人教版五年级上册数学《方程的意义》(教案)
人教版小学数学五年级上册《方程的意义》(教案)

人教版小学数学五年级上册《方程的意义》教案一、教材分析:本节课是小学五年级上册数学教材的第五单元第四课,主要内容是方程的意义。
通过本课的学习,学生将理解方程的意义,学会判断一个式子是否是方程,并能够按要求用方程表示数量关系。
此外,本课还培养学生的观察、比较、分析和概括的能力。
二、教学目标:1. 理解方程的意义,能够准确判断一个式子是否是方程。
2. 根据给定的情境,能够用方程表示出数量关系。
3. 培养学生的观察、比较、分析和概括的能力。
三、教学重点和难点:重点:用方程的意义去判断一个式子是否是方程。
难点:理解和运用方程的意义。
四、学情分析:学生已经学过基本的数学运算和代数概念,对等式和不等式有一定的了解。
但在理解和运用方程的意义方面可能存在困惑,需要通过具体的例子和实践操作来加深理解。
五、教学过程:第一环节:导入与呈现(教师在黑板上写下几个式子,并与学生进行互动)教师:同学们,今天我们要学习方程的意义。
请你们观察下面的式子,并告诉我哪些是方程,哪些不是方程。
(学生积极参与,逐个回答)学生1:2 + 3 = 5,这是一个方程。
学生2:4 ×6 ≠24,这不是一个方程。
第二环节:概念讲解(教师向学生解释方程的定义和意义)教师:非常好,同学们给出了正确的答案。
那么,什么是方程呢?方程是一个等号连接的算式,左右两边的值相等。
它的意义在于表示了一个等式关系,我们可以通过方程来解决一些未知数的问题。
在方程中,我们常常用字母来表示未知数,这个字母就是我们所说的"未知数"。
第三环节:例题演示(教师通过具体的例子,引导学生判断是否为方程,并解释其中的意义和含义)教师:现在,让我们来看几个例子。
请你们判断一下,它们是否是方程,并解释一下它们的意义。
例子1:小明的年龄加上5岁等于15岁。
学生1:这是一个方程,可以用x + 5 = 15 表示。
这个方程表示小明的年龄是多少。
教师:非常好!这个方程就表示了小明的年龄是多少。
《方程的意义》(教案)五年级上册数学人教版

《方程的意义》(教案)五年级上册数学人教版教案:《方程的意义》五年级上册数学人教版一、教学内容1. 方程的定义:含有未知数的等式叫做方程。
2. 方程的组成:方程由两部分组成,一部分是已知数,另一部分是未知数。
3. 方程的解:能使方程左右两边相等的未知数的值叫做方程的解。
二、教学目标通过本节课的学习,学生能够理解方程的意义,掌握方程的组成和解的定义,能够识别和解决简单的方程问题。
三、教学难点与重点教学难点:方程的解的概念和判断方法。
教学重点:方程的定义和组成。
四、教具与学具准备教具:黑板、粉笔、教学卡片。
学具:练习本、铅笔、橡皮。
五、教学过程1. 实践情景引入:教师通过展示一个实际问题,例如“小明的年龄是小红的两倍,如果小红10岁,求小明的年龄。
”让学生思考和讨论如何解决这个问题。
2. 例题讲解:教师通过讲解上述实际问题,引导学生认识到这是一个方程问题。
然后,教师在黑板上写出方程“2x = 10”,并解释这是一个方程,其中“x”是未知数,表示小明的年龄。
3. 随堂练习:教师给出几个简单的方程题目,让学生独立解决。
例如:“3x = 12”、“5x10 = 20”等。
4. 方程的定义:5. 方程的组成:教师通过示例和讲解,让学生理解方程由已知数和未知数两部分组成。
6. 方程的解:教师通过示例和讲解,让学生理解方程的解是指能使方程左右两边相等的未知数的值。
7. 板书设计:教师在黑板上设计板书,包括方程的定义、方程的组成和方程的解的示例。
8. 作业设计:教师设计几个方程题目,让学生回家完成。
例如:“4x + 8 = 24”、“4x 12 = 16”等。
六、课后反思及拓展延伸教师在课后反思本节课的教学效果,观察学生对方程的理解和应用能力。
同时,教师可以给学生提供一些拓展延伸的材料,例如方程的解的多种求解方法,以进一步巩固学生的方程知识。
重点和难点解析一、方程的定义和组成1. 方程的定义:方程是含有未知数的等式。
