2012年中考数学精析系列北京卷

合集下载

2012年北京市中考数学试卷(解析版)

2012年北京市中考数学试卷(解析版)

2012年北京市高级中等学校招生考试数 学1. 9-的相反数是A .19-B .19C .9-D .9【解析】 D【点评】 本题考核的是相反数,难度较小,属送分题, 本题考点:相反数.难度系数为0.95.2. 首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元,将60 110 000 000用科学记数法表示应为A .96.01110⨯B .960.1110⨯C .106.01110⨯D .110.601110⨯【解析】 C【点评】 本题是以时政为背景的一道题,考核了科学记数法的同时让学生了解我国经贸发展的影响力及相关情况,进行爱国主义教育。

此类与时事政治相关的考题是全国各地的总体命题趋势. 本题考点:科学记数法. 难度系数为:0.93. 正十边形的每个外角等于A .18︒B .36︒C .45︒D .60︒ 【解析】 B【点评】 本题考核了多边形的外角和及利用外角和列方程解决相关问题.多边形的外角和是初一下的内容,可能时间久了部分学生会忘记,但是这并不是重点,如果我们在学习这个知识的时候能真正理解,在考试时即使忘记了,推导一下也不会花多少时间,所以,学习数学,理解比记忆更重要. 本题考点:多边形的外角和(或多边形内角和公式),及利用公式列方程解应用题 难度系数:0.754. 右图是某个几何体的三视图,该几何体是A .长方体B .正方体C .圆柱D .三棱柱 【解析】 D【点评】 本题考核了基本几何体的三视图,判断简单物体的三视图,根据三视图描述实物原型.本题考点:立体图形的三视图 难度系数:0.8 5. 班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是A .16B .13C .12D .23【解析】 B【点评】 本题是以班级优秀评比奖励为背景,考核了学生对概率求解的相关知识.,同时也进行了学生关爱集体教育,是一道很不错的题目 本题考点:求概率. 难度系数:0.96. 如图,直线AB ,CD 交于点O ,射线OM 平分AOC ∠,若76BOD ∠=︒,则BOM ∠等于A .38︒B .104︒C .142︒D .144︒ 【解析】 C【点评】 本题对对顶角、角平分线的概念进行考核,用角平分线的性质解决简单问题,并结合图形分析角与角之间的关系本题考点:角与角平分线. 难度系数:0.857. 某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:用电量(度) 120 140 160 180 200户数 2 3 6 7 2 则这20户家庭该月用电量的众数和中位数分别是A .180,160B .160,180C .160,160D .180,180 【解析】 A【点评】 本题以调查家庭单月用电量为背景,在向学生渗透参与社会活动、关心生活的基础上考核了数理统计的相关知识。

2012年北京市中考试题及答案汇总

2012年北京市中考试题及答案汇总

2012年北京市中考试题及答案汇总目录2012年北京市中考数学试卷 (2)2012年北京市中考数学答案 (8)2012年北京市中考语文试卷 (14)2012年北京市中考语文答案 (21)2012年北京市中考英语试卷 (23)2012年北京市中考英语答案 (32)2012年北京市中考化学试卷 (33)2012年北京市中考化学答案 (40)2012年北京市中考物理试卷 (42)2012年北京市中考物理答案 (49)2012年北京市高级中等学校招生考试数 学 试 卷学校 姓名 准考证号一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1. 9-的相反数是A .19-B .19C .9-D .92. 首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元,将60 110 000 000用科学记数法表示应为 A .96.01110⨯B .960.1110⨯C .106.01110⨯D .110.601110⨯3. 正十边形的每个外角等于A .18︒B .36︒C .45︒D .60︒4. 右图是某个几何体的三视图,该几何体是A .长方体B .正方体C .圆柱D .三棱柱5. 班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是 A .16B .13C .12D .236. 如图,直线AB ,C D 交于点O ,射线O M 平分A O C ∠,若76BO D ∠=︒,则BO M ∠等于 A .38︒ B .104︒C .142︒D .144︒7. 某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:A .180,160B .160,180C .160,160D .180,1808. 小翔在如图1所示的场地上匀速跑步,他从点A 出发,沿箭头所示方向经过点B 跑到点C ,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t (单位:秒),他与教练的距离为y (单位:米),表示y 与t 的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的 A .点MB .点NC .点PD .点Q二、填空题(本题共16分,每小题4分) 9. 分解因式:269mn mn m ++= .10.若关于x 的方程220x x m --=有两个相等的实数根,则m 的值是 . 11.如图,小明同学用自制的直角三角形纸板D EF 测量树的高度AB ,他调整自己的位置,设法使斜边D F 保持水平,并且边D E与点B 在同一直线上.已知纸板的两条直角边40c m D E =,20cm EF =,测得边D F 离地面的高度1.5mAC =,8m C D =,则树高AB = m .12.在平面直角坐标系xOy 中,我们把横 、纵坐标都是整数的点叫做整点.已知点()04A ,,点B 是x 轴正半轴上的整点,记AO B △内部(不包括边界)的整点个数为m .当3m =时,点B 的横坐标的所有可能值是 ;当点B 的横坐标为4n (n 为正整数)时,m = (用含n 的代数式表示.)三、解答题(本题共30分,每小题5分)13.计算:()11π32sin 458-⎛⎫-+︒- ⎪⎝⎭.14.解不等式组:4342 1.x x x x ->⎧⎨+<-⎩,15.已知023a b =≠,求代数式()225224a b a b a b-⋅--的值.16.已知:如图,点E A C ,,在同一条直线上,AB C D ∥,AB CE AC CD ==,.求证:B C E D =.17.如图,在平面直角坐标系xOy 中,函数()40y x x=>的图象与一次函数y kx k =-的图象的交点为()2A m ,.(1)求一次函数的解析式;(2)设一次函数y kx k =-的图象与y 轴交于点B ,若P 是x 轴上一点,且满足P A B △的面积是4,直接写出点P 的坐标.18.列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.四、解答题(本题共20分,每小题5分)19.如图,在四边形ABC D 中,对角线AC BD ,交于点E ,904530BAC CED D CE D E ∠=︒∠=︒∠=︒=,,,BE =.求C D 的长和四边形ABC D 的面积.20.已知:如图,AB 是O ⊙的直径,C 是O ⊙上一点,O D BC ⊥于点D ,过点C 作O ⊙的切线,交O D 的延长线于点E ,连结BE . (1)求证:BE 与O ⊙相切;(2)连结AD 并延长交BE 于点F ,若9OB =,2s i n 3ABC ∠=,求BF的长.21.近年来,北京市大力发展轨道交通,轨道运营里程大幅增加,2011年北京市又调整修订了2010至2020年轨道交通线网的发展规划.以下是根据北京市轨道交通指挥中心发布的有关数据制作的统计图表的一部分.请根据以上信息解答下列问题:(1)补全条形统计图并在图中标明相应数据;(2)按照2011年规划方案,预计2020年北京市轨道交通运营里程将达到多少千米?(3)要按时完成截至2015年的轨道交通规划任务,从2011到2015这4年中,平均每年需新增运营里程多少千米?22.操作与探究:(1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以13,再把所得数对应的点向右平移1个单位,得到点P 的对应点P '.点A B ,在数轴上,对线段AB 上的每个点进行上述操作后得到线段A B '',其中点A B ,的对应点分别为A B '',.如图1,若点A 表示的数是3-,则点A '表示的数是 ;若点B '表示的数是2,则点B 表示的数是 ;已知线段AB 上的点E 经过上述操作后得到的对应点E '与点E 重合,则点E 表示的数是 ;北京市轨道交通已开通线路相关数据统计表(截至2010年底)(2)如图2,在平面直角坐标系xOy 中,对正方形ABC D 及其内部的每个点进行如下操作:把每 个点的横、纵坐标都乘以同一种实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(00m n >>,),得到正方形A B C D ''''及其内部的点,其中点A B ,的对应点分别为A B '',。

