统计学第4章作业参考答案.

合集下载

统计学第四章课后习题答案

统计学第四章课后习题答案

第四章一.思考题1、一组数据的分布特征可以从哪几个方面进行测度?答:可以从三个方面进行测度和描述:一是分布的集中趋势,反映各数据向其中心值靠拢或聚集的程度;二是分布的离散程度,反映各数据远离其中心值的趋势;三是分布的形状,反映数据分布的偏态和峰态。

2、怎样理解平均数在统计学中的地位?答:平均数在统计学中具有重要的地位,它是进行统计分析和统计推断的基础。

从统计学思想上看,平均数是一组数据的重心所在,是数据误差相互抵消后的必然结果。

3、简述四分位数的计算方法。

答:四分位数是一组数据排序后处于25%和75%位子上的值。

四分位数是通过3个点将全部数据等分成4分,其中每部分包含25%的数据。

中间的四分位数就是中位数,因此通常所说的四分位数是指处在25%位置上的数值和处在75%位置上的数值。

它是根据为分组数据计算四分位数时,首先对数据进行排序,然后确定四分位数所在的位置,该位置上的数据就是四分位数。

4、对于比率数据的平均数为什么采用几何平均?答:几何平均数是适用于特殊数据的一种平均数,主要适用于计算平均比率。

当所掌握的变量值本身是比率的形式时,采用几何平均法计算平均比率更为合理。

5、简述众数、中位数、平均数的特点和应用场合。

答:众数是数据中出现次数次数最多的变量值。

主要应用于分类数据。

中位数是一组数据排序后处于中间位置的变量值,其适用于顺序数据。

平均数也称均值,它是一组数据相加后除以数据个数的结果,是集中去世的主要测量值,它适用于数值型数据。

6、简述异众比率、四分位差、方差、标准差的使用场合。

答:异众比率主要适合测度分类数据的离散程度,对于顺序数据以及数值型数据也可以计算异众比率。

四分位差主要用于测度顺序数据的离散程度。

方差和标准差适用于测度数值型数据的离散程度。

7、标准分数有哪些用途?答:首先是比较不同单位和不同质数据的位置。

其次是和正态分布结合起来,求得概率和标准分值之间的对应关系。

还有就是在假设检验和估计中应用。

人大版统计学 习题加答案第四章 假设检验

人大版统计学 习题加答案第四章 假设检验

第四章 假设检验填空(5题/章),选择(5题/章),判断(5题/章),计算(3题/章) 一、填空1、在做假设检验时容易犯的两类错误是 和2、如果提出的原假设是总体参数等于某一数值,这种假设检验称为 ,若提出的原假设是总体参数大于或小于某一数值,这种假设检验称为3、假设检验有两类错误,分别是 也叫第一类错误,它是指原假设H0是 的,却由于样本缘故做出了 H0的错误;和 叫第二类错误,它是指原假设H0是 的, 却由于样本缘故做出 H0的错误。

4、在统计假设检验中,控制犯第一类错误的概率不超过某个规定值α,则α称为 。

5、 假设检验的统计思想是小概率事件在一次试验中可以认为基本上是不会发生的,该原理称为 。

6、从一批零件中抽取100个测其直径,测得平均直径为5.2cm ,标准差为1.6cm ,想知道这批零件的直径是否服从标准直径5cm ,在显著性水平α下,否定域为7、有一批电子零件,质量检查员必须判断是否合格,假设此电子零件的使用时间大于或等于1000,则为合格,小于1000小时,则为不合格,那么可以提出的假设为 。

(用H 0,H 1表示)8、一般在样本的容量被确定后,犯第一类错误的概率为α,犯第二类错误的概率为β,若减少α,则β9、某厂家想要调查职工的工作效率,用方差衡量工作效率差异,工厂预计的工作效率为至少制作零件20个/小时,随机抽样30位职工进行调查,得到样本方差为5,试在显著水平为0.05的要求下,问该工厂的职工的工作效率 (有,没有)达到该标准。