2023年人教版数学五年级上册方程的意义教案与反思(优选3篇)

人教版数学五年级上册方程的意义教案与反思(优选3篇)〖人教版数学五年级上册方程的意义教案与反思第【1】篇〗《方程的意义》教学设计教学内容:五年级上册第四单元第53~54页“方程的意义”。
教学目标:1.借助生活情景理解方程的意义——用含有未知数的等式表示相等的关系。
2.经历从生活情景到方程模型的建构过程,感受方程思想的核心之一,即建模。
3.培养学生观察、描述、分类、抽象、概括、应用等能力。
教学重点:准确从生活情景中提炼方程模型,然后用含有未知数的等式来表达,理解方程的意义。
教学难点:理解方程的意义,即用数学符号表示相等的关系。
教学准备:课件教学过程:一、故事引入,激发兴趣1、问:同学们,你们会讲故事吗?2、学生讲《曹冲称象》的故事。
3、问:曹冲是利用什么原理称出大象的质量的?板书:=二、情景呈现,抽象模型1.出示天平。
问:关于天平.你了解些什么生:天平可以称物体的质量。
师:天平是根据什么原理称出物体的质量的?2、用天平演示称物体(1)师:在天平的左盘放入两个50克的玩具小猪,右盘放入100克的砝码,此时的天平平衡吗?谁能用一个数学式子来表示天平的这种平衡现象?生:50+50=100(2)在天平的左盘放入一个a克的玩具小鸭和一个b克的玩具小鸡,右盘放入100克的砝码,此时的天平平衡吗?谁能用一个数学式子来表示天平的这种平衡现象?生:a+b=100(3)师:现在老师将左盘的两个玩具小猪换成了两个30克的玩具小狗天平还平衡了吗谁能用一个数学式子来表示天平的这种不平衡现象生:30+30100(4)师:因为两盘物体质量不相等,所以天平就不平衡,那么,怎样才能使它平衡呢生:……师:你们这样做的目的都是为了什么生:使左右两盘物体的质量相等。
师:这儿有一个玩具熊猫,它的质量不知道,我们可以怎么表示生:可以用字母x表示。
师:现在老师将这个玩具熊猫加在轻的一端,猜猜天平会出现什么现象?并用数学式子表示出来。
生:猜想出以下三种情况:可能加上玩具熊猫后天平平衡,用60+x=100 表示;也可能是加上玩具熊猫后还是比砝码轻,可用60+x100表示;还可能是加上玩具熊猫后比砝码重,可以用 60+x100 来表示。
五年级上册数学教案 - 方程的意义 人教版

五年级上册数学教案 - 方程的意义一、教学目标1. 知识与技能:(1)理解方程的意义,能从具体情境中抽象出一元一次方程。
(2)掌握一元一次方程的解法,能根据等式的性质求解简单的一元一次方程。
(3)能够运用方程解决简单的实际问题。
2. 过程与方法:(1)通过观察、操作、分析等手段,培养学生的观察能力、动手能力和解决问题的能力。
(2)通过小组合作,培养学生的合作意识和团队精神。
3. 情感、态度与价值观:(1)培养学生对方程的兴趣,激发学生探究数学问题的热情。
(2)培养学生严谨、踏实的科学态度,形成良好的学习习惯。
二、教学重点与难点1. 教学重点:(1)理解方程的意义,能从具体情境中抽象出一元一次方程。
(2)掌握一元一次方程的解法,能根据等式的性质求解简单的一元一次方程。
2. 教学难点:(1)理解方程的意义,从具体情境中抽象出一元一次方程。
(2)运用方程解决简单的实际问题。
三、教学过程1. 导入新课通过回顾等式的基本性质,引导学生思考:等式中的未知数和已知数之间的关系是什么?从而引出方程的概念。
2. 探究方程的意义共同的特点?从而引导学生发现方程的意义:方程是表示两个量相等的式子,其中包含未知数和已知数。
(2)让学生举例说明方程在实际生活中的应用,进一步体会方程的意义。
3. 学习一元一次方程的解法(1)通过例题,引导学生运用等式的性质求解一元一次方程。
(2)让学生尝试自己解决一些简单的一元一次方程,体会解题过程。
4. 实践应用(1)让学生运用所学知识解决教材中的实际问题,巩固方程的解法。
(2)引导学生运用方程解决生活中的问题,提高学生的应用能力。
5. 总结与反思(1)让学生总结本节课所学的内容,体会方程的意义和解法。
(2)引导学生反思自己在解题过程中的不足,提高学生的自我评价能力。
四、作业布置1. 完成教材中的练习题。