2012年北京市中考数学及答案解析

2012年北京市中考数学及答案解析

2012年北京市高级中等学校招生考试数学1A(满分:120分时间:120分钟)第Ⅰ卷(选择题,共32分)一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的.1.-9的相反数是()A.-19B.19C.-9D.92.首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60110000000美元.将60110000000用科学记数法表示应为()A.6.011×109B.60.11×109C.6.011×1010D.0.6011×10113.正十边形的每个外角等于()A.18°B.36°C.45°D.60°4.如图是某个几何体的三视图,该几何体是()A.长方体B.正方体C.圆柱D.三棱柱5.班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是()A.16B.13C.12D.236.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于()A.38°B.104°C.142°D.144°7.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:用电量(度)120140160180200户数23672则这20户家庭该月用电量的众数和中位数分别是()A.180,160B.160,180C.160,160D.180,1808.小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的()A.点MB.点NC.点PD.点Q第Ⅱ卷(非选择题,共88分)二、填空题(本题共16分,每小题4分)9.分解因式:mn2+6mn+9m=.10.若关于x 的方程x 2-2x-m=0有两个相等的实数根,则m 的值是 .11.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边DE=40 cm,EF=20 cm,测得边DF 离地面的高度AC=1.5 m,CD=8 m,则树高AB= m.12.在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,4),点B 是x 轴正半轴上的整点,记△AOB 内部(不包括边界)的整点个数为m.当m=3时,点B 的横坐标的所有可能值是 ;当点B 的横坐标为4n(n 为正整数)时,m= (用含n 的代数式表示).三、解答题(本大题共13小题,共72分)13.(5分)计算:(π-3)0+√18-2sin 45°-(18)-1.14.(5分)解不等式组:{4x -3>x,x +4<2x -1.15.(5分)已知a 2=b3≠0,求代数式5a -2ba 2-4b 2·(a-2b)的值.16.(5分)已知:如图,点E,A,C 在同一直线上,AB ∥CD,AB=CE,AC=CD. 求证:BC=ED.(x>0)的图象与一次函数y=kx-k的图象的交17.(5分)如图,在平面直角坐标系xOy中,函数y=4x点为A(m,2).(1)求一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,若P是x轴上一点,且满足△PAB的面积是4,直接写出点P的坐标.18.(5分)列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.19.(5分)如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=√2,BE=2√2.求CD的长和四边形ABCD的面积.20.(5分)已知:如图,AB是☉O的直径,C是☉O上一点,OD⊥BC于点D,过点C作☉O的切线,交OD的延长线于点E,连结BE.(1)求证:BE与☉O相切;,求BF的长.(2)连结AD并延长交BE于点F,若OB=9,sin∠ABC=231B21.(5分)近年来,北京市大力发展轨道交通,轨道运营里程大幅增加,2011年北京市又调整修订了2010至2020年轨道交通线网的发展规划.以下是根据北京市轨道交通指挥中心发布的有关数据制作的统计图表的一部分.北京市2007至2011年轨道交通运营总里程统计图截至2020年北京市轨道交通运营总里程分阶段规划统计图(2011年规划方案)北京市轨道交通已开通线路相关数据统计表(截至2010年底)开通时间开通线路运营里程(千米) 19711号线31 19842号线23200313号线41八通线19 20075号线2820088号线5 10号线25机场线2820094号线282010房山线22大兴线22亦庄线23昌平线2115号线20请根据以上信息解答下列问题:(1)补全条形统计图并在图中标明相应数据;(2)按照2011年规划方案,预计2020年北京市轨道交通运营总里程将达到多少千米?(3)要按时完成截至2015年的轨道交通规划任务,从2011到2015年这4年中,平均每年需新增运营里程多少千米?22.(5分)操作与探究:(1)对数轴上的点P进行如下操作:先把点P表示的数乘以1,再把所得数对应的点向右平移13个单位,得到点P的对应点P'.点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段A'B',其中点A,B的对应点分别为A',B'.如图1,若点A表示的数是-3,则点A'表示的数是;若点B'表示的数是2,则点B表示的数是;已知线段AB上的点E经过上述操作后得到的对应点E'与点E 重合,则点E表示的数是;图1(2)如图2,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0),得到正方形A'B'C'D'及其内部的点,其中点A,B的对应点分别为A',B'.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F'与点F重合,求点F的坐标.图2在x=0和x=2时的函数值相等.23.(7分)已知二次函数y=(t+1)x2+2(t+2)x+32(1)求二次函数的解析式;(2)若一次函数y=kx+6的图象与二次函数的图象都经过点A(-3,m),求m和k的值;(3)设二次函数的图象与x轴交于点B,C(点B在点C的左侧),将二次函数的图象在点B,C间的部分(含点B和点C)向左平移n(n>0)个单位后得到的图象记为G,同时将(2)中得到的直线y=kx+6向上平移n个单位.请结合图象回答:当平移后的直线与图象G有公共点时,n的取值范围.24.(7分)在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA 绕点P顺时针旋转2α得到线段PQ.(1)若α=60°且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数;(2)在图2中,点P不与点B,M重合,线段CQ的延长线与射线BM交于点D,猜想∠CDB的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=QD,请直接写出α的范围.25.(8分)在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1-x2|≥|y1-y2|,则点P1与点P2的“非常距离”为|x1-x2|;若|x1-x2|<|y1-y2|,则点P1与点P2的“非常距离”为|y1-y2|.例如:点P1(1,2),点P2(3,5),因为|1-3|<|2-5|,所以点P1与点P2的“非常距离”为|2-5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).(1)已知点A(-12,0),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)已知C是直线y=34x+3上的一个动点,①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E和点C的坐标.2012年北京市高级中等学校招生考试一、选择题1.D-9的相反数是9.2.C60110000000用科学记数法表示为6.011×1010.3.B多边形的外角和为360°,正十边形有十个相等的外角,每个外角为360°10=36°.4.D主视图和左视图均为长方形,且俯视图为三角形的几何体是三棱柱.5.B6份奖品中科普读物占2份,故恰好取到科普读物的概率是26=1 3 .6.C∠AOM=12∠AOC=12∠BOD=12×76°=38°,∠BOM=180°-∠AOM=180°-38°=142°.7.A在20户家庭该月的用电量中,数据180出现次数最多(7次),故众数为180.将20个用电量数据从小到大排列,第10个和第11个数据的平均数为这组数据的中位数,故中位数为160.8.D若教练在点M(半圆AB的圆心),小翔从A跑到B的过程中与点M距离相等,此部分函数图象应平行于t轴,与题中图2不符,排除选项A.若教练在点N,由于半圆AB的对称轴PM 和线段BC的对称轴相交于点N,函数图象应由各自成轴对称的两部分组成,与题中图2不符,排除选项B.若教练在点P,函数图象应由成轴对称的一部分和y随t增大而减小的一部分组成,与题中图2不符,排除选项C.