KEY: 1、弃真错误,纳伪错误 2、双边检验,单边检验3、拒真错误,真实的,拒绝,取伪错误,不真实的,接受4、显著性水平5、小概率事件6、1.25>21α-z7、H 0:t≥1000 H 1:t <1000 8、增大 9、有二、 选择1、假设检验中,犯了原假设H 0实际是不真实的,却由于样本的缘故而做出的接受H 0的错误,此类错误是( )A 、α类错误B 、第一类错误C 、取伪错误D 、弃真错误 2、一种零件的标准长度5cm ,要检验某天生产的零件是否符合标准要求,建立的原假设和备选假设就为( )A 、0:5H μ=,1:5H μ≠B 、0:5H μ≠,1:5H μ>C 、0:5H μ≤,1:5H μ>D 、0:5H μ≥,1:5H μ< 3、一个95%的置信区间是指( ) A 、总体参数有95%的概率落在这一区间内 B 、总体参数有5%的概率未落在这一区间内C 、在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数D 、在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数4、假设检验中,如果增大样本容量,则犯两类错误的概率( ) A 、都增大 B 、都减小 C 、都不变 D 、一个增大一个减小5、一家汽车生产企业在广告中宣称“该公司的汽车可以保证在2年或24000公里内无事故”,但该汽车的一个经销商认为保证“2年”这一项是不必要的,因为汽车车主在2年内行驶的平均里程超过24000公里。

统计学第四章课后题及答案解析

统计学第四章课后题及答案解析

第四章一、单项选择题1.由反映总体单位某一数量特征的标志值汇总得到的指标是()A.总体单位总量B.质量指标C.总体标志总量D.相对指标2.各部分所占比重之和等于1或100%的相对数()A.比例相对数 B.比较相对数 C.结构相对数 D.动态相对数3.某企业工人劳动生产率计划提高5%,实际提高了10%,则提高劳动生产率的计划完成程度为()A.104.76%B.95.45%C.200%D.4.76%4.某企业计划规定产品成本比上年度降低10%实际产品成本比上年降低了14.5%,则产品成本计划完成程度()A.14.5%B.95%C.5%D.114.5%5.在一个特定总体内,下列说法正确的是( )A.只存在一个单位总量,但可以同时存在多个标志总量B.可以存在多个单位总量,但必须只有一个标志总量C.只能存在一个单位总量和一个标志总量D.可以存在多个单位总量和多个标志总量6.计算平均指标的基本要求是所要计算的平均指标的总体单位应是()A.大量的B.同质的C.有差异的D.不同总体的7.几何平均数的计算适用于求()A.平均速度和平均比率B.平均增长水平C.平均发展水平D.序时平均数8.一组样本数据为3、3、1、5、13、12、11、9、7这组数据的中位数是()A.3B.13C.7.1D.79.某班学生的统计学平均成绩是70分,最高分是96分,最低分是62分,根据这些信息,可以计算的测度离散程度的统计量是()A.方差B.极差C.标准差D.变异系数10.用标准差比较分析两个同类总体平均指标的代表性大小时,其基本的前提条件是( )A.两个总体的标准差应相等B.两个总体的平均数应相等C.两个总体的单位数应相等D.两个总体的离差之和应相等11.已知4个水果商店苹果的单价和销售额,要求计算4个商店苹果的平均单价,应采用()A.简单算术平均数B.加权算术平均数C.加权调和平均数D.几何平均数12.算术平均数、众数和中位数之间的数量关系决定于总体次数的分布状况。

统计学习题答案 4~9章

统计学习题答案 4~9章
经管类 核心课程
统计学
第4章 数据分布特征的测度
4.1 一家汽车零售店的10名销售人员5月份销售的汽 车数量(单位:台)排序后如下: 2 4 7 10 10 10 12 12 14 15 要求: (1)计算汽车销售量的众数、中位数和平均数; M 0 10,M e 10,x 9.6, (2)根据定义公式计算四分位数;QL 5.5,QU 12, (3)计算销售量的标准差;
n ( xi x )3 1.08
(4)计算偏态系数和峰态系数;
(n 1)(n 2) s 4 2 2 n(n 1) ( xi x ) 3[ ( xi x ) ] (n 1)
3
(n 1)(n 2)(n 3)s
4
0.77
(5)对网民年龄的分布特征进行综合分析。 样本数据的均值为24岁,但标准差较大,说明网民 年龄之间差异较大.
0
30
60
经管类 核心课程
统计学
第3章 数据的整理与显示
3.1 为评价家电行业售后服务的质量,随机抽取了由 100家庭构成的一个样本。服务质量的等级分别 表示为:A.好;B.较好;C.一般;D.较差;E.差。 调查结果如下表:
B E C C A D C B A E
D
A B C D B
A
D A B A E
SK 0.203,K 0.688
600以上
合计
11
120
(2) 计算分布的偏态系数和峰态系数。
经管类 核心课程
统计学
第4章 数据分布特征的测度
4.7 为研究少年儿童的成长发育状况,某研究所的 一位调查人员在某城市抽取100名7~17岁的少 年儿童作为样本,另一位调查人员则抽取了 1000名7~17岁的少年儿童作为样本。请回答下 面的问题,并解释其原因。 (1)哪一位调查研究人员在其所抽取的样本中得到的 少年儿童的平均身高较大?或者这两组样本的 平均身高相同? (2)哪一位调查研究人员在其所抽取的样本中得到的 少年儿童身高的标准差较大?或者这两组样本 的标准差相同?