2. 结合实际生活,运用方程解决一个实际问题。
五、板书设计1. 方程的意义:表示两个量相等的式子,其中包含未知数和已知数。
五年级上册数学教案-《方程的意义》人教新课标(2023秋)

-方程求解的步骤:学生可能不知道如何求解方程。教师需要详细解释求解步骤,如将未知数移到方程的一边,常数移到另一边,然后进行运算。
-方程在实际问题中的应用:学生可能不知道如何将实际问题转化为方程。教师需引导学生识别问题中的已知数和未知数,列出方程。
-灵活运用方程:在解决问题时,学生可能不知道如何灵活运用方程。例如,对于年龄问题,应引导学生理解两人年龄差不变的原则。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《方程的意义》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个数量相等的情况?”比如,你在购物时,发现两件商品的价格加起来正好等于你带的钱。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索方程的奥秘。
其次,在方程的识别和求解环节,我发现学生们对于如何求解方程还不是很熟练。有些学生在将未知数移到方程的一边、常数移到另一边时容易出错。针对这个问题,我考虑在接下来的课程中,多设计一些类似的练习题,让学生们多加练习,帮助他们熟练掌握求解方程的方法。
此外,实践活动中的小组讨论环节,学生们表现得相当积极,提出了很多有创意的想法。但我也注意到,有些学生在讨论中过于依赖同伴,自己独立思考的能力有待提高。在今后的教学中,我会注重引导学生独立思考,培养他们的问题解决能力。
还有一个让我印象深刻的是,在学生小组讨论成果分享时,有些学生能够将方程应用于解决实际问题,这让我感到很高兴。但同时,我也发现有些学生在将实际问题转化为方程时存在困难。这可能是因为他们对问题的理解不够深入,或者是对方程的应用还不够熟练。为了帮助学生更好地将方程应用于实际问题,我打算在后续的教学中,多设计一些与生活实际相结合的案例,让学生在实践中学会运用方程。
5.2.1方程的意义(教案)-五年级上册数学人教版

5.2.1方程的意义(教案)五年级上册数学人教版教案:5.2.1方程的意义年级:五年级学科:数学版本:人教版一、教学内容本节课的教学内容来自人教版五年级上册数学教材,第57页例1以及第58页的做一做。
主要学习了方程的定义以及方程的意义。
通过实例让学生理解含有未知数的等式叫做方程,并掌握方程的基本性质。
二、教学目标1. 让学生了解方程的定义,理解方程的意义。
2. 培养学生解决实际问题的能力,提高学生的数学思维。
3. 培养学生合作学习、积极思考的良好学习习惯。
三、教学难点与重点重点:理解方程的定义,掌握方程的基本性质。
难点:如何引导学生理解方程在实际问题中的应用。
四、教具与学具准备教具:黑板、粉笔、多媒体课件学具:教材、练习本、文具五、教学过程1. 实例引入(5分钟)通过一个实际问题引出方程的概念,如“小明有苹果,平均分给几个小朋友,每人分几个?”让学生思考并回答,从而引出方程的定义。
2. 讲解方程的定义(10分钟)讲解方程的定义,即含有未知数的等式叫做方程。
并通过实例进行解释,让学生理解方程的意义。
3. 方程的性质(10分钟)讲解方程的性质,如方程两边同时加减乘除一个数,方程的解不变。
并通过练习让学生巩固方程的性质。
4. 实际问题解决(10分钟)让学生运用方程解决实际问题,如“小明有苹果,平均分给几个小朋友,每人分几个?”让学生独立解答,并分享解题过程。
5. 课堂小结(5分钟)六、板书设计板书设计如下:方程的定义:含有未知数的等式方程的性质:1. 方程两边同时加减乘除一个数,方程的解不变。
七、作业设计1. 题目:小明有苹果,平均分给几个小朋友,每人分几个?答案:设每人分x个苹果,则方程为:x = (苹果总数)÷(小朋友人数)2. 题目:小华有糖果,平均分给几个小朋友,每人分几个?答案:设每人分y个糖果,则方程为:y = (糖果总数)÷(小朋友人数)八、课后反思及拓展延伸本节课通过实例引入方程的概念,让学生理解方程的意义。