题中图2与教练在点Q时y随t的变化趋势相符,故选D.评析解决本题的关键是根据问题情境分析函数随自变量变化的趋势,定性分析,确定答案.属中档题.二、填空题9.答案 m(n+3)2解析 mn 2+6mn+9m=m(n 2+6n+9)=m(n+3)2. 10.答案 -1解析 方程有两个相等的实数根,故Δ=4+4m=0,故m=-1. 11.答案 5.5解析 由已知得△DEF ∽△DCB,∴EF BC =ED CD ,∵DE=40 cm=0.4 m,EF=20 cm=0.2 m,∴0.2BC =0.48, ∴BC=4 m,∴AB=4+1.5=5.5 m. 12.答案 3,4;6n-3解析 如图,当B 点的横坐标分别是3、4时,△AOB 内部(不包括边界)的整点个数均为3;分别取n 等于1、2、3、4、…,则4n 等于4、8、12、16、…,画图可得m 分别等于3、9、15、21、…,故m=6n-3.评析 读懂题意、根据题意画图是解决本题的关键.本题属中档题.三、解答题13.解析 (π-3)0+√18-2sin 45°-(18)-1=1+3√2-2×√22-8 =2√2-7.14.解析{4x -3>x, ①x +4<2x -1.②解不等式①,得x>1. 解不等式②,得x>5.∴不等式组的解集为x>5. 15.解析5a -2b a 2-4b2·(a-2b)=5a -2b(a+2b)(a -2b)·(a-2b) =5a -2b a+2b. ∵a 2=b3≠0, ∴3a=2b.∴原式=5a -3a a+3a =2a 4a =12. 16.证明 ∵AB ∥CD,∴∠BAC=∠ECD.在△ABC 和△CED 中,{AB =CE,∠BAC =∠ECD,AC =CD,∴△ABC ≌△CED.∴BC=ED.17.解析 (1)∵点A(m,2)在函数y=4x (x>0)的图象上, ∴2m=4.解得m=2.∴点A 的坐标为(2,2).∵点A(2,2)在一次函数y=kx-k 的图象上,∴2k-k=2.解得k=2.∴一次函数的解析式为y=2x-2.(2)点P 的坐标为(3,0)或(-1,0).18.解析 设一片国槐树叶一年的平均滞尘量为x 毫克.由题意,得1 0002x -4=550x. 解得x=22.经检验,x=22是原方程的解,且符合题意.答:一片国槐树叶一年的平均滞尘量是22毫克.19.解析 过点D 作DF ⊥AC 于点F.在Rt △DEF 中,∠DFE=90°,∠DEF=45°,DE=√2,∴DF=EF=1.在Rt △CFD 中,∠CFD=90°,∠DCF=30°,∴CD=2DF=2.∴FC=√3.在Rt △ABE 中,∠BAE=90°,∠AEB=∠CED=45°,BE=2√2,∴AB=AE=2.∴AC=AE+EF+FC=3+√3.∴S 四边形ABCD =S △ACD +S △ABC=1 2AC·DF+12AC·AB=1 2×(3+√3)×1+12×(3+√3)×2=9 2+32√3.∴四边形ABCD的面积是92+32√3.20.解析(1)证明:连结OC.∵EC与☉O相切,C为切点,∴∠ECO=90°.∵OB=OC,∴∠OCB=∠OBC.∵OD⊥BC,∴DB=DC.∴直线OE是线段BC的垂直平分线.∴EB=EC.∴∠ECB=∠EBC.∴∠ECO=∠EBO.∴∠EBO=90°.∵AB是☉O的直径,∴BE与☉O相切.(2)过点D作DM⊥AB于点M,则DM∥FB.在Rt△ODB中,∵∠ODB=90°,OB=9,sin∠ABC=23,∴OD=OB·sin∠ABC=6.由勾股定理得BD=√OB2-OD2=3√5.在Rt△DMB中,同理得DM=BD·sin∠ABC=2√5.BM=√BD2-DM2=5.∵O是AB的中点,∴AB=18.∴AM=AB-BM=13.∵DM∥FB,∴△AMD∽△ABF.∴MDBF =AM AB.∴BF=MD·ABAM =36√513.21.解析(1)补全统计图如图,所补数据为228.北京市2007至2011年轨道交通运营总里程统计图(2)预计2020年运营总里程将达到336÷33.6%=1 000(千米).(3)2010到2015年新增运营里程为1 000×36.7%=367(千米),其中2010到2011年新增运营里程为372-336=36(千米),2011到2015年平均每年新增运营里程为367-364=82.75(千米). 评析 本题阅读量大,三个图表中信息交错,较往年的统计题难度有所增加.22.解析 (1)点A'表示的数是 0 ;点B 表示的数是 3 ;点E 表示的数是 32. (2)∵点A(-3,0),B(3,0)的对应点分别为A'(-1,2),B'(2,2),∴{-3a +m =-1,3a +m =2.解得{a =12,m =12. 由题意可得n=2.设点F 的坐标为(x,y).∴{12x +12=x,12y +2=y.解得{x =1,y =4. ∴点F 的坐标为(1,4).23.解析 (1)由题意得(t+1)·22+2(t+2)·2+32=32. 解得t=-32. ∴二次函数的解析式为y=-12x 2+x+32. (2)∵点A(-3,m)在二次函数y=-12x 2+x+32的图象上, ∴m=-12×(-3)2+(-3)+32=-6. ∴点A 的坐标为(-3,-6).∵点A 在一次函数y=kx+6的图象上,∴k=4.(3)由题意,可得点B,C 的坐标分别为(-1,0),(3,0).平移后,点B,C 的对应点分别为B'(-1-n,0),C'(3-n,0).将直线y=4x+6平移后得到直线y=4x+6+n.如图1,当直线y=4x+6+n 经过点B'(-1-n,0)时,图象G(点B'除外)在该直线右侧,可得n=23.图1如图2,当直线y=4x+6+n经过点C'(3-n,0)时,图象G(点C'除外)在该直线左侧,可得n=6.∴由图象可知,符合题意的n的取值范围是23≤n≤6.图2评析本题图象G(部分抛物线)向左平移n个单位,直线向上平移n个单位(相当于向左平移14n个单位),求它们有公共点时n的取值范围,具有一定难度.24.解析(1)补全图形,如图1;∠CDB=30°.图1(2)猜想:∠CDB=90°-α.证明:如图2,连结AD,PC.∵BA=BC,M是AC的中点,∴BM⊥AC.图2∵点D,P在直线BM上,∴PA=PC,DA=DC.又∵DP为公共边,∴△ADP≌△CDP.∴∠DAP=∠DCP,∠ADP=∠CDP.又∵PA=PQ,∴PQ=PC.∴∠DCP=∠PQC.∴∠DAP=∠PQC.∵∠PQC+∠DQP=180°,∴∠DAP+∠DQP=180°.∴在四边形APQD中,∠ADQ+∠APQ=180°.∵∠APQ=2α,∴∠ADQ=180°-2α.∴∠CDB=12∠ADQ=90°-α.(3)α的范围是45°<α<60°.25.解析(1)①点B的坐标是(0,2)或(0,-2).(写出一个答案即可)②点A 与点B 的“非常距离”的最小值是12. (2)①过点C 作x 轴的垂线,过点D 作y 轴的垂线,两条垂线交于点M,连结CD.如图1,当点C 在点D 的左上方且使△CMD 是等腰直角三角形时,点C 与点D 的“非常距离”最小.理由如下:记此时点C 所在位置的坐标为(x 0,34x 0+3). 当点C 的横坐标大于x 0时,线段CM 的长度变大,由于点C 与点D 的“非常距离”是线段CM 与线段MD 长度的较大值,所以点C 与点D 的“非常距离”变大;当点C 的横坐标小于x 0时,线段MD 的长度变大,点C 与点D 的“非常距离”变大.所以当点C 的横坐标等于x 0时,点C 与点D 的“非常距离”最小.图1∵CM=34x 0+3-1,MD=-x 0,CM=MD,∴34x 0+3-1=-x 0. 解得x 0=-87. ∴点C 的坐标是(-87,157). ∴CM=MD=87. ∴当点C 的坐标是(-87,157)时,点C 与点D 的“非常距离”最小,最小值是87. ②如图2,对于☉O 上的每一个给定的点E,过点E 作y 轴的垂线,过点C 作x 轴的垂线,两条垂线交于点N,连结CE.由①可知,当点C 运动到点E 的左上方且使△CNE 是等腰直角三角形时,点C 与点E 的“非常距离”最小.当点E 在☉O 上运动时,求这些最小“非常距离”中的最小值,只需使CE 的长度最小.因此,将直线y=34x+3沿图中所示由点C 到点E 的方向平移到第一次与☉O 有公共点,即与☉O 在第二象限内相切的位置时,切点即为所求点E.作EP ⊥x 轴于点P.设直线y=34x+3与x 轴,y 轴分别交于点H,G. 可求得HO=4,GO=3,GH=5.可证△OEP ∽△GHO.∴OP GO =EP HO =OE GH. ∴OP 3=EP 4=15. ∴OP=35,EP=45. ∴点E 的坐标是(-35,45).设点C的坐标为(x C,34x C+3).∵CN=34x C+3-45,NE=-35-x C,∴34x C+3-45=-35-x C.解得x C=-85.∴点C的坐标是(-85,9 5 ).∴CN=NE=1.∴当点C的坐标是(-85,95),点E的坐标是(-35,45)时,点C与点E的“非常距离”最小,最小值是1.图2评析本题定义了平面内两点之间的“非常距离”(两点水平距离与竖直距离之中较大者),求定点A与动点B之间“非常距离”的最小值,进而利用获得最小“非常距离”的方法,求圆上的动点E与直线上的动点C之间“非常距离”最小时相应点的坐标.全面考查学生的综合能力,难度较大.。