《统计学原理》第四章习题及答案

《统计学原理》第四章习题及答案
高11%,执 行结果提高13%,,则总产值计划完成提高 程度为(C ) 113% 113% 111% A、13%-11% B、 C、 D 1、 1
111%
111%
113%
17:权数对算术平均数的影响作用,实质上取 决于( A)。 A、作为权数的各组单位数占总体单位数比重的 大小 B、各组标志值占总体标志总量比重的大小 C、标志值本身的大小 D、标志值数量的多少
《统计学原理》第四章习题
一.判断题部分 1:同一个总体,时期指标值的大小与时期 长短成正比,时点指标值的大小与时点间 隔成反比。( × ) 2:全国粮食总产量与全国人口对比计算的 人均粮食产量是平均指标。( × )
3:根据分组资料计算算术平均数,当各组 单位数出现的次数均相等时,按加权算数 平均数计算的结果与按简单算数平均数计 算的结果相同。( √ ) 4:同一总体的一部分数值与另一部分数值 对比得到的相对指标是比较相对指标。 (×)
26、第一批产品废品率1%,第二批产品 废品率1.5%,第三批产品废品率2%, 第一批产品数量占总数的25%,第二批 产品数量占总数的30%,则平均废品率 为(C)。
A、1.5% C、1.6% B、4% D、4.5%
27、某企业工人劳动生产率,计划提高5 %,实际提高了10%,则提高劳动生产 率的计划完成程度为(A)。 A、104.76% B、95.45% C、200% D、76%
A . 500 700 600 500 700 600 110 % 115 % 105 %
110 % 500 115 % 700 105 % 600 B . 500 700 600
110 % 115 % 105 % C . 3 10 % 15 % 5 % D . 3

《统计学概论》第四章课后练习题答案

《统计学概论》第四章课后练习题答案

《统计学概论》第四章课后练习题答案一、思考题1.相对指标有什么作用?P90-912.平均指标有什么作用?P963.为什么说算术平均是最基本平均指标计算方法?P974.强度相对数和平均指标有什么区别?强度相对指标与平均指标的区别主要表现在以下两点:(1)指标的含义不同。

强度相对指标说明的是某一现象在另一现象中发展的强度、密度或普遍程度;而平均指标说明的是现象发展的一般水平,计算方法不同。

(2)强度相对指标与平均指标,虽然都是两个有联系的总量指标之比,但是,强度相对指标分子与分母的联系,只表现为一种经济关系,而平均指标分子与分母的联系是一种内在的联系,即分子是分母(总体单位)所具有的标志,对比结果是对总体各单位某一标志值的平均。

5.时期指标和时点指标有什么区别?P876.为什么说总量指标是基础指标?P877.简述平均指标及其作用。

(2009.10)P96二、单项选择题1.某企业2006年产值比上年增加了150万元,这个指标是()。

A.时期指标B.时点指标C.相对指标D.平均指标2.2006年中国新增就业人数575万人,这个指标是()。

A.时期指标B.时点指标C.相对指标D.平均指标3.某地区2006年底常住人口为100万人,医疗机构500个,平均每个医疗结构可以服务2000人,这个指标是()。

A.平均指标B.强度相对指标C.比较相对指标D.比例相对指标4.研究2006年中国31省区直辖市经济发展情况,江苏省GDP为21645.8亿元,浙江省GDP为15742.51亿元,江苏省GDP与浙江省GDP相比为1:0.73,这个指标是()。

A.比较相对数B.强度相对数C.比例相对数D.结构相对数5.2006年浙江省人均GDP 为31874元/人,全国总的人均GDP 为16084元/人,浙江省是全国的1.98倍,这个指标是( )。

P 94A .比较相对数B .强度相对数C .比例相对数D .结构相对数【解析】全国人均GDP 和浙江省人均GDP 是不同空间下的同类指标数值,不是总体全部数值和总体部分数值的关系,因而“浙江省GDP/全国GDP”是一个比较相对数。

