眼图常用知识介绍

合集下载

眼图常用知识介绍

眼图常用知识介绍
眼图常用知识介绍
关于眼图及其测量大家已经做了较多的讨论 最经典的文章是 传输指标测试大全 中有关 眼图部分 其侧重于眼图的定义和测量 光眼图分析 张轩/22336著 其侧重点在于眼图产生 的机理 以及色散对长距离传输后的眼图的影响
我们本次讨论的侧重点是如何来从眼图的中看出一些量化的数据 如 信号的上升 下降时 间 交叉点位置 消光比 Q因子 信噪比 抖动等 以及如何从各个方面来衡量一个眼图的优 劣 最后简单介绍一下CSA8000及其使用注意事项
眼图常用知识介绍
部门内公开
以下为一个较好的2.5G的 眼图比较对称 眼线比较细 0 光比适中 Q因子较高
1 电平都比较平滑 消
以下为较好的10G的眼图 眼图对称 眼图比较细 特别是 0
1 电平 上升 下降沿
稍粗一点 可见信号的抖动较大 消光比适中 Q因子较高 交叉点稍高 实际调试中 可以将交
叉点调低一点点
80C09-CR 光测量模块 输入光功率不能超过7dBm 即 5mW 建议输入光功率在
0dBm左右 带宽可选择30GHz和20GHz两种 可以以时钟恢复方式 不需要外加触发时钟 测量
9.95G 10.71G信号 或者以外触发方式测试 10.66G信号 滤波器有9.95G 10.71G两种 80C05 80C06为高带宽光测量模块 可以测量40G信号 80C07为多速率光测量模块 可以测
生误码并且通道代价满足指标要求 只要消光比大于ITU-T建议的最低值 多大都可以 交叉点比例反映信号的占空比大小 由于传输过程中 光信号的脉冲宽度将会展宽 导致接
收侧的交叉点相对于发送侧上移 为了有利于长距离传输 保证接收侧的交叉点比例在大约50 左 右 使得接收侧的灵敏度最佳 我们一般建议在发送侧把交叉点的位置稍微下移一些 一般发送侧

眼图

眼图

在实际的通信系统中,数字信号经过非理想的传输系统必定要产生畸变,信号通过信道后,也会引入噪声和干扰,也就是说,总是在不同程度上存在码间干扰的。

在码间干扰和噪声同时存在情况下,系统性能很难进行定量的分析,常常甚至得不到近似结果。

为了便于实际评价系统的性能,常用所谓“眼图”。

眼图可以直观地估价系统的码间干扰和噪声的影响,是一种常用的测试手段。

所谓“眼图”,就是由解调后经过低通滤波器输出的基带信号,以码元定时作为同步信号在示波器屏幕上显示的波形。

干扰和失真所产生的传输畸变,可以在眼图上清楚地显示出来。

因为对于二进制信号波形,它很象一只人的眼睛。

在图1中画出两个无噪声的波形和相应的“眼图”,一个无失真,另一个有失真(码间串扰)。

图1中可以看出,眼图是由虚线分段的接收码元波形叠加组成的。

眼图中央的垂直线表示取样时刻。

当波形没有失真时,眼图是一只“完全张开”的眼睛。

在取样时刻,所有可能的取样值仅有两个:+1或-1。

当波形有失真时,在取样时刻信号取值分布在小于+1或大于-1附近,“眼睛”部分闭合。

这样,保证正确判决所容许的噪声电平就减小了。

换言之,在随机噪声的功率给定时,将使误码率增加。

“眼睛”张开的大小就指明失真的严重程度。

为便于说明眼图和系统性能的关系,我们将它简化成图2的形状。

由此图可以看出:(1)最佳取样时刻应选择在眼睛张开最大的时刻;(2)眼睛闭合的速率,即眼图斜边的斜率,表示系统对定时误差灵敏的程度,斜边愈陡,对定位误差愈敏感;(3)在取样时刻上,阴影区的垂直宽度表示最大信号失真量;(4)在取样时刻上,上下两阴影区的间隔垂直距离之半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决;(5)阴影区与横轴相交的区间表示零点位置变动范围,它对于从信号平均零点位置提取定时信息的解调器有重要影响。