2012年北京市中考数学试题及答案往年数学知识点

2012年北京市中考数学试题及答案往年数学知识点

2012年北京市高级中等学校招生考试数 学 试 卷 录入 by iC 2012.06.25一、选择题(本题共32分,每小题4分)下面各题无有四个选项,其中只有一个符合题意的. 12( 345等6则7.某课外小组的同学们实践活动中调查了20户家庭某月用电量,如下表所示:D则这户家庭用电量的众数和中位数分别是( ) A .180,160 B .160,180 C .160,160D .180,1808.小翔在如图1所示的场地上匀速跑步,他从点A 出发,沿箭头所示的方向经过B 跑到 点C ,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翊跑步的时间为t (单位:秒),他与教练距离为y (单位:米),表示y 与t 的函数关系的图象大致如图2,刚这个固定位置可能是图1的( ) A .点M B .点N C .点P D .Q图1 图2 二、填空题(本题共16分,每小题4分)9.分解因式:269m mn n m ++=_________________.10.若关于x 的方程220x x m --=有两个相等的实数根,则m 的值是______.11.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上,已知纸板的两条直角边40DE cm =,20EF cm =,测得边DF 离地图的高度 1.5AC m =,8CD m =,则树高AB =_____m .12.在平面直角坐标系xOy 中,我们把横纵坐标都是整数点的叫做整点.已知点A (0,4),QNMPC B AO30 t / 秒/米1 2 3 4 13 12 11 10 9 87654 321AOy x点B 是x 正半轴上的整点,记△AOB 内部(不包括边界)的整数点个数为m ,当3m =时,点B 的横坐标的所有可能值是_______;当点B 的横坐标为4n (n 为正整数)时,m =____________.(用含n 的代数式表示).三、解答题(本题共30分,每小题5分)13.计算:011(2sin 45()8-π-3)︒-.14.解不等式组:43421x xx x ->⎧⎨+<-⎩.15.已知023a b =≠,求代数式22452(2)b a b a b a ⋅---的值.16.已知:如图,点E ,A ,C 在同一直线上,AB CD ,AB CE =,AC CD =.求证:BC ED =.17.如图,在平面直角坐标系xOy 中,函数4(0)y x x=>的图象与一次函数y kx k =-的图象交点为A (m ,2).(1)求一次函数的解析式;(2)设一次函数y kx k =-的图象与y 轴交于点B ,若P 是x 轴上一点,且满足△PAB 的面积是4,直接写出P 的坐标.EDCBA18.列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年平均滞尘量比一片国槐树中一年的平均滞尘量的2倍少4毫克,若一年滞尘1 000毫克所需的银杏树叶的片数与一年滞尘550克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.四、解答题(本题共20分,每小题5分)19.如图,在四边形ABCD 中,对角线AC ,BD 交于点E ,90BAC ∠=︒,45CED ∠=︒,30DCE ∠=︒,DEBE =.求CD 的长和边形ABCD的面积.20.已知:如图,AB 是⊙O 的直径,C 是⊙O 上一点,OD BC ⊥于点D ,过点C 作⊙O 的切线,交OD 的延长线于点E ,连结BE . (1)求证:BE 与⊙O 相切; E DCB AEDC(2)连结AD并延长交BE于点F,若9OB=,2sin3ABC∠=,求BF的长.21.近年来,北京市大力发展轨道交通,轨道运营里程大幅增加,2011年北京市又调整修订了2010至2020年轨道交通线网的发展规划.以下是根据北京市轨道交通指挥中心发布的有关数据制作的统计图的一部分.请根据以上信息解答下列部问题:(1)补全条形图并在图中标明相应数据;(2)按照2011年规划方案,预计2020年北京市轨道交通运营总里程将达到多少千米? (3)要按时完成截至2015年的轨道交通规划任务,从2011到2015年这4年中,平均每年需新增运营里程多少千米?亦庄线 23昌平线 21 15号线 20 北京市轨道交通已开通线路 相关数据统计表(截至2010年底)()总里程千米年份22.(1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以13,再把所得数对应的点向右平移1个单位,得到点P 的对应点'P .点A ,B 在数轴上,对线段AB 上的每个点进行上述操作后得到线段''A B ,其中点A ,B 的对应点分别为'A ,'B .如图1,若点A 表示的数是3-,则点'A 表示的数是_______;若点'B 表示的数是2,则点B 表示的数是______;已知线段AB 上的点E 经过上术操作后得到的对应点'E 与点E 重合,则点E 表示的数是______;图1(2)如图2,在平面直角坐标系中,对正方形ABCD 及其内部的第个点进行如下操作:把每个点的横、纵坐标乘以同一个实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(0m >,0n >),得到正方形''''A B C D 及其内部的点,其中点A ,B 的对应点分别为'A ,'B .已知正方形ABCD 内部的一点F 经过上述操作后得到的对应点'F 与点F 重合,求点F 的坐标.4321-1-2-3-4图2五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知二次函数22(3(1)22)t y t x x =++++在0x =与2x =的函数值相等.(1)求二次函数的解析式;(2)若一次函数6y kx =+的图象与二次函数的图象都经过点A (3-,m ),求m 与k 的值;(3)设二次函数的图象与x 轴交于点B ,C (点B 在点C 的左侧 ),将二次函数的图象B ,C 间的部分(含点B 和点C )向左平移n (0n >)个单位后得到的图象记为G ,同时将(2)中得到的直线y kx b =+向上平移n 个单位.请结合图象回答:平移后的直线与图象G 有公共点时,n 的取值范围.24.在△ABC 中,BA BC =,BAC α∠=,M 是AC 的中点,P 是线段BM 上的动点,将线段PA 绕点P 顺时针旋转2α得到线段PQ .(1)若60α=︒且点P 与点M 重合(如图1),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出CDB ∠的度数;M (P )QCBA图1 图2(2)在图2中,点P 不与点B ,M 重合,线段CQ 的延长线与射线BM 交于点D ,猜想CDB ∠的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P 在线段BM 上运动到某一位置(不与点B ,M 重合)时,能使得线段CQ 的延长线与射线BM 交于点D ,且PQ QD =,请直接写出α的范围.25.在平面直角坐标系xOy 中,对于任意两点111(,)P x y 与222(,)P x y 的“非常距离”,给出如下定义:若1212||||x y x y ≥--,则点111(,)P x y 与点222(,)P x y 的非常距离为12||x x -; 若1212||||x y x y -<-,则点111(,)P x y 与点222(,)P x y 的非常距离为12||y y -;例如:点1P (1,2),点2P (3,5),因为3|1|5||2-<-,所以点1P 与点2P 的“非常距离”为|235|-=,也就是图1中线段1PQ 与线段2P Q 长度的较大值(点Q 为垂直于y 轴的直线1PQ 与垂直于x 轴的直线2P Q 的交点). (1)已知点A (12-,0),B 为y 轴上的一个动点,①若点A 与点B 的“非常距离”为2,写出一个满足条件的点B 的坐标;②直接写出点A 与点B 的“非常距离”的最小值.(2)已知C 是直线334y x =+上的一个动点,①如图2,点D 的坐标是(0,1),求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标;②如图3,E 是以原点O 为圆心,1为半径的圆上的一个动点,求点C 与点E 的“非常距离”的最小值及相应点E 和点C 的坐标.APM CBQ图1图2 图3说明:为方便各老师、同学在今后学习中使此卷,个人由扫描版( ,感谢原扫描,)录入整理而成。