《方程的意义》教案2023-2024学年数学五年级上册-人教版 (1)

教案:《方程的意义》年级:五年级学科:数学教材版本:人教版教学目标:1. 理解方程的意义,能够识别方程中的未知数和等式。
2. 学会使用简单的方程解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
教学重点:1. 方程的意义和基本概念。
2. 方程的解法和应用。
教学难点:1. 理解方程中的未知数和等式的概念。
2. 解决实际问题中的方程应用。
教学准备:1. 教材或教辅资料。
2. 黑板或白板。
3. 教学课件或投影仪。
教学过程:一、导入1. 引导学生回顾之前学过的数学知识,如等式和不等式。
2. 提问学生是否知道方程的概念,并简要介绍方程的意义。
二、新课讲解1. 讲解方程的基本概念,包括未知数和等式。
2. 举例说明方程的解法,如一元一次方程的解法。
3. 引导学生思考如何将实际问题转化为方程,并解决。
三、例题解析1. 解析教材中的例题,引导学生逐步理解方程的解法和应用。
2. 引导学生思考如何将实际问题转化为方程,并解决。
四、课堂练习1. 布置一些方程的练习题,让学生独立完成。
2. 对学生的练习进行讲解和指导,纠正错误。
五、课堂小结1. 回顾本节课所学的内容,强调方程的意义和基本概念。
2. 强调方程的解法和应用,鼓励学生在实际问题中运用方程。
六、作业布置1. 布置一些方程的练习题,让学生巩固所学知识。
2. 鼓励学生思考如何将实际问题转化为方程,并解决。
教学反思:本节课通过讲解方程的意义和基本概念,以及方程的解法和应用,帮助学生理解和掌握方程的知识。
在教学过程中,要注意引导学生思考如何将实际问题转化为方程,并解决,培养学生的逻辑思维能力和解决问题的能力。
同时,要关注学生的学习情况,及时解答学生的疑问,确保学生能够理解和掌握所学知识。
重点关注的细节:将实际问题转化为方程,并解决详细补充和说明:在数学教学中,将实际问题转化为方程,并解决是培养学生数学思维和解决问题能力的重要环节。
这个过程涉及到对问题的理解、分析、建模和求解,是数学知识应用于现实生活的具体体现。
方程的意义(教案)2023-2024学年数学五年级上册-人教版

方程的意义(教案)20232024学年数学五年级上册人教版教案:方程的意义一、教学内容本节课的教学内容选自人教版五年级上册数学教材,主要涉及第三单元《方程》的第一课时,即方程的意义。
具体内容包括:了解方程的概念,理解方程的含义,学会列方程,以及解简单的方程。
二、教学目标通过本节课的学习,使学生能够理解方程的意义,掌握列方程的方法,培养学生的数学思维能力和问题解决能力。
三、教学难点与重点重点:理解方程的概念,掌握列方程的方法。
难点:理解方程的实际意义,以及如何运用方程解决实际问题。
四、教具与学具准备教具:黑板、粉笔、多媒体教学设备。
学具:教材、练习本、铅笔、橡皮。
五、教学过程1. 实践情景引入:假设小明有苹果和橙子两种水果,苹果有10个,橙子有5个,小明吃了2个苹果和3个橙子,问小明现在还剩下多少个水果?2. 例题讲解:引导学生列出方程来解决这个问题。
以苹果为例,设苹果的剩余数量为x,则有方程:10 2 = x。
解这个方程,得到x = 8,即小明现在还剩下8个苹果。
同理,可以列出橙子的方程:5 3 = y,解这个方程,得到y = 2,即小明现在还剩下2个橙子。
3. 随堂练习:让学生独立完成教材上的练习题,检验学生对方程的理解和掌握程度。
4. 方程的意义:通过上面的例子,引导学生理解方程的意义,即方程是用来表示两个数量相等关系的式子。