衡量眼图质量的几个重要参数有:1.眼图开启度(U-2ΔU)/U指在最佳抽样点处眼图幅度“张开”的程度。

无畸变眼图的开启度应为100%。

眼图的定义、原理及模型

眼图的定义、原理及模型

图1 无失真及有失真时的波形及眼图
图1中可以看出,眼图是由虚线分段的接收码元 波形叠加组成的。眼图中央的垂直线表示取样时 刻。当波形没有失真时,眼图是一只“完全张开” 的眼睛。在取样时刻,所有可能的取样值仅有两 个:+1或-1。当波形有失真时,在取样时刻信号 取值分布在小于+1或大于-1附近,“眼睛”部分 闭合。这样,保证正确判决所容许的噪声电平就 减小了。换言之,在随机噪声的功率给定时,将 使误码率增加。“眼睛”张开的大小就指明失真 的严重程度。
眼图的定义、原理及模型
在实际的通信系统中,数字信号经过非理 想的传输系统必定要产生畸变,信号通过 信道后,也会引入噪声和干扰,也就是说, 总是在不同程度上存在码间干扰的。在码 间干扰和噪声同时存在情况下,系统性能 很难进行定量的分析,常常甚至得不到近 似结果。为了便于实际评价系统的性能, 常用所谓“眼图”。眼图可以直观地估价 系统的码间干扰和噪声的影响,是一种常 用的测试手段。
END
衡量眼图质量的几个重要参数有: 1.眼图开启度(U-2∆U)/U 指在最佳抽样点处眼图幅度“张开”的程度。无畸变眼图 的开启度应为100%。 其中U=U+ + U2.“眼皮”厚度2∆U/U 指在最佳抽样点处眼图幅度的闭合部分与最大幅度之比, 无畸变眼图的“眼皮”厚度应等于0。 3.交叉点发散度∆T/T 指眼图过零点交叉线的发散程度,无畸变眼图的交叉点发 散度应为0。 4.正负极性不对称度 指在最佳抽样点处眼图正、负幅度的不对称程度。无畸变 眼图的极性不对称度应为0。
眼图定义
所谓“眼图”,就是由解调后经过低通滤 波器输出的基带信号,以码元定时作为同 步信号在示波器屏幕上显示的波形。干扰 和失真所产生的传输畸变,可以在眼图上 清楚地显示出来。因为对于二进制信号波 形,它很象一只人的眼睛。