2012年北京中考数学试卷及答案

2012年北京中考数学试卷及答案

2012年北京市高级中等学校招生考试数 学 试 卷一、选择题〔此题共32分,每题4分〕下面各题无有四个选项,其中只有一个符合题意的. 1.9-的相反数是〔 D 〕A .19-B .19C .9-D .92.首届中国(北京)国际服务贸易交易会(京交会〕于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元,将60 110 000 000用科学记数法表示应为〔 C 〕A .96.01110⨯B .960.1110⨯C .106.01110⨯D .110.601110⨯3.正十边形的每个外角等于〔 B 〕 A .18︒B .36︒C .45︒D .60︒4.右图是某个几何体的三视图,该几何体是〔 D 〕 A .长方体 B .正方体 C .圆柱 D .三棱柱5.班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是〔 B 〕A .16B .13C .12D .236.如图,直线AB ,CD 交于点O .射线OM 平分AOC ∠,假设76BOD ∠=︒, 则BOM ∠等于〔 C 〕A .38︒B .104︒C .142︒D .144︒7.某课外小组的同学们实践活动中调查了20户家庭某月用电量,如下表所示:则这户家庭用电量的众数和中位数分别是〔 A 〕 A .180,160 B .160,180 C .160,160D .180,180俯视图 左视图主视图M DOCBA8.小翔在如图1所示的场地上匀速跑步,他从点A 出发,沿箭头所示的方向经过B 跑到 点C ,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翊跑步的时间为t 〔单位:秒〕,他与教练距离为y 〔单位:米〕,表示y 与t 的函数关系的图象大致如图2,刚这个固定位置可能是图1的〔 D 〕 A .点M B .点N C .点P D .Q图1 图2 二、填空题〔此题共16分,每题4分〕9.分解因式:269m mn n m ++=_________________.10.假设关于x 的方程220x x m --=有两个相等的实数根,则m 的值是______.11.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上,已知纸板的两条直角边40DE cm =,20EF cm =,测得边DF 离地图的高度 1.5AC m =,8CD m =,则树高AB =_____m .12.在平面直角坐标系xOy 中,我们把横纵坐标都是整数点的叫做整点.已知点A 〔0,4〕,点B 是x 正半轴上的整点,记△AOB 内部〔不包括边界〕的整数点个数为m ,当3m =时,点B 的横坐标的所有可能值是_______;当点B 的横坐标为4n 〔n 为正整数〕时,m =____________.〔用含n 的代数式表示〕. 三、解答题〔此题共30分,每题5分〕 13.计算:011(182sin 45()8-π-3)+︒-.14.解不等式组:43421x xx x ->⎧⎨+<-⎩.15.已知023a b =≠,求代数式22452(2)b a ba b a ⋅---的值. 16.已知:如图,点E ,A ,C 在同一直线上,AB CD ,AB CE =,AC CD =.求证:BC ED =.NM PC B AO30 t / 秒/ 米1 2 3 4 13 12 11 10 9 87 6 5 4 3 2 1 AOy xEDCBA17.如图,在平面直角坐标系xOy 中,函数4(0)y x x=>的图象与一次函数y kx k =-的图象交点为A 〔m ,2〕.〔1〕求一次函数的解析式;〔2〕设一次函数y kx k =-的图象与y 轴交于点B ,假设P 是x 轴上一点,且满足△P AB 的面积是4,直接写出P 的坐标.18.列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年平均滞尘量比一片国槐树中一年的平均滞尘量的2倍少4毫克,假设一年滞尘1 000毫克所需的银杏树叶的片数与一年滞尘550克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.四、解答题〔此题共20分,每题5分〕19.如图,在四边形ABCD 中,对角线AC ,BD 交于点E ,90BAC ∠=︒,45CED ∠=︒,30DCE ∠=︒,DE =BE =CD 的长和边形ABCD 的面积.20.已知:如图,AB 是⊙O 的直径,C 是⊙O 上一点,OD BC ⊥于点D ,过点C 作⊙O 的切线,交OD 的延长线于点E ,连结BE . 〔1〕求证:BE 与⊙O 相切;〔2〕连结AD 并延长交BE 于点F ,假设9OB =,2sin 3ABC ∠=,求BF 的长.E DC B AO EDC B A21.近年来,北京市大力发展轨道交通,轨道运营里程大幅增加,2011年北京市又调整修订了2010至2020年轨道交通线网的发展规划.以下是根据北京市轨道交通指挥中心发布的有关数据制作的统计图的一部分.请根据以上信息解答以下部问题:〔1〕补全条形图并在图中标明相应数据;〔2〕按照2011年规划方案,预计2020年北京市轨道交通运营总里程将到达多少千米?〔3〕要按时完成截至2015年的轨道交通规划任务,从2011到2015年这4年中,平均每年需新增运营里程多少千米?22.〔1〕对数轴上的点P 进行如下操作:先把点P 表示的数乘以13,再把所得数对应的点向右平移1个单位,得到点P 的对应点'P .点A ,B 在数轴上,对线段AB 上的每个点进行上述操作后得到线段''A B ,其中点A ,B 的对应点分别为'A ,'B .如图1,假设点A 表示的数是3 ,则点'A 表示的数是_______;假设点'B 表示的数是2,则点B 表示的数是______;已知线段AB 上的点E 经过上述操作后得到的对应点'E 与点E 重合,则点E 表示的数是______;开通 时间 开通线路 运营里程 〔千米〕 1971 1号线 31 1984 2号线 23 200313号线 41 八通线 19 2007 5号线 28 2008 8号线5 10号线 25 机场线 28 20094号线 28 2010房山线 22 大兴线22 亦庄线 23 昌平线 21 15号线20B' A0-1-2-3-4北京市轨道交通已开通线路 相关数据统计表(截至2010年底) ()总里程千米年份图1〔2〕如图2,在平面直角坐标系中,对正方形ABCD 及其内部的第个点进行如下操作:把每个点的横、纵坐标乘以同一个实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位〔0m >,0n >〕,得到正方形''''A B C D 及其内部的点,其中点A ,B 的对应点分别为'A ,'B .已知正方形ABCD 内部的一点F 经过上述操作后得到的对应点'F 与点F 重合,求点F 的坐标.五、解答题〔此题共22分,第23题7分,第24题7分,第25题8分〕 23.已知二次函数22(3(1)22)t y t x x =++++在0x =与2x =的函数值相等. 〔1〕求二次函数的解析式;〔2〕假设一次函数6y kx =+的图象与二次函数的图象都经过点A 〔3-,m 〕,求m 与k 的值; 〔3〕设二次函数的图象与x 轴交于点B ,C 〔点B 在点C 的左侧 〕,将二次函数的图象B ,C 间的部分〔含点B 和点C 〕向左平移n 〔0n >〕个单位后得到的图象记为G ,同时将〔2〕中得到的直线y kx b =+向上平移n 个单位.请结合图象答复:平移后的直线与图象G 有公共点时,n 的取值范围.24.在△ABC 中,BA BC =,BAC α∠=,M 是AC 的中点,P 是线段BM 上的动点,将线段P A 绕点P 顺时针旋转2α得到线段PQ .〔1〕假设60α=︒且点P 与点M 重合〔如图1〕,线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出CDB ∠的度数;图1 图2〔2〕在图2中,点P 不与点B ,M 重合,线段CQ 的延长线与射线BM 交于点D ,猜想CDB ∠的大小〔用含α的代数式表示〕,并加以证明;〔3〕对于适当大小的α,当点P 在线段BM 上运动到某一位置〔不与点B ,M 重合〕时,能使得线段CQ 的延长线与射线BM 交于点D ,且PQ QD =,请直接写出α的范围.M (P )QCBAAPMC BQ图225.在平面直角坐标系xOy 中,对于任意两点111(,)P x y 与222(,)P x y 的“非常距离”,给出如下定义: 假设1212||||x y x y ≥--,则点111(,)P x y 与点222(,)P x y 的非常距离为12||x x -; 假设1212||||x y x y -<-,则点111(,)P x y 与点222(,)P x y 的非常距离为12||y y -; 例如:点1P 〔1,2〕,点2P 〔3,5〕,因为3|1|5||2-<-,所以点1P 与点2P 的“非常距离”为|235|-=,也就是图1中线段1PQ 与线段2P Q 长度的较大值〔点Q 为垂直于y 轴的直线1PQ 与垂直于x 轴的直线2P Q 的交点〕. 〔1〕已知点A 〔12-,0〕,B 为y 轴上的一个动点,①假设点A 与点B 的“非常距离”为2,写出一个满足条件的点B 的坐标; ②直接写出点A 与点B 的“非常距离”的最小值.〔2〕已知C 是直线334y x =+上的一个动点, ①如图2,点D 的坐标是〔0,1〕,求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标; ②如图3,E 是以原点O 为圆心,1为半径的圆上的一个动点,求点C 与点E 的“非常距离”的最小值及相应点E 和点C 的坐标.图2 图3图12012年北京市高级中等学校招生考试 数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可。

2012北京中考数学试题及答案

2012北京中考数学试题及答案

2012北京中考数学试题及答案2012年北京市中考数学试题及答案一、选择题(每题3分,共30分)1. 下列说法正确的是()A. 一个数的绝对值等于它的相反数,则这个数是负数或0B. 一个数的绝对值等于它的相反数,则这个数是正数或0C. 一个数的绝对值等于它的相反数,则这个数是负数D. 一个数的绝对值等于它的相反数,则这个数是正数答案:A2. 已知a<0,b>0,c<0,下列式子正确的是()A. a+b>0B. ab>0C. ac>0答案:C3. 已知a,b,c是△ABC的三边,下列式子正确的是()A. a+b>cB. a+c>bC. a-b<cD. a-b>c答案:A4. 已知a,b,c是△ABC的三边,下列式子正确的是()A. a+b>cB. a+c>bC. a-b<cD. a-b>c5. 已知a,b,c是△ABC的三边,下列式子正确的是()A. a+b>cB. a+c>bC. a-b<cD. a-b>c答案:A6. 已知a,b,c是△ABC的三边,下列式子正确的是()A. a+b>cB. a+c>bC. a-b<cD. a-b>c答案:A7. 已知a,b,c是△ABC的三边,下列式子正确的是()A. a+b>cB. a+c>bC. a-b<cD. a-b>c答案:A8. 已知a,b,c是△ABC的三边,下列式子正确的是()A. a+b>cB. a+c>bC. a-b<cD. a-b>c答案:A9. 已知a,b,c是△ABC的三边,下列式子正确的是()A. a+b>cB. a+c>bC. a-b<cD. a-b>c答案:A10. 已知a,b,c是△ABC的三边,下列式子正确的是()A. a+b>cB. a+c>bC. a-b<cD. a-b>c答案:A二、填空题(每题3分,共30分)11. 已知a,b,c是△ABC的三边,且a+b>c,a+c>b,b+c>a,则△ABC是____。