《统计学原理》作业(二)参考答案

《统计学原理》作业(二)参考答案

《统计学原理》作业(二)(第四章)一、判断题1、总体单位总量和总体标志总量是固定不变的,不能互相变换。

(×)2、相对指标都是用无名数形式表现出来的。

(×)3、按人口平均的粮食产量是一个平均数。

(×)4、在特定条件下,加权算术平均数等于简单算术平均数。

(√)5、用总体部分数值与总体全部数值对比求得的相对指标。

说明总体内部的组成状况,这个相对指标是比例相对指标。

(×)6、国民收入中积累额与消费额之比为1:3,这是一个比较相对指标。

(×)7、标志变异指标数值越大,说明总体中各单位标志值的变异程度就越大,则平均指标的代表性就越小。

(√)二、单项选择1、总量指标数值大小(A)A、随总体范围扩大而增大B、随总体范围扩大而减小C、随总体范围缩小而增大D、与总体范围大小无关2、直接反映总体规模大小的指标是(C)A、平均指标B、相对指标C、总量指标D、变异指标3、总量指标按其反映的时间状况不同可以分为(D)A、数量指标和质量指标B、实物指标和价值指标C、总体单位总量和总体标志总量D、时期指标和时点指标4、由反映总体各单位数量特征的标志值汇总得出的指标是(B)A、总体单位总量B、总体标志总量C、质量指标D、相对指标5、计算结构相对指标时,总体各部分数值与总体数值对比求得的比重之和(C)A、小于100%B、大于100%C、等于100%D、小于或大于100%6、相对指标数值的表现形式有( D )A、无名数B、实物单位与货币单位C、有名数D、无名数与有名数7、下列相对数中,属于不同时期对比的指标有(B)A、结构相对数B、动态相对数C、比较相对数D、强度相对数8、假设计划任务数是五年计划中规定最后一年应达到的水平,计算计划完成程度相对指标可采用(B)A、累计法B、水平法C、简单平均法D、加权平均法9、按照计划,今年产量比上年增加30%,实际比计划少完成10%,同上年比今年产量实际增长程度为(D)。

统计学 第四版 (贾俊平 著) 中国人民大学出版社 第四章课后答案

统计学 第四版 (贾俊平 著) 中国人民大学出版社 第四章课后答案
解: (1)
62.75
2 33.9375
82 64
(2) 可能的样本个数:
(3)由题可得所有样本的样本均值如下表:
第(3)小题图表
(4)利用SPSS软件得到Q-Q图:
(5)
x i 1

xi 64
m
62.75
33.9375 x 4.1193 2 n
0 4
(2) P(X≤2 )=
4.3 求标准正态分布的概率: (1)P ( 0 ≤ Z ≤ 1.2) ; (2)P ( -0.48 ≤ Z ≤ 0); (3)P (Z > 1.33)。
解: (1)P ( 0 ≤ Z ≤ 1.2) = P ( 1.2) -P ( 0 )= 0.3849 (2)P ( -0.48 ≤ Z ≤ 0 ) = P ( 0) -P (-0.48)= 0.1844 (3)P (Z > 1.33) = P ( -1.33) = 0.0918
(1 )
500 0.4 0.6 0.0219089 500
(2)
(3)由中心极限定理可知 p的分布近似正态分布
4.7 假设一个总体共有8个数值: 54,55,59,63,64,68,69,70.从该总体 中按重复抽样方式抽取n=2的随机样本。
(1)计算总体的均值和方差。 (2)一共有多少个可能的样本? (3)抽出所有可能的样本,并计算出每个样本的均值。 (4)画出样本均值的正态概率图,判断样本均值是否服从正态分布。 (5)计算所有样本均值的平均数和标准差,并与总体的均值和标准差进行对比得 到的结论是什么?
E ( x ) 200