通信原理中的眼图如何描述

通信原理中的眼图如何描述

通信原理中的眼图如何描述通信原理中的眼图是一种常用的信号分析方法,用来描述数字通信中的信号质量和带宽利用率。

它可以表达信号的波形、噪声、振幅和时间间隔等信息,是衡量数字通信系统性能的重要工具。

眼图的基本定义是将连续的信号序列按照一定时间间隔进行采样,然后将采样到的数字信号以一定的水平缩放因子和垂直偏移因子绘制到坐标系中,形成一系列的“眼睛”形状。

每个“眼睛”代表一个样本周期内的传输信号,通过分析这些“眼睛”的开口大小、对称性、向上或向下的移动等特征,可以推断出信道传输特性和影响因素。

眼图可以从多个方面提供有关信号质量的信息。

首先,眼图的开口大小可以反映信号的抗噪声能力和抗干扰能力。

如果开口较小,意味着传输信号容易受到噪声和干扰的影响,信号质量较差;反之,如果开口较大,信号质量较好,传输容易。

其次,眼图的对称性可以反映信号的失真情况。

如果眼图不对称,说明信号可能发生了失真,需要进行补偿或校正。

此外,眼图的移动方向和距离可以表达信号的时钟同步性和信号间隔的准确程度。

如果眼图向上或向下移动,或者眼图的顶部或底部出现扭曲,意味着信号的时钟同步不好,信号间隔的准确性较差。

眼图的形状和特征主要受到以下几个因素的影响。

首先,信号的带宽决定了眼图的开口大小。

带宽越大,眼图的开口越大,信号质量越好。

其次,信号的噪声和干扰会使眼图的开口变窄,影响信号的清晰度。

因此,抗噪声和抗干扰能力越强的信号,眼图的开口越大。

此外,时钟同步误差也会对眼图产生影响。

时钟同步误差越大,眼图的移动越明显,信号间隔的准确度越低。

最后,传输介质的失真和信道衰减会使眼图发生形变,降低信号的质量。

在实际应用中,通过观察和分析眼图,可以识别出信号传输中的问题和优化方案。

例如,如果眼图的开口非常小,表明信号的抗噪声和抗干扰能力差,可以考虑增加信号的幅度、使用更好的编码和解码算法,或者改善传输环境等方法来提高信号质量。

如果眼图的对称性不好,可以考虑采用均衡技术或预编码技术来补偿信号失真。

眼图常识

眼图常识

眼图常用知识介绍关于眼图及其测量大家已经做了较多的讨论传输指标测试大全其侧重于眼图的定义和测量光眼图分析张轩/22336著以及色散对长距离传输后的眼图的影响如下降时间消光比信噪比以及如何从各个方面来衡量一个眼图的优劣现在我们公司常用的测量眼图的仪器为CSA80001眼图与常用指标介绍下图为一个10G光信号的眼图右边一栏为这个光信号的一些测量值ExdB交叉点比例QF平均光功率Rise下降时间峰值抖动RMSJ消光比定义为眼图中电平比电平的值传输距离又不同的要求G.957的建议衡量器件是否符合要求除了满足建议要求之外一般的对于FP/DFB直调激光器要求EML电吸收激光器消光比不小于10dBµ«ÊÇÕâ²¢²»Òâζ×ÅÏû¹â±È可以无限大将导致激光器的啁啾系数太大不利于长距传输与速率的最低要求消光比大0.5~1.5dBÖ®ËùÒÔ¸ø³öÕâôһ¸öÊýÖµÊǺ¦ÅÂÏû¹â±ÈÌ«¸ßÁ˵¼ÖÂÎóÂë²úÉú»òͨµÀ´ú¼Û³¬±êûÓвúÉúÎóÂë²¢ÇÒͨµÀ´ú¼ÛÂú×ãÖ¸±êÒªÇó¶à´ó¶¼¿ÉÒÔÓÉÓÚ´«Êä¹ý³ÌÖе¼Ö½ÓÊÕ²àµÄ½»²æµãÏà¶ÔÓÚ·¢ËͲàÉÏÒÆ±£Ö¤½ÓÊÕ²àµÄ½»²æµã±ÈÀýÔÚ´óÔ¼50ʹµÃ½ÓÊÕ²àµÄÁéÃô¶È×î¼ÑÒ»°ã·¢ËͲཻ²æµã±ÈÀý½¨Òé¿ØÖÆÔÚ4045Q因子综合反映眼图的质量问题表明眼图的质量越好光功率一般来说1Խƽ»¬ÔÚ²»¼Ó¹âË¥¼õµÄÇé¿öÏÂ越高越好越高越好如果需要准确地测量光功率信号的上升时间下降的快慢的变化的时间下降时间不能大于信号的周期的40如9.95G信号要求其上升峰可以定性反映信号的抖动大小这两个测量值是越小越好如Agilint 