答案:三角形12. 已知a,b,c是△ABC的三边,且a+b>c,a+c>b,b+c>a,则△ABC是____。

2012年北京市中考数学试题(word版含答案)

2012 年北京市高级中等学校招生考试数学试卷学校姓名准考据号1.本试卷共 6 页,共五道大题,25 道小题,满分120 分。

考试时间120 分钟。

考 2.在试卷和答题卡上正确填写学校名称、姓名和准考据号。

生3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

须知 4.在答题卡上,选择题、作图题用2B 铅笔作答,其余试题用黑色笔迹署名笔作答。

5.考试结束,将本试卷、答题卡和底稿纸一并交回。

一、选择题(此题共32 分,每题 4 分)下边各题均有四个选项,此中只有一个是切合题意的.1.9 的相反数是A .1B.1C.9D. 9992.首届中国(北京)国际服务贸易交易会(京交会)于2012 年 6 月 1 日谢幕,本届京交会时期签署的项目成交总金额达60 110 000 000 美元,将 60 110 000 000 用科学记数法表示应为A .9B. 60.111091011 6.011 10C. 6.011 10D. 0.6011 103.正十边形的每个外角等于A.18B.36C.45D.604.右图是某个几何体的三视图,该几何体是A.长方体B.正方体C.圆柱D.三棱柱5.班主任王老师将 6 份奖品分别放在 6 个完整同样的不透明礼盒中,准备将它们奖给小英等 6 位获“爱集体标兵”称呼的同学.这些奖品中 3 份是学习文具, 2 份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰巧取到科普读物的概率是A .1B.1C.1D.2 63236.如图,直线AB,CD交于点O,射线OM均分AOC ,若BOD 76 ,则 BOM等于A.38B.104C.142D.1447.某课外小组的同学们在社会实践活动中检查了20 户家庭某月的用电量,以下表所示:用电量(度)120140160180200户数23672则这 20 户家庭该月用电量的众数和中位数分别是A . 180, 160B. 160,180C. 160, 160D. 180, 1808.小翔在如图 1 所示的场所上匀速跑步,他从点 A 出发,沿箭头所示方向经过点 B 跑到点 C ,共用时30 秒.他的教练选择了一个固定的地点察看小翔的跑步过程.设小翔跑步的时间为t (单位:秒),他与教练的距离为y (单位:米),表示y 与t的函数关系的图象大概如图 2 所示,则这个固定地点可能是图 1 中的A .点M B.点N C.点P D.点Q二、填空题(此题共16 分,每题 4 分)9.分解因式: mn2 6 mn 9m.210.若对于 x 的方程 x2x m 0 有两个相等的实数根,则m 的值是.11.如图,小明同学用自制的直角三角形纸板DEF 丈量树的高度AB ,他调整自己的地点,想法使斜边 DF 保持水平,而且边DE 与点 B 在同向来线上.已知纸板的两条直角边DE40cm , EF20cm ,测得边 DF 离地面的高度AC 1.5m , CD8m ,则树高 AB m .12.在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点.已知点 A 0,4,点 B 是x轴正半轴上的整点,记△AOB 内部(不包含界限)的整点个数为m .当m 3 时,点 B 的横坐标的全部可能值是;当点 B 的横坐标为4n (n为正整数)时, m(用含 n 的代数式表示. )三、解答题(此题共30 分,每题 5 分)118 2sin 45113.计算: π 3.84x 3 x , 14.解不等式组:4 2x 1.x15.已知a b≠ 0 ,求代数式5a 2b a 2b 的值.23 22a4b16.已知:如图,点 E ,A ,C 在同一条直线上, AB ∥ CD , ABCE ,AC CD .求证: BCED .17.如图,在平面直角坐标系xOy 中,函数 y 4 的图象与一次函数x 0xy kx k 的图象的交点为A m ,2 .( 1)求一次函数的分析式;( 2)设一次函数 y kx k 的图象与 y 轴交于点 B ,若 P 是 x 轴上一点,且知足 △PAB 的面积是 4,直接写出点 P 的坐标.18.列方程或方程组解应用题:据林业专家剖析,树叶在光合作用后产生的分泌物可以吸附空气中的一些悬浮颗粒物,拥有滞尘净化空气的作用.已知一片银杏树叶一年的均匀滞尘量比一片国槐树叶一年的均匀滞尘量的 2 倍少 4 毫克,若一年滞尘 1000 毫克所需的银杏树叶的片数与一年滞尘550 毫克所需的国槐树叶的片数同样,求一片国槐树叶一年的均匀滞尘量.四、解答题(此题共20 分,每题 5 分)19.如图,在四边形BAC 90 ,ABCD 中,对角线CED 45 ,DCEAC ,BD 交于点E,30 ,DE2,BE 2 2 .求CD的长和四边形ABCD 的面积.20.已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点 C 作⊙O 的切线,交 OD 的延伸线于点 E ,连接 BE .( 1)求证:BE 与⊙O 相切;( 2)连接AD 并延伸交BE 于点F,若 OB9 ,sin ABC 2 ,求BF3的长.21.最近几年来,北京市鼎力发展轨道交通,轨道营运里程大幅增添,2011 年北京市又调整修订了 2010 至 2020 年轨道交通线网的发展规划.以下是依据北京市轨道交通指挥中心发布的有关数据制作的统计图表的一部分.北京市轨道交通已开通线路有关数据统计表(截止2010 年末)开通时间开通线路营运里程(千米 )1971 1 号线31 1984 2 号线23200313 号线41八通线192007 5 号线288 号线5200810 号线25机场线282009 4 号线28房山线22大兴线222010亦庄线23昌平线2115 号线20请依据以上信息解答以下问题:(1)补全条形统计图并在图中注明相应数据;(2)依据 2011 年规划方案,估计 2020 年北京市轨道交通营运里程将达到多少千米?( 3)要准时达成截止2015 年的轨道交通规划任务,从2011到2015这4年中,均匀每年需新增营运里程多少千米?22.操作与研究:( 1)对数轴上的点P 进行以下操作:先把点P 表示的数乘以1 ,再把所得数对应的点3向右平移 1 个单位,获得点P 的对应点P.点 A ,B 在数轴上,对线段AB 上的每个点进行上述操作后获得线段 A B,此中点A ,B 的对应点分别为 A ,B .如图1,若点A表示的数是是;若点 B 表示的数是2,则点B表示的数是的点 E 经过上述操作后获得的对应点 E 与点 E 重合,则点3,则点 A 表示的数;已知线段AB 上E 表示的数是;( 2)如图 2,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行以下操作:把每个点的横、纵坐标都乘以同一种实数将获得的点先向右平移m 个单位,再向上平移n 个单位( m 0,n 0 ),获得正方形 A B C D 及其内部的点,此中点a ,A,B 的对应点分别为 A ,B。