5. 教学拓展:让学生尝试解决更复杂的实际问题,例如:一个长方形的长是12厘米,宽是5厘米,如果长方形的周长是30厘米,求长方形的高是多少厘米?六、板书设计板书设计如下:方程的意义:10 2 = x (苹果)5 3 = y (橙子)x = 8 (苹果剩余数量)y = 2 (橙子剩余数量)七、作业设计1. 请用方程表示下面的问题,并求解:(1)小华有20元钱,他买了一本书花了8元,问小华还剩下多少钱?(2)一个正方形的边长是6厘米,如果这个正方形的周长是24厘米,求正方形的面积是多少平方厘米?答案:(1)20 8 = x,x = 12(2)6 × 4 = y,y = 242. 请尝试解决下面的实际问题:甲、乙两地相距120千米,甲地到乙地的汽车每小时行驶60千米,问这辆汽车需要多少时间才能到达乙地?八、课后反思及拓展延伸通过本节课的学习,学生应该能够理解方程的意义,掌握列方程的方法,并能够运用方程解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方程的意义
【教学内容】
人教版数学五年级上册第62页——第63页。
【教学目标】
1、经历从生活情境到方程的建构过程,理解方程的意义,会判断一个式子
是否为方程。
体验观察、比较、分析的学习方法。
2、在自主探究的学习过程中弄清方程和等式两个概念的关系,培养学生观察、描述、分类、抽象、概括、应用等能力。
3、通过自主探究、合作交流等教学活动,激发学生兴趣,培训合作意识。
【教学重点】
理解和掌握方程的意义,弄清楚方程和等式的关系。
【教学难点】
了解天平保持平衡的道理。
【教学准备】
多媒体课件、天平、式子卡片、学生书写卡片
【教学过程】
一、微课引入,认识天平。
以生动的微课视频,引导学生认知:天平可以称量物体的质量,还可以判断两个物体的质量是否相等;使用天平一般是左盘放物体,右盘放砝码;指针在中间说明天平平衡,即表示物品的重量与砝码的重量相等,或表示天平左右两边所
放的物品重量相等。
(设计意图:让学生了解天平的基本功能,从而认识平衡,明确两边相等可以用什么数学符号表示。
)
二、创设情境,体验感知。
1.出示实物天平。
师:两边托盘空置,指针在中间,天平初始状态是平衡的。
(实物天平比较小,用屏幕上的天平来模拟实验。
)教师把一个20克和一个30克的物品放到天平的一边(图2),让学生猜想会怎么样?(会向右边倾斜)
(图1) (图2) (图
3) 请学生帮忙选一个适当的砝码放在天平的右盘,使天平平衡。
学生选放50克的砝码后,出示图2,教师引导:你能用数学语言记录吗?(组长在卡片上书写,其他学生在堂练本写好算式,老师请一个组长写好后贴到黑板上“20+30=50”)
迁移:图3可以怎样用算式表示呢?(“20+a=50”)
(设计意图:通过直观演示,让学生观察分析每一步实验现象,并尝试用数学知识来描述这些现象。
)
2、接下来,课件出示图4。
提出观察任务:从图4中我们可以得到什么信息? (知道了空杯子的重量是100克。
)
接着出示图5:如果在空杯子中加入了水。
天平会发生了什么变化?说明了什么?
(天平向左边倾斜了。
说明了左边物体的重量大于右边。
)
教师引导:水的重量我们不知道,在这里可以用字母“x ”来代替,因此这里“x ”表示的是一个未知数。
引导思考怎样表示出左边物体的重量呢?再让学生用适当的式子表示图5。
(‘100+x ’克;100+x>100,根据天平平衡的原理,因为天平是向左边倾斜的,所以左边物体的重量大于右边。
)
3、接下来出示图6、图7、图8,让学生独立写算式,然后请组长把式子张贴并全班交流。
图6:根据天平平衡的原理,因为天平是向左边倾斜的,所以左边物体的重量大于右边。
100+x>200
图4 图5
图7 图8
图6 a
图7:天平的右边又加了一个100克的砝码后,天平是向右边倾斜的,所以100+x <300
图8:天平平衡了,表示左右两边物体的重量是相等的,所以我们列出的式子用的是等号。
100+x=250
(设计意图:经历体验是最好的理解。
学生通过对天平现象的猜测、比画和用数学语言记录、展示,在体验天平不平衡到平衡的过程中突出对相等关系的理解,从而顺利帮助学生实现从算术思维向代数思维的转变。
同时充分理解等式与不等式,为接下来的分类和抽象出方程的意义埋下伏笔,落实了学生做数学的学习历程。
)
三、分类研究,抽象归纳。
1、小组合作:把刚才用天平称物品的过程中列出的式子分一分
要求:(1)小组围拢,组长拿出刚才写的式子卡片,组内分一分;
(2)说一说,分类的依据是什么?