的37718在测量抖动的时候才能保证测量值相对准确做为一个比较参考一般在发送侧的测量值都大于30dB2典型的眼图介绍接下来我们来看一些典型的较好的眼图和一些有问题的眼图以下的为一个较好的622M的眼图眼线很细Q因子很高以下为不加STM-4滤波器的622M的眼图特别是上升电平有点波纹信号的高频谐波没有被虑掉我们看到即使电平不平坦以下为一个较好的2.5G的眼线比较细0电平都比较平滑Q因子较高以下为较好的10G的眼图眼图比较细0电平下降沿稍粗一点消光比适中交叉点稍高可以将交叉点调低一点点总的来说眼图质量将越差第一是抖动抖动越难控制由于测试过程一般都要加相应的低通滤波器622M信号的低通滤波器的带宽大约为500MHz8GHz这个频率范围的噪声却没有被10G信号的滤波器滤掉10G信号的噪声更大一下3有问题的眼图分析以下为一个有问题的622M眼图我们来一一分析眼图有非常明显的两个上升俗称双眼皮电平1ÐźÅÓйý³åÏû¹â±ÈÆ«µÍÖ»ÓÐ4.1dBµ¼ÖÂÐźŵĹý³åÕâ¸öÑÛͼ»¹ËµÃ÷ÁËÁíÒ»¸öÎÊÌâ¶ø²»ÊÇΨһµÄÒªÇóÕâ¸öÑÛͼµÄ±ßµÄÀëÄ£°å»¹ÊÇÓÐÒ»¶¨µÄÓàÁ¿µÄÎÒÃÇÔÙÀ´¿´¿´ÒÔÏÂ622M眼图估计是信号的滤波没有处理好以下为2.5G 眼图存在的问题是眼图有点歪这个跟激光器的调制特性有一定的关系以下2.5G 眼图注意与上一个眼图比较下降沿都较粗均方根抖动部门内公开眼图常用知识介绍以下2.5G的眼图就比较糟糕上升信号质量不好消光比也很低其原因可能是驱动器或者阻抗非常不匹配以下一个为2.5G眼图可能两个原因引起的第二是直调激光器的张驰振荡引起的振铃以下为10G 眼图第一消光比太低眼图电平很粗可能的原因是以下10G 眼图没有其测量数据下降沿比较粗可以看出来部门内公开眼图常用知识介绍以下为10G眼图这从那里看出来呢眼图的上升电平都比较粗很不干净以上三个眼图我们分析了导致眼图不好的三种情况抖动这三种情况如何从眼图看出来呢1²»Æ½Ì¹½â¾öÎÊÌâÒª´Ó±£Ö¤´Óʼ¶Ëµ½ÖÕ¶Ë×迹ƥÅä如果眼图的上升中间那么就是抖动引起的如合理设计锁相环如果眼图的都比较粗一般来说是电源噪声解决问题也是要从这几方面着手不能以一把尺子来衡量眼图质量越难保证要求的眼图质量也好时钟输入的光模块比只有数据输入的光模块的眼图质量会更好一些EA调制方式的眼图比直接调制方式的眼图表现会好一些4CSA8000简介与使用注意事项4.1CSA8000简介CSA8000为TEKTRONIX公司最新的通讯分析仪同时可以测量信号的其他一些指标消光比信噪比CSA8000为WINDOWS界面支持鼠标面板按键操作界面方便快捷拷贝CSA8000仪表包括主机以及测量模块80C01-CR光测量模块即带宽为20GHz²»ÐèÒªÍâ¼Ó´¥·¢Ê±ÖÓ 2.488G信号2.488G10.66G滤波器的可以选择622M9.95G三种输入光功率不能超过7dBm5mW建议输入光功率在0dBm左右可以以时钟恢复方式测量9.95G信号或者以外触发方式测试10.66GÂ˲¨Æ÷Ö»ÓÐ9.95G一种输入光功率不能超过7dBm5mW在测量过程中输出光可以直接输入给测量模块可以以时钟恢复方式测量1.063G 2.488G滤波器的可以选择1.063G2.488G三种输入光功率不能超过7dBm5mW建议输入光功率在0dBm左右可以以时钟恢复方式测量9.95G»òÕßÒÔÍâ´¥·¢·½Ê½²âÊÔ10.71G信号10.66G两种输入光功率不能超过7dBm5mW建议输入光功率在0dBm左右可以以时钟恢复方式测量9.95G»òÕßÒÔÍâ´¥·¢·½Ê½²âÊÔ 10.66G信号10.71G两种80C06为高带宽光测量模块80C07为多速率光测量模块622M这些模块我们暂时没有这里不做更进一步的介绍用与测量电信号眼图建议输入信号幅度为500mV左右带宽高达50GÌØ±ð×¢ÒâµÄÊÇÐèҪרÃŵÄת½ÓÍ·²ÅÄÜʹÓÃÓÃÓë²âÁ¿µçÐźÅÑÛͼ建议输入信号幅度为500mV左右其带宽为20G80E04模块还有一个独特的功能另外还有80E02ÆäÄÜʵÏֵŦÄܲ»µ¥¶À½éÉÜ光测量模块的输入光功率不能超过允许的范围否则可能造成测量模块的永久损坏使用中要注意防静电特别是以外触发方式测量的时候为了测量的数据准确可靠包括暗电流校正和温度补偿校正首先把测量模块的光接口盖上首先要将测量仪表打开然后对仪表进行温度补偿校正注意校正过程较长具体操作如下 要选择选择好相应的速率的滤波器和模板GE信号就选择GE的滤波器与模板交叉点比例等数值时候选择滤波器操作步骤如下选择正确的滤波器Setup-->Mask-->选择正常的通道C8。