n 50 5 100
(2 ) x
(3) 由中心极限定理可知 X 的概率分布近似服从正态分布
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 动态数列
一、单项选择
1、关于发展水平的下列说法不正确的是 ( C )
A 、发展水平又称为动态数列水平
B 、发展水平实际就是动态数列中的各项具体的指标值
C 、发展水平往往表现为总量指标
D 、发展水平一般用i a 表示
2、下列指标属于时点指标的是 ( D )
A 、工资总额
B 、国内生产总值
C 、商品销售额
D 、固定资产价值
3、某企业2005年至2011年月人均收入分别为4450元、4550元、4615元、4625元、4750元、4900元和5400元,该企业月人均收入的平均发展速度为 ( A )
A 、103.3%
B 、102.8%
C 、98.6%
D 、105.3%
4、时期数列平均发展水平的计算公式是 ( D )
A 、1221321
-+
++++-n a a a a a n n B 、∑∑f af
C 、nf a ∑
D 、n
a ∑ 5、下列表述不正确的是 ( B )
A 、环比发展速度的连乘积等于相应的定基发展速度
B 、环比增长速度的连乘积等于相应的定基增长速度
C 、环比增长速度=环比发展速度-1
D 、定基增长速度=定基发展速度-1
6、某企业2012年6月30日职工人数为435人,
7、
8、9月末职工人数分别为452人、462人和576人,则该企业第三季度平均职工人数为 ( C )
A 、497人
B 、496人
C 、473人
D 、475人
7、某地区生产总值2011年比2010年增长15%,2010年比2009年增长12%,2009年比2008年增长10%,则2011年比2008年增长 ( D )
A 、37%
B 、18%
C 、41.5%
D 、41.7%
8、若各年环比增长速度保持不变,则各年的增长量 ( A )
A 、逐年增加
B 、逐年减少
C 、保持不变
D 、无法判断
9、以1978年为基期,2011年为报告期,计算某现象的平均发展速度应开( D )
A 、30次方
B 、31次方
C 、32次方
D 、33次方
10、平均发展速度是 ( C )
A 、定基发展速度的算术平均数
B 、环比发展速度的算术平均数
C 、环比发展速度的几何平均数
D 、增长速度加上100%
11、下列数列中属于动态数列的是 ( D )
A 、学生按成绩分组形成的数列
B 、工业企业按地区分组形成的数列
C 、职工按工资水平高低排列形成的数列
D 、进出口总额按时间先后顺序排列形成的数列
12、说明现象较长时期内发展的总速度的指标是( C )
A、环比发展速度
B、平均发展速度
C、定基发展速度
D、定基增长速度
13、若现象大体上以相同的二级增长量增(减)变动,则宜适合拟一条( B )
A、直线
B、抛物线
C、指数曲线
D、双曲线
14、若社会经济现象的逐期增长量大体相同时,这种发展趋势呈现为一条( B )
A、抛物线
B、直线
C、指数曲线
D、双曲线
15、各月季节比率之和为( D )
A、100%
B、400%
C、1000%
D、1200%
二、多项选择
1.下列哪些属于时期数列(AD )
A、历年旅客周转量
B、某金融机构历年年末贷款余额
C、历年黄金储备
D、历年图书出版量
E、历年职工平均工资
2.某商场各季度末的商品库存额资料如下:
则该动态数列(BCE)
A、各项指标数值是连续统计的结果
B、各项指标数值是不连续统计的结果
C、各项指标数值反映的是现象在某一时点上的总量
D、各项指标数值反映的是现象在一段时期内发展的总量
E、全年平均每季的商品库存额是个动态平均数
3.计算平均发展速度的方法有(CD )
A、算术平均法
B、调和平均法
C、几何平均法
D、高次方程法
E、加权平均法
4.某企业今年实现利税1000万元,比去年增加200万元,则利税额今年与去年相比(ADE )
A、增加200万元是增长量
B、发展速度为120%
C、增长速度为20%
D、发展速度为125%
E、增长速度为25%
5.测定长期趋势的方法主要有(BCD )
A、因素分析法
B、移动平均法
C、最小平方法
D、间隔扩大法
E、同期平均法
6.已知某地区粮食产量的环比发展速度2008年为102.5%,2009年为103%,2011年为105%,2011年对于2007年的定基发展速度为118%,则(BCE )
A、2010年的环比发展速度为113%
B、2010年的环比发展速度为106.45%
C、2011年的粮食产量比2009年增加5%
D 、2011年的粮食产量比2006年增加118%
E 、该地区粮食产量的总速度为118%
三、计算
试计算:①甲、乙两国各自产量的年平均增长速度(以2006年为基期);
②2011年以后两国均按各自速度增长,甲国的产量何时才能赶上乙国? ③如果甲国要在2017年赶上乙国的产量,则2011年后平均每年的增长速度应该是多少?
)(2.30344.146.24522013万元)(=⨯+=y
x
y c 4.146.245+=∴。

相关文档
最新文档