2、全班交流:请某一组的代表带着小组的式子卡片上讲台展示。
估计学生可能会出现:
(1)把相等的分成一类,不相等的分成一类;引导学生命名“等式”与“不等式”
(2)或把含有字母的分成一类,只含有数的分成一类。
引导孩子们把注意力放在第一种分类上,并提出关注任务:看看等式,我们还有新的思考吗?
学生会发现:有的只是数,有的却含有字母。
教师继续引导:在等式的大家庭里又可以怎么分?
(只含有数的分成一类,含有字母的分成另一类)
(师请学生圈出不同的两类,有了课前预习的认知,学生容易说出这是方程。
) (设计意图:利用小组合作学习的探究模式,组长带领组员把式子卡片分一分、说一说,并提供给学生展示学习成果的平台。
)
3、理解意义:
(1)同桌互相说说:什么叫方程?
(2)请学生到黑板前认一认:哪些是方程?
(3)用自己的话概括一下:什么是方程?
(板书:含有未知数的等式叫做方程;并把学生展示张贴的式子卡片整理成交集图。
)
100+x>100 含有字母
等式 20+30=50 方程
(设计意图:引导学生从分类的需要入手,经历了根据式子的共性把式子分为等式和不等式两大类,将等式通过辨析进一步分为只含数字和含未知数两类,通过维恩图围圈呈现方程, 学生在大量表象的支撑下完整表达出方程的意义。
)
4、尝试辨析。
出示式子卡片,请把方程送回板书中的“家”。
5x +24=120 x +32<47 4.3÷0.1=43 2y=0 23+10 3x÷8 80+□=120
(设计意图:抓住课堂生成资源搭建思想交流和思维碰撞平台,留给学生充足的空间和时间,使学生对知识的认识理解在交流中得以加深。
在“送方程回家”的这一过程中,教师风趣地描述要进“方程的房间”,先要进入“等式的家门口”,让学生进一步体会方程与等式的关系。
)
四、巩固练习
1、看图写方程。
(1) (2) (设计意图:受算术思维的影响,学生容易列出(100-20)÷2=X 、126÷3=X 这样的方程,着重引导学生关注图中的等量关系,如抓住‘平衡的天平左右两边的量相等’‘3个皮球的总钱数是126元’,初步体验方程建模的过程。
)
2、判断。
(1)含有未知数的式子称为方程。
( )
(2)0.5x=4是方程,不是等式。
( )
(3)1.5+x 不是方程。
( )
(4)等式一定是方程。
( )
(设计意图:帮助加深学生对方程的两个条件的认知,同时强化方程与等式的关系。
)
3、请你写出一个方程,并用生活情境描述出来。
如‘X-27=10’:妈妈今年x 岁,妈妈比小红大27岁,小红今年10岁。
(设计意图:让方程回归生活,把抽象的方程变得生动有趣;让学生换个思路理解方程,加深和丰富了对方程意义的理解。
)
20克 x 克 100
x 克 m 元
m 元 m 元
126元
五、全课小结
谈话:今天我们学习了什么?你有什么收获?还有什么问题?
(设计意图:回顾梳理学生的学习过程和成果,有助于学生形成良好的学习习惯,掌握一定的学习方法,在收获知识的同时积累经验,体验成功。
)
【教学反思】
在小学数学教学中,从算术思维到代数思维的过渡,对学生来说是思维方式上的一个飞跃。
《方程的意义》这是一块崭新的知识点,对于五年级的学生来说,理解起来也有一定的难度。
这是一节数学概念课,概念教学是一种理论教学,理论性、学术性较强,往往会显得枯燥无味,但同时它又是一种基础教学,是以后学习更深一层知识,解决更多实际问题的知识支撑。
因此,在教学中我通过创设贴近学生生活的情境来激发学生的学习兴趣,从而使他们愿学、乐学,首先在学生已有天平称物经验的基础上引导学生通过猜测、比画、记录和展示生成了等式和不等式的教学资源,然后比较、辨析逐次分类,在学生分类的基础上通过围圈呈现方程,接着完整准确表达出方程的意义,最后通过辨析理解、数形结合初步体验、编情境等方式一步步将学生的认识引向深入,为以后进一步学习方程打下基础。