眼图详解(眼图分析)

眼图详解(眼图分析)

眼图详解关于眼图的基本知识1、眼图的作用数字信号的眼图可以体现数字信号的整体特征,能够很好地评估数字信号的质量,因而眼图的分析是数字系统信号完整性分析的关键之一。

2、眼图的形成串行数据的传输由于通讯技术发展的需要,特别是以太网技术的爆炸式应用和发展,使得电子系统从传统的并行总线转为串行总线。

串行信号种类繁多,如PCI Express、SPI、USB 等,其传输信号类型时刻在增加。

相比并行数据传输,串行数据传输的整体特点如下:1)信号线的数量减少,成本降低2)消除了并行数据之间传输的延迟问题3)时钟是嵌入到数据中的,数据和时钟之间的传输延迟也同样消除了4)传输线的PCB 设计也更容易些5)信号完整性测试也更容易实际中,描述串行数据的常用单位是波特率和UI,串行数据传输示例如下:串行数据传输示例例如,比特率为3.125Gb/s 的信号表示为每秒传送的数据比特位是3.125G 比特,对应的一个单位间隔即为1UI。

1UI表示一个比特位的宽度,它是波特率的倒数,即1UI=1/(3.125Gb/s)=320ps。

现在比较常见的串行信号码形是NRZ 码,因此在一般的情况下对于串行数据信号,我们的工作均是针对NRZ 码进行的。

由于示波器的余辉作用,将扫描所得的每一个码元波形重叠在一起,从而形成眼图。

眼图中包含了丰富的信息,从眼图上可以观察出码间串扰和噪声的影响,体现了数字信号整体的特征,从而可以估计系统优劣程度,因而眼图分析是高速互连系统信号完整性分析的核心。

另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰,改善系统的传输性能。

眼图实际上就是数字信号的一系列不同二进制码按一定的规律在示波器屏幕上累积后的显示,简单地说,由于示波器具有余辉功能,只要将捕获的所有波形按每三个比特分别地叠加累积(如上图所示),从而就形成了眼图。

目前,一般均可以用示波器观测到信号的眼图,其具体的操作方法为:将示波器跨接在接收滤波器的输出端,然后调整示波器扫描周期,使示波器水平扫描周期与接收码元的周期同步,这时示波器屏幕上看到的图形就称为眼图。

眼图形成及其基本知识归纳

眼图形成及其基本知识归纳

* * 1眼图基本观点眼图的形成原理眼图是一系列数字信号在示波器上积累而显示的图形,它包含了丰富的信息,从眼图上能够察看出码间串扰和噪声的影响,表现了数字信号整体的特色,从而预计系统好坏程度,因此眼图剖析是高速互连系统信号完好性剖析的核心。

此外也能够用此图形对接收滤波器的特征加以调整,以减小码间串扰,改良系统的传输性能。

用一个示波器跨接在接收滤波器的输出端,而后调整示波器扫描周期,使示波器水平扫描周期与接收码元的周期同步,这时示波器屏幕上看到的图形就称为眼图。

示波器一般丈量的信号是一些位或某一段时间的波形,更多的反应的是细节信息,而眼图则反应的是链路上传输的全部数字信号的整体特色,以下列图所示:图示波器中的信号与眼图假如示波器的整个显示屏幕宽度为100ns ,则表示在示波器的有效频宽、取样率及记忆体配合下,获取了100ns 下的波形资料。

