值范围为(0,1)∪1,32.
(2)假设存在这样的实数 a,由题设知 f(1) =1,
即 loga(3-a)=1,∴a=32, 此时 f(x)=log323-32x, 当 x=2 时,f(x)没有意义,故这样的实 数不存在.
【答案】 A
4.已知 loga(3a-1)有意义,那么实数 a 的取值范围是________.
a>0
【解析】 由a≠1 3a-1>0
,可得 a>31且
a≠1.
【答案】 a>13且 a≠1
5.函数 y= log1(3x-2)的定义域是________.
2
【解析】 要使 y= log1(3x-2)有意义
(3)令 u(x)=xx+ -bb,则函数 u(x)=1+x2-bb 在(-∞,-b)和(b,+∞)上分别为减函 数,所以当 0<a<1 时,f(x)在(-∞,- b)和(b,+∞)上分别为增函数;当 a>1 时,f(x)在(-∞,-b)和(b,+∞)上分 别为减函数.
(4)解关于 x 的方程 y=logaxx+ -bb,得 x= b(ay+1)
高考数学一轮总复习 第二章 函数、导数及其应用 2.6 对数与对数函数课件 理
D.①②④
13
第十三页,共四十五页。
解析:若 M=N=0,则 logaM,logaN,logaM2,logaN2 无意义,若 logaM2=logaN2, 即 M2=N2,则|M|=|N|,①③④不正确,②正确.
答案:C
14
第十四页,共四十五页。
2.写出下列各式的值: (1)log2 22=________; (2)log53+log513=________; (3)lg 52+2lg 2-12-1=________;
「应用提示研一研」 1.换底公式的两个重要推论
其中 a>0 且 a≠1,b>0 且 b≠1,m,n∈R.
11
第十一页,共四十五页。
2.对数函数的图象与底数大小的比较 如图,作直线 y=1,则该直线与四个函数图象交点的横坐标为相应的底数.故 0 <c<d<1<a<b.由此我们可得到以下规律:在第一象限内从左到右底数逐渐增大.
12
第十二页,共四十五页。
「基础小题练一练」
1.对于 a>0 且 a≠1,下列结论正确的是( )
①若 M=N,则 logaM=logaN; ②若 logaM=logaN,则 M=N; ③若 logaM2=logaN2,则 M=N; ④若 M=N,则 logaM2=logaN2. A.①③
B.②④
C.②
5+(lg 5+lg 2)·lg 3=lg 5+lg 3=lg 15.
∴x=15.
答案:(1)81
5 (2)4
(3)15
23
第二十三页,共四十五页。
对数函数的图象(tú xiànɡ)及应用
[典 例 导 引] (1)函数 y=2log4(1-x)的图象大致是( )
(2)若不等式(x-1)2<logax 在 x∈(1,2)内恒成立,则实数 a 的取值范围为________.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
核 心 考 向
1-2 o lg =
21-o lg 63 o lg 66-o lg 63 o lg 62 = 2 =o . o lg 62 = o lg 62 lg 62=1
菜 单
课 时 限 时 检 测
单
名师金典· 新课标高考总复习·理科数学
基 础 知 识 点
对点训练 (1)(2014· 陕西高考)已知 4a=2,lg x=a,则 x =________. 1 1 (2)设 2 =5 =m,且a+b=2,则 m=________.
a b
方 法 技 巧
【答案】
核 心 考 向
(1) 10
答案:1
方 法 技 巧
2、已知 , 0 = ] g ) o x l g ( o l g [ o l
核 心 考 向
7
3
2
那么x 等于( 3 C 、 3 2 D 、 4
1 2
)
课 时 限 时 检 测
1 A、 3
答案:D
菜
3 B 、 6
单
名师金典· 新课标高考总复习·理科数学
基 础 知 识 点
考向一 [025]
2、写出下列各式的值
(1)log2 6 log2 3
(2) lg 5 lg 20
1 (3) log 5 3 log 5 3
1 2 0
方 法 技 巧
核 心 考 向
(4)log3 5 log3 15
(5)log2 3 log3 4
-1 2
课 时 限 时 检 测
菜
单
方 法 技 巧
的,因此经常用到换底公式及其推论;在对含字母的对数式 化简时必须保证恒等变形. 2.利用对数运算法则,在积、商、幂的对数与对数的和、 差、倍之间进行转化.
核 心 考 向
3.ab=N⇔b=logaN(a>0 且 a≠1)是解决有关指数、对 数问题的有效方法,在运算中要注意互化.