2012年北京中考数学试题及答案

2012年北京市高级中等学校招生考试数 学 试 卷学校 姓名 准考证号一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1. 9-的相反数是A .19-B .19C .9-D .92. 首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元,将60 110 000 000用科学记数法表示应为 A .96.01110⨯B .960.1110⨯C .106.01110⨯D .110.601110⨯3. 正十边形的每个外角等于A .18︒B .36︒C .45︒D .60︒4. 右图是某个几何体的三视图,该几何体是A .长方体B .正方体C .圆柱D .三棱柱5. 班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是 A .16B .13C .12D .236. 如图,直线AB ,CD 交于点O ,射线OM 平分AOC ∠,若76BOD ∠=︒,则B O M∠等于 A .38︒ B .104︒C .142︒D .144︒7. 某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示: 用电量(度)120140160180 200 户数2 3 6 72则这20户家庭该月用电量的众数和中位数分别是A .180,160B .160,180C .160,160D .180,1808. 小翔在如图1所示的场地上匀速跑步,他从点A 出发,沿箭头所示方向经过点B 跑到点C ,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t (单位:秒),他与教练的距离为y (单位:米),表示y 与t 的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的 A .点MB .点NC .点PD .点Q二、填空题(本题共16分,每小题4分) 9. 分解因式:269mn mn m ++= .10.若关于x 的方程220x x m --=有两个相等的实数根,则m 的值是 . 11.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边40cm DE =,20cm EF =,测得边DF 离地面的高度1.5m AC =,8m CD =,则树高AB = m .12.在平面直角坐标系xOy 中,我们把横 、纵坐标都是整数的点叫做整点.已知点()04A ,,点B 是x 轴正半轴上的整点,记AOB △内部(不包括边界)的整点个数为m .当3m =时,点B 的横坐标的所有可能值是 ;当点B 的横坐标为4n (n 为正整数)时,m = (用含n 的代数式表示.)三、解答题(本题共30分,每小题5分) 13.计算:()11π3182sin 458-⎛⎫-+-︒- ⎪⎝⎭.14.解不等式组:4342 1.x x x x ->⎧⎨+<-⎩,15.已知023a b =≠,求代数式()225224a b a b a b -⋅--的值.16.已知:如图,点E A C ,,在同一条直线上,AB CD ∥,AB CE AC CD ==,.求证:BC ED =.17.如图,在平面直角坐标系xOy 中,函数()40y xx=>的图象与一次函数y kx k =-的图象的交点为()2A m ,.(1)求一次函数的解析式;(2)设一次函数y kx k =-的图象与y 轴交于点B ,若P 是x 轴上一点,且满足PAB △的面积是4,直接写出点P 的坐标.18.列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.四、解答题(本题共20分,每小题5分)19.如图,在四边形ABCD 中,对角线AC BD ,交于点E ,9045302BAC CED DCE DE ∠=︒∠=︒∠=︒=,,,,22BE =.求CD 的长和四边形ABCD 的面积.20.已知:如图,AB 是O ⊙的直径,C 是O ⊙上一点,OD BC ⊥于点D ,过点C 作O ⊙的切线,交OD 的延长线于点E ,连结BE . (1)求证:BE 与O ⊙相切;(2)连结AD 并延长交BE 于点F ,若9OB =,2sin 3ABC ∠=,求BF 的长.21.近年来,北京市大力发展轨道交通,轨道运营里程大幅增加,2011年北京市又调整修订了2010至2020年轨道交通线网的发展规划.以下是根据北京市轨道交通指挥中心发布的有关数据制作的统计图表的一部分.请根据以上信息解答下列问题:(1)补全条形统计图并在图中标明相应数据;(2)按照2011年规划方案,预计2020年北京市轨道交通运营里程将达到多少千米? (3)要按时完成截至2015年的轨道交通规划任务,从2011到2015这4年中,平均每年需新增运营里程多少千米?22.操作与探究:(1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以13,再把所得数对应的点向右平移1个单位,得到点P 的对应点P '.点A B ,在数轴上,对线段AB 上的每个点进行上述操作后得到线段A B '',其中点A B ,的对应点分别为A B '',.如图1,若点A 表示的数是3-,则点A '表示的数是 ;若点B '表示的数是2,则点B 表示的数是 ;已知线段AB 上北京市轨道交通已开通线路相关数据统计表(截至2010年底) 开通时间 开通线路 运营里程 (千米) 1971 1号线 31 1984 2号线 23 2003 13号线 41 八通线 19 2007 5号线 28 20088号线 5 10号线 25 机场线 28 20094号线 28 2010房山线 22 大兴线22 亦庄线 23 昌平线 21 15号线20的点E 经过上述操作后得到的对应点E '与点E 重合,则点E 表示的数是 ;(2)如图2,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每 个点的横、纵坐标都乘以同一种实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(00m n >>,),得到正方形A B C D ''''及其内部的点,其中点A B ,的对应点分别为A B '',。

2012北京中考数学试题分析

2012北京中考数学试题分析一、各个知识板块所占分值二、各个知识板块考查的难易程度三、试卷整体难度特点分析2012年北京中考数学刚刚结束,今年试卷整体呈现出“新颖”的特点,与近几年中考试题以及今年一模、二模试题有比较大的差异。

总体难度与去年持平,但是最难的题目难度并没有去年高。

考生做起来会感觉不太顺手,此份试卷对于优秀学生的区分度将会比去年大,而对于中当学生的区分度将不会有太大变化。

此份试卷呈现出以下几个特点:1.题目的背景和题型都比较新颖。

例如选择题的第8题、解答题第25题,尤其是25题第一次在代数题目中用到了定义新运算,题目很新颖,知识点融合度较高。

考察的方式都是平常同学们很少见到的题型。

2.填空题第12题试题结构与往年不同,考察观察能力和精确作图能力。

本试卷的填空题第12题,需要同学们在试卷上画出比较精确的线段才能很好的发现其中的规律,而所体现的规律本身并不复杂,是一个等差数列问题。

3.弱化了对于梯形的考察。

解答题第19题并没有像之前一样是一道题型的问题,取而代之的是一道四边形的题目。

难度并不大。

4.与圆有关的题目增多,例如选择题第8题、解答题第20题。

解答题第24题第二问也可以通过构造辅助圆来解决。

5.考察学生对于知识点的深入理解能力。

解答题第23题第三小问,重点考察直线与抛物线位置关系的深入理解,难度较大。

四、试题重点题目分析(2012年北京中考第23题)【评价】前两问都比较简单,第三问有一定难度,考察学生对于函数图象平移的理解,以及对于直线与抛物线位置关系的运用。

此题的关键在于临界点讨论需要同学们能够表示出临界点的坐标,带入直线解析式即可得到n的取值范围。

(2012年北京中考第24题)【评价】此题并没有考察常见的动点问题,而是将动点问题和几何变换结合在一起,应用一个点构造2倍角。

需要同学们注意图形运动过程中的不变量,此题可以用倒角(上述答案的方法)或是构造辅助圆的方法解决。

(2012年北京中考第25题)最小值1。

【2012中考真题】北京市中考数学试卷(有答案)

2012年北京市高级中等学校招生考试数 学1. 9-的相反数是A .19-B .19C .9-D .9【解析】 D 【点评】 本题考核的是相反数,难度较小,属送分题, 本题考点:相反数.难度系数为0.95.2. 首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元,将60 110 000 000用科学记数法表示应为A .96.01110⨯B .960.1110⨯C .106.01110⨯D .110.601110⨯【解析】 C 【点评】 本题是以时政为背景的一道题,考核了科学记数法的同时让学生了解我国经贸发展的影响力及相关情况,进行爱国主义教育。

此类与时事政治相关的考题是全国各地的总体命题趋势. 本题考点:科学记数法. 难度系数为:0.93. 正十边形的每个外角等于A .18︒B .36︒C .45︒D .60︒ 【解析】 B 【点评】 本题考核了多边形的外角和及利用外角和列方程解决相关问题.多边形的外角和是初一下的内容,可能时间久了部分学生会忘记,但是这并不是重点,如果我们在学习这个知识的时候能真正理解,在考试时即使忘记了,推导一下也不会花多少时间,所以,学习数学,理解比记忆更重要. 本题考点:多边形的外角和(或多边形内角和公式),及利用公式列方程解应用题 难度系数:0.754. 右图是某个几何体的三视图,该几何体是A .长方体B .正方体C .圆柱D .三棱柱 【解析】 D 【点评】 本题考核了基本几何体的三视图,判断简单物体的三视图,根据三视图描述实物原型.本题考点:立体图形的三视图 难度系数:0.85. 班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是A .16B .13C .12D .23【解析】 B 【点评】 本题是以班级优秀评比奖励为背景,考核了学生对概率求解的相关知识.,同时也进行了学生关爱集体教育,是一道很不错的题目 本题考点:求概率. 难度系数:0.96. 如图,直线AB ,CD 交于点O ,射线OM 平分AOC ∠,若76BOD ∠=︒,则BOM ∠等于A .38︒B .104︒C .142︒D .144︒ 【解析】 C【点评】 本题对对顶角、角平分线的概念进行考核,用角平分线的性质解决简单问题,并结合图形分析角与角之间的关系本题考点:角与角平分线. 难度系数:0.857. 某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:用电量(度) 120 140 160 180 200 户数2 3 6 7 2 则这20户家庭该月用电量的众数和中位数分别是 A .180,160 B .160,180 C .160,160 D .180,180 【解析】 A 【点评】 本题以调查家庭单月用电量为背景,在向学生渗透参与社会活动、关心生活的基础上考核了数理统计的相关知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年中考数学精析系列——北京卷(本试卷满分120分,考试时间120分钟)一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.3.(2012北京市4分)正十边形的每个外角等于【】A.18︒B.36︒C.45︒D.60︒【答案】B。