但是,对于一个系统而言,剖析这么短的时间* *内的信号其实不拥有代表性,比如信号在每一百万位元会出现一次突波(Spike ),但在这100ns 时间内,突波出现的机率很小,所以会错过某些重要的信息。

假如要权衡整个系统的性能,这么短的时间内丈量获取的数据明显是不够的。

假想,假如能够以重复叠加的方式,将新的信号不停的加入显示屏幕中,但却仍旧记录着上次的波形,只需积累时间够久,就能够形成眼图,从而能够认识到整个系统的性能,如串扰、噪声以及其余的一些参数,为整个系统性能的改良供给依照。

剖析实质眼图,再联合理论,一个完好的眼图应当包含从“000 ”到“ 111 ”的全部状态组,且每一个状态组发生的次数要尽量一致,不然有些信息将没法表此刻屏幕上,八种状态形成的眼图以下所示:图眼图形成表示图由上述的理论剖析,联合示波器实质眼图的生成原理,能够知道一般在示波器上观察到的眼图与理论剖析获取的眼图大概靠近(无串扰等影响),以下所示:* *图示波器实质观察到的眼图假如这八种状态组中缺失某种状态,获取的眼图会不完好,以下所示:图示波器观察到的不完好的眼图经过眼图能够反应出数字系统传输的整体性能,但是怎么样才能正确的掌握其判断方法呢?这里有必需对眼图中所波及到的各个参数进行定义,认识了各个参数此后,其判断方法很简单。

眼图的概念

眼图的概念

眼图的概念眼图是指在频谱分析中常出现的一种信号特征,通常用来表示信号的带宽与中心频率。

它是通过对信号进行傅里叶变换后,在频域中观察信号的频谱特征得到的。

眼图主要用于对数字通信系统中的时域信号进行分析和评估,以了解信道传输性能和判断系统的可靠性。

眼图的原理是基于信号的采样和重构过程。

当信号经过采样和重新构造后,得到的信号会受到噪声和其他干扰的影响,因此在信号的波形上会出现一定的失真和扭曲。

而眼图可以通过观察信号的波形特征来判断信号的质量和误码率等性能指标。

眼图的基本形状是一串类似于“眼睛”的波形,其中包含了信号的多个周期。

在眼图中,通常可以观察到信号的上下垂直边界和左右水平边界,它们分别代表了信号的幅度和时间轴。

而眼图中的开口宽度和深度则代表了信号的峰-峰值(也即电平差)和噪声信号。

眼图的开口宽度反映了信号的峰-峰值。

如果开口很窄,代表峰-峰值很小,即信号的幅度很小。

而如果开口很宽,代表峰-峰值较大,即信号的幅度较大。

通过对眼图开口宽度的观察,可以判断信号的灵敏度和抗干扰能力。

眼图的深度则反映了信号中的噪声。

如果眼图深度很浅,代表噪声信号很小,即信号的质量很好。

而如果眼图深度很深,代表噪声信号很大,即信号的质量较差。

通过对眼图深度的观察,可以判断信号的信噪比和误码率。

眼图的另一个重要特征是眼图的跳动,即眼图上各个周期的变化。

这种跳动反应了信号在传输过程中的时钟偏移和抖动等问题。

通过对眼图跳动的观察,可以判断信号的时钟同步性和时钟失真程度。

眼图的分析主要通过眼图的偏移、闭合度和对称性等指标进行。

眼图的偏移表示了信号的直流偏移情况,可以判断信号的偏置和直流分量。

眼图的闭合度表示了信号的完整性,可以判断信号的时钟同步性和时延扩大情况。

而眼图的对称性表示了信号的对称性,可以判断信号的相位和频率稳定性。

在实际应用中,眼图常用于数字通信系统的调试和优化。

通过对眼图进行分析,可以发现系统中的时钟同步问题、噪声干扰问题和时域失真问题等,并采取相应的措施进行改进和优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

眼图常用知识介绍
关于眼图及其测量大家已经做了较多的讨论,最经典的文章是《传输指标测试大全》中有关眼图部分,其侧重于眼图的定义和测量,《光眼图分析》其侧重点在于眼图产生的机理,以及色散对长距离传输后的眼图的影响。