课 时 限 时 检 测
1 2 1 2 1 3 1 2 1 2 1 3
核 心 考 向
log 3 2 log 2 3
3 2
5 6
3 5 5 log 3 2 log 2 3 2 6 4
菜 单
课 时 限 时 检 测
名师金典· 新课标高考总复习·理科数学
规律方法
基 础 知 识 点
1.对数运算法则是在化为同底的情况下进行
4 .与 导 数 等 知 识 相 结 合 考 查 相 应 函 数 的 有 关 性 质 .
核 心 考 向
课 时 限 时 检 测
菜
单
名师金典· 新课标高考总复习·理科数学
基 础 知 识 点
完成P26:一、对数与对数的运算性质
方 法 技 巧
核 心 考 向
课 时 限 时 检 测
菜
单
名师金典· 新课标高考总复习·理科数学
答案:
基 础 知 识 点
6 2 1-2l o g 63+o lg 63 +o lg 63o l· g 2 () 原 式 = o lg 64 1-2 o lg =
66×3
方 法 技 巧
2 3 + o l g 3 +1-o lg 631+o lg 63 6 6 o lg 64 2 2 3 + o l g 3 + 1 - o l g 3 6 6 6 o lg 64
名师金典· 新课标高考总复习·理科数学
基 础 知 识 点
方 法 技 巧
1.2 o lg A.0
lg 510+o
50.25=(
) C.2 D.4
B.1
【答案】 C
核 心 考 向 课 时 限 时 检 测
菜
单
名师金典· 新课标高考总复习·理科数学
课时限时检测九
基 础 知 识 点
7、lg 5+lg 20的值是________
)1 0 2 (
课 时 限 时 检 测
菜
单
名师金典· 新课标高考总复习·理科数学
基 础 知 识 点
考向一 [025]
对数的运算
方 法 技 巧
1-log632+log62· log618 (2)计算 ; log 4
6
核 心 考 向
课 时 限 时 检 测
菜
单
名师金典· 新课标高考总复习·理科数学
补充练习:
基 础 知 识 点
1、写出下列各式x的值
(1)log6 x 2
(3) lg100 x
X=36
方 法 技 巧
(2)log x 8 3 X=2
X=2 X=-2
核 心 考 向
(4) ln e x
2
课 时 限 时 检 测
菜
单
名师金典· 新课标高考总复习·理科数学
补充练习:
基 础 知 识 点
菜
单
名师金典· 新课标高考总复习·理科数学
基 础 知 识 点
例1 (1)已知loga 2=m,loga 3=n,求a2mn
【尝 试 解 答 】
方 法 技 巧
∵loga2=m,loga3=n,
核 心 考 向
∴a =2,a =3,
m n
∴a
菜
2m+n
=(a ) · a =2 ×3=12.
m n 2
核 心 考 向
3lg 2 5lg 3 5 =2lg 3· 6lg 2=4.
课 时 限 时 检 测
菜
单
名师金典· 新课标高考总复习·理科数学
)3( g3 g2 o o g3 l ) o g2 lo ( ) 计算 ( ll
基 础 知 识 点
(方法二)
3
9
4
8
方 法 技 巧
原式=(log3 2+log32 2)(log 22 3+log 3) 23 (log3 2 log 3 2 )(log 2 3 log 2 3 ) log 3 (2 2 )log 2 (3 3 )
( 方 法 一 )
lg 原式= lg lg = lg
2 lg 2 lg 3 lg 3 · lg 4+lg 8 3+lg 9 2 lg 2 lg 3 lg 3 + + · 3 2lg 3 2lg 2 3lg 2
对数的运算
方 法 技 巧
(3)计算(log32+log92)· (log43+log83).
核 心 考 向 课 时 限 时 检 测
菜
单
名师金典· 新课标高考总复习·理科数学
答案:
)3( g3 g2 o o g3 l ) o g2 lo ( ) 计算 ( ll
基 础 知 识 点
3
9
4
8
方 法 技 巧
名师金典· 新课标高考总复习·理科数学
基 础 知 识 点
方 法 技 巧
第六节
对数与对数函数
课 时 限 时 检 测
核 心 考 向
菜
单
名师金典· 新课标高考总复习·理科数学
[考 情 展 望
基 础 知 识 点
] 概 念 与运 算 性 质 . .
方 法 技 巧
1 .考 查 对 数 的
2 .考 查 以 对 数 函 数 为 载 体 的 复 合 函 数 的 图 象 和 性 质 3 .以 比 较 大 小 或 探 求 对 数 函 数 值 域 的 方 式 考 查 对 数 函 数 的 单 调 性 .