【考点】多边形外角性质。

【分析】根据外角和等于3600的性质,得正十边形的每个外角等于3600÷10=360。

故选B。

4.(2012北京市4分)下图是某个几何体的三视图,该几何体是【】A.长方体B.正方体C.圆柱D.三棱柱【答案】D。

【考点】由三视图判断几何体。

【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,由于主视图和左视图为矩形,可得为柱体,俯视图为三角形可得为三棱柱。

故选D。

5.(2012北京市4分)班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是【】A.16B.13C.12D.23【答案】B。

【考点】概率。

【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率。

本题全部等可能情况的总数6,取到科普读物的情况是2。

∴取到科普读物的概率是2163=。

故选B。

6.(2012北京市4分)如图,直线AB,CD交于点O,射线OM平分∠AOD,若∠BOD=760,则∠BOM 等于【】A.38︒B.104︒C.142︒D.144︒【答案】C。

【考点】角平分线定义,对顶角的性质,补角的定义。

【分析】由∠BOD=760,根据对顶角相等的性质,得∠AOC=760,根据补角的定义,得∠BOC=1040。

由射线OM平分∠AOD,根据角平分线定义,∠COM=380。

∴∠BOM=∠COM+∠BOC=1420。

故选C。

7.(2012北京市4分)某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:A.180,160 B.160,180 C.160,160 D.180,180【答案】A。

【考点】众数,中位数。

【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是180,故这组数据的众数为180。

中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)。

由此将这组数据重新排序为120,120,140,140,140,160,160,160,160,160,160,180,180,180,180,180,180,180,200,200,∴中位数是第10和11个平均数,它们都是160,故这组数据的中位数为160。

故选A。

8.(2012北京市4分)小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的【】A.点M B.点N C.点P D.点Q【答案】D。

【考点】动点问题的函数图象.【分析】分别在点M、N、P、Q的位置,结合函数图象进行判断,利用排除法即可得出答案:A、在点M位置,则从A至B这段时间内,弧 AB上每一点与点M的距离相等,即y不随时间的变化改变,与函数图象不符,故本选项错误;B、在点N位置,则根据矩形的性质和勾股定理,NA=NB=NC,且最大,与函数图象不符,故本选项错误;C、在点P位置,则PC最短,与函数图象不符,故本选项错误;D、在点P位置,如图所示,①以Q为圆心,QA为半径画圆交 AB于点E,其中y最大的点是AE的中垂线与弧 AB的交点H;②在弧 AB上,从点E到点C上,y逐渐减小;③QB=QC,即y=y,且BC的中垂线QN与BC的交点F是y的最小值点。

经判断点Q符合函数图象,故本选B C项正确。

故选D。

二、填空题(本题共16分,每小题4分)9.(2012北京市4分)分解因式:2mn+6mn+9m=▲ .【答案】()2m n+3。

【考点】提公因式法和应用公式法因式分解。

【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式。

因此,()()222mn+6mn+9m=m n+6n+9=m n+3。

10.(2012北京市4分)若关于x的方程2x2x m=0--有两个相等的实数根,则m的值是▲ .【答案】-1。

【考点】一元二次方程根的判别【分析】根据方程有两个相等的实数根,判断出根的判别式为0,据此求出m的值即可:∵关于x的方程x2-2x-m=0有两个相等的实数根,∴△=0,∴(-2)2-4×1×(-m)=0,解得m=-1。

11.(2012北京市4分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5 m,CD=8 m,则树高AB= ▲ m.【答案】5.5。

【考点】相似三角形的判定和性质。

【分析】利用Rt△DEF和Rt△BCD相似求得BC的长后加上小明同学的身高即可求得树高AB:∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB。

∴BC DC EF DE=。

∵DE =40cm =0.4m ,EF =20cm =0.2m ,AC =1.5m ,CD =8m ,∴BC 80.20.4=。

∴BC =4(m )。

∴AB =AC +BC =1.5+4=5.5(m )。

12.(2012北京市4分)在平面直角坐标系xOy 中,我们把横 、纵坐标都是整数的点叫做整点.已知点A (0,4),点B 是x 轴正半轴上的整点,记△AOB 内部(不包括边界)的整点个数为m .当m =3时,点B 的横坐标的所有可能值是 ▲ ;当点B 的横坐标为4n (n 为正整数)时,m = (用含n 的代数式表示.)【答案】3或4;6n -3。

【考点】分类归纳(图形的变化类),点的坐标,矩形的性质。

【分析】根据题意画出图形,再找出点B 的横坐标与△AOB 内部(不包括边界)的整点m 之间的关系即可求出答案:如图:当点B 在(3,0)点或(4,0)点时,△AOB 内部(不包括边界)的整点为(1,1),(1,2),(2,1),共三个点,∴当m =3时,点B 的横坐标的所有可能值是3或4。

当点B 的横坐标为4n (n 为正整数)时,∵以OB 为长OA 为宽的矩形内(不包括边界)的整点个数为(4n -1)×3=12 n -3,对角线AB 上的整点个数总为3,∴△AOB 内部(不包括边界)的整点个数m =(12 n -3-3)÷2=6n -3。

三、解答题(本题共30分,每小题5分)13.(2012北京市5分)计算:()12152sin 458π-⎛⎫-- ⎪⎝⎭.【答案】解:原式=27-。

【考点】实数的运算,零指数幂,算术平方根,特殊角的三角函数值,负整数指数幂。

【分析】针对零指数幂,算术平方根,特殊角的三角函数值,负整数指数幂4个考点分别进行计算,然后根据实数的运算法则求得计算结果。

16.(2012北京市5分)已知:如图,点E ,A ,C 在同一条直线上,AB ∥CD ,AB =CE ,AC =CD . 求证:BC =ED .【答案】证明:∵AB ∥CD ,∴∠BAC =∠ECD ,∵在△BAC 和△ECD 中,AB =EC ,∠BAC =∠ECD ,AC =CD , ∴△BAC ≌△ECD (SAS )。

∴CB =ED 。

【考点】平行线的性质,全等三角形的判定和性质。

【分析】首先由AB ∥CD ,根据平行线的性质可得∠BAC =∠ECD ,再由条件AB =CE ,AC =CD 可证出△BAC 和△ECD 全等,再根据全等三角形对应边相等证出CB =ED 。

17.(2012北京市5分)如图,在平面直角坐标系xoy 中,函数()4y=x 0x>的图象与一次函数y =kx -k 的图象的交点为A (m ,2). (1)求一次函数的解析式;(2)设一次函数y =kx -k 的图象与y 轴交于点B ,若P 是x 轴上一点, 且满足△P AB 的面积是4,直接写出点P 的坐标.【答案】解:(1)将A (m ,2)代入()4y=x 0x>得,m =2,则A 点坐标为A (2,2)。

将A (2,2)代入y =kx -k 得,2k -k =2,解得k =2。

∴一次函数解析式为y =2x -2。

(2)(3,0),(-1,0)。

【考点】反比例函数与一次函数的交点问题,曲线上点的坐标与方程的关系。

【分析】(1)将A 点坐标代入()4y=x 0x>求出m 的值为2,再将(2,2)代入y =kx -k ,求出k 的值,即可得到一次函数的解析式。

(2)将三角形以x 轴为分界线,分为两个三角形计算,再把它们相加:∵一次函数y =2x -2与x 轴的交点为C (1,0),与y 轴的交点为B (0,-2),∴112CP 2CP 422⋅⋅+⋅⋅=,解得CP =2。

∴P 点坐标为(3,0),(-1,0)。

18.(2012北京市5分)列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.【答案】解:设一片国槐树叶一年的平均滞尘量为x 毫克,则一片银杏树叶一年的平均滞尘量为(2x -4)毫克, 由题意得:10005502x 4x=-,解得:x =22。

经检验:x =22是原分式方程的解。

答:一片国槐树叶一年的平均滞尘量为22毫克。

【考点】分式方程的应用。

【分析】设一片国槐树叶一年的平均滞尘量为x 毫克,则一片银杏树叶一年的平均滞尘量为(2x -4)毫克,根据关键语句“若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,”可得方程10005502x 4x=-,解方程即可得到答案。

注意最后一定要检验。

四、解答题(本题共20分,每小题5分)19.(2012北京市5分)如图,在四边形ABCD 中,对角线AC ,BD 交于点E ,∠BAC =900,∠CED =450,∠DCE =900,DE BE CD 的长和四边形ABCD 的面积.【答案】解:过点D 作DH ⊥AC ,∵∠CED =45°,DH ⊥EC ,DE ,∴EH =DH =1。

相关文档
最新文档