本次讨论的侧重点是如何来从眼图的中看出一些量化的数据,如信号的上升、下降时间;交叉点位置;消光比;Q因子;信噪比;抖动等;以及如何从各个方面来衡量一个眼图的优劣。

1 眼图与常用指标介绍
下图为一个10G光信号的眼图,左边是眼图的形状以及10G眼图的模板,右边一栏为这个光信号的一些测量值。

从上而下分别为消光比(ExdB)、交叉点比例(Crs)、Q因子(QF)、平均光功率(AOP)、上升时间(Rise)、下降时间(Fall)、峰峰值抖动(PFJi)、均方根值抖动(RMSJ)。

消光比定义为眼图中1 电平比0 电平的值,在建议中根据不同的速率、传输距离又不同的要求、对于我们直接外购的光模块要根据ITU-T(G.957 G.691)的建议、以及厂家的器件资料的测试、衡量器件是否符合要求。

对于我们自己开发的光模块、除了满足建议要求之外,不同的激光器的类型有不同的要求,一般的对于FP/DFB直调激光器,要求消光比不小于8.2dB,EML 电吸收激光器消光比不小于10dB,ITU-T中对于消光比没有规定一个最大值,但是这并不意味着消光比可以无限大,消光比太高了,将导致激光器的啁啾系数太大,导致通道代价超标不利于长距传输。

一般建议实际消光比实际光接口类型(与速率、传输距离有关)的最低要求消光比大0.5~1.5dB。

这不是一个绝对的数值,之所以给出这么一个数值是害怕消光比太高了,传输以后信号劣化太厉害,导致误码产生或通道代价超标。

如果一个光模块传输其标称距离以后,没有产生误码
并且通道代价满足指标要求,只要消光比大于ITU-T建议的最低值,多大都可以。

交叉点比例反映信号的占空比大小。

由于传输过程中,光信号的脉冲宽度将会展宽,导致接收侧的交叉点相对于发送侧上移。

为了有利于长距离传输,保证接收侧的交叉点比例在大约50%左右,使得接收侧的灵敏度最佳,我们一般建议在发送侧把交叉点的位置稍微下移一些,一般发送侧交叉点比例建议控制在40%-45%。

Q因子综合反映眼图的质量问题。

Q因子越高越好,表明眼图的质量越好。

Q因子一般受噪声、光功率、电信号是否从始端到终端阻抗匹配等因素影响。

一般来说,眼图中1 电平的这条线越细、越平滑,Q因子越高。

在不加光衰减的情况下,发送侧光眼图的Q因子不应该小于12,越高越好,接收测的Q因子不应该小于6,越高越好。

信号的上升时间、下降时间反映了信号的上升、下降的快慢,一般指整个信号幅度的20%-80%的变化的时间。

一般要求其上升、下降时间不能大于信号的周期的40%。

如9.95G信号要求其上升、下降时间不大于40ps。

峰峰值抖动和均方根值抖动,可以定性反映信号的抖动大小,做为比较参考,这两个测量值是越小越好。

定量地测量输出抖动还是要专门的测试抖动的仪表,如Agilint 的37718、ACTERNA的ANT20-SE。

在测量抖动的时候仪表一般需要预热30分钟以上,才能保证测量值相对准确。

信噪比同样可以定性反映信号的质量好坏,做为一个比较参考。

这个测量值是越大越好,一般在发送侧的测量值都大于30dB。

定量地测量需要使用光谱分析仪。

2 典型的眼图介绍
接下来我们来看一些典型的较好的眼图和一些有问题的眼图,并分析这些眼图的问题在哪里。

以下的为一个较好的622M的眼图,我们可以看出眼图比较对称,眼线很细,消光比适中,Q因子很高,达到24。

以下为不加滤波器的622M的眼图,可以看出眼图的眼线较细,特别是上升、下降沿,1 电平有点波纹,这是因为不加低通滤波器以后,信号的高频谐波没有被虑掉,各谐波分量叠加起来成为有波纹的方波。

我们看到即使1电平不平坦,其Q因子仍然达到21.7。

以下为一个较好的2.5G的眼图,比较对称,眼线比较细,0 、1 电平都比较平滑,消光比适中,Q因子较高。

以下为较好的10G的眼图,眼图对称,眼图比较细,特别是0 、1 电平;上升、下降沿稍粗一点,可见信号的抖动较大;消光比适中,Q因子较高。

交叉点稍高,实际调试中,可以将交叉点调低一点点。

总的来说,速率越高,眼图质量将越差。

这主要由两个方面引起,第一是抖动,速率越高,抖动越难控制;第二是噪声,由于测试过程一般都要加相应的低通滤波器,10G信号的低通滤波器的带宽大约为8GHz,622M信号的低通滤波器的带宽大约为500MHz,从500MHz-8GHz这个频率范围的噪声,被622M 信号的滤波器滤掉了,却没有被10G信号的滤波器滤掉,所以从眼图看了,10G 信号的噪声更大一下。

3 有问题的眼图分析
以下为一个有问题的622M眼图这个眼图问题比较多我们来一一分析:
首先,眼图有非常明显的两个上升、下降沿(俗称双眼皮);0 电平、1 电平不平坦,信号有过冲、下冲;消光比偏低只有4.1dB;产生这些现象的原因怀疑是信号的阻抗不匹配,导致信号的过冲、下冲和多径。

这个眼图还说明了另一个问题,眼图要能够套住模板只是眼图的最基本的要求,而不是唯一的要求。

我们看一下,这个眼图的边的离模板还是有一定的余量的。

我们再来看看以下622M眼图,其问题在于噪声非常大,估计是信号的滤波没有处理好。

以下为2.5G眼图,总的质量还不错,存在的问题是眼图有点歪,不对称。

这个跟激光器的调制特性有一定的关系。

以下2.5G眼图,存在的问题是抖动较大,注意与上一个眼图比较,其上升、下降沿都较粗,特别注意比较其峰峰值抖动、均方根抖动,下图都比上图的大。

以下2.5G的眼图就比较糟糕,眼图扭来扭去的,上升、下降都很缓,信号质量不好,Q因子只有6.4。

消光比也很低,只有6.6dB。

其原因可能是驱动器、激光器本身问题、或者阻抗非常不匹配。

以下一个为2.5G眼图,可以明显看出眼图的上升沿有振铃,可能两个原因引起的。

第一是信号线上面阻抗不匹配,第二是直调激光器的张驰振荡引起的振铃。

以下为10G眼图,眼图存在两个问题,第一消光比太低,只有10dB。

另外,眼图1 电平很粗、不平坦。

可能的原因是:信号不匹配引起的。

以下10G眼图没有其测量数据,但是从眼图的上升、下降沿比较粗可以看出来,其信号的抖动比较大。

以下为10G眼图,这个眼图的问题是噪声比较大,这从那里看出来呢?请注意眼图的上升、下降、1 电平都比较粗,整个眼图散点比较多,很不干净。

以上三个眼图我们分析了导致眼图不好的三种情况:阻抗不匹配、抖动、噪声。

这三种情况如何从眼图看出来呢?
如果眼图的1 电平线比较粗、不平坦(上面),那么就是阻抗不匹配引起的。

解决问题要从保证从始端到终端阻抗匹配。

如果眼图的上升、下降沿比较粗(中间),那么就是抖动引起的,解决问题要从减小信号抖动,如:提高输入时钟质量,合理设计锁相环,特别是低通滤波器部分着手。

如果眼图的都比较粗(全部),那么就是噪声引起的,一般来说是电源噪声、
地回路不通畅或者信号周围有大的干扰源引起的,解决问题也是要从这几方面着手。

对于眼图,不能以一把尺子来衡量。

速率越高,眼图质量越难保证;目标传输距离越远,要求的眼图质量也好,同时有数据、时钟输入的光模块比只有数据输入的光模块的眼图质量会更好一些,特别在抖动方面,EA调制方式的眼图比直接调制方式的眼图表现会好一些。

相关文档
最新文档