信号与系统总结

合集下载

信号与系统知识点总结

信号与系统知识点总结

信号与系统知识点总结信号与系统是电子信息科学与技术专业中的一门重要课程,它研究的是信号的产生、传输、处理和系统的分析、设计与控制等内容。

信号与系统是电子信息工程及其相关专业的基础课程,对于学习与工程实践有着重要的意义。

下面是信号与系统知识点的总结。

1.信号的分类信号是信息的载体,它可以是连续的或离散的,可以是周期的或非周期的,可以是冲激的或非冲激的。

根据信号的不同属性,可以将其分为连续信号和离散信号、周期信号和非周期信号、冲激信号和非冲激信号等。

2.连续信号与离散信号连续信号是定义在连续时间域上的信号,用函数表示;离散信号是定义在离散时间域上的信号,用数列表示。

连续信号和离散信号可以通过采样和重构的方法相互转换。

3.周期信号与非周期信号周期信号是在一定时间内重复出现的信号,其周期可以是有限的也可以是无限的;非周期信号是不具有周期性的信号,其能量或功率可以是有限的也可以是无限的。

4.冲激信号与非冲激信号冲激信号是单位面积上的单位冲量信号,可以看作是宽度趋近于零、幅度趋近于无穷大的矩形信号;非冲激信号是在一定时间范围内的非零函数。

5.信号的基本操作信号的基本操作包括平移、反褶、放大、缩小等。

平移操作是将信号在时间轴上平移,反褶操作是将信号在时间轴上反转,放大操作是增大信号的幅度,缩小操作是减小信号的幅度。

6.系统的分类系统是对信号进行操作或变换的装置或过程,可以分为线性系统和非线性系统、时不变系统和时变系统等。

线性系统具有叠加性和比例性质,时不变系统的输出与输入的延迟无关。

7.线性时不变系统的性质线性时不变系统具有线性叠加性、时域平移不变性、时域卷积性质和频域相应性质。

线性时不变系统可以通过其单位冲激响应来描述,单位冲激响应与系统的输入信号进行卷积运算可以得到系统的输出信号。

8.系统的稳定性系统的稳定性是指对于有界输入信号,系统的输出是否有界。

稳定系统的输出信号不会无限增长,而不稳定系统的输出信号可能会无限增长。

信号与系统总结

信号与系统总结

信号与系统总结一、信号与系统的概述信号与系统是电子工程和通信领域中的重要基础课程。

信号是信息的表达形式,是在时间、空间或其他独立变量上的函数。

系统是对信号的处理和转换,可以是线性或非线性的,可以是时不变或时变的。

本文将从以下几个方面对信号与系统进行总结和探讨。

二、信号的分类信号可以按照多个维度进行分类,包括: 1. 按时间域和频率域分类: - 时间域信号:在时间上表示的信号,如脉冲信号、阶跃信号等。

- 频率域信号:在频率上表示的信号,如正弦信号、方波信号等。

2.按连续和离散分类:–连续信号:在整个时间范围上是连续变化的,如模拟信号。

–离散信号:仅在某些特定时间点存在取值,如数字信号。

3.按能量和功率分类:–能量信号:在整个时间范围上的能量有限,如有限长脉冲信号。

–功率信号:在一段时间内的平均功率有限,如正弦信号。

三、系统的分类系统可以按照多个维度进行分类,包括: 1. 按线性和非线性分类: - 线性系统:满足叠加性和齐次性的系统。

- 非线性系统:不满足叠加性和齐次性的系统。

2.按时不变和时变分类:–时不变系统:系统的特性随时间保持不变。

–时变系统:系统的特性随时间变化。

3.按因果和非因果分类:–因果系统:系统的输出仅依赖于当前和过去的输入。

–非因果系统:系统的输出依赖于未来的输入。

4.按LTI和非LTI分类:–线性时不变系统(LTI):线性和时不变的系统。

–非LTI系统:不满足线性和时不变性的系统。

四、信号与系统的性质信号与系统具有多种重要性质,包括: 1. 线性性质:对于线性系统,输入信号的线性组合会产生相应的输出信号线性组合。

2. 时不变性质:时不变系统对于延迟输入信号也会有相同的延迟输出信号。

3. 因果性质:因果系统的输出仅依赖于当前和过去的输入。

4. 稳定性质:对于有界输入,稳定系统的输出也是有界的。

5. 可逆性质:存在反演关系的系统可以将输出信号还原为输入信号。

五、常见信号与系统的应用信号与系统在多个领域中都有广泛的应用,包括: 1. 通信领域:调制解调、信道编码等。

信号与系统_复习知识总结

信号与系统_复习知识总结

信号与系统_复习知识总结信号与系统是电子信息类专业中的一门重要课程,主要介绍信号与系统的基本概念、性质、表示方法、处理方法、分析方法等。

在学习信号与系统的过程中,我们需要掌握的知识非常多,下面是我对信号与系统的复习知识的总结。

一、信号的基本概念1.信号的定义:信号是随时间或空间变化的物理量。

2.基本分类:(1)连续时间信号:在整个时间区间内有无穷多个取值的信号。

(2)离散时间信号:只在一些特定时刻上有取值的信号。

(3)连续振幅信号:信号的幅度在一定范围内连续变化。

(4)离散振幅信号:信号的幅度只能取离散值。

二、信号的表示方法1.连续时间信号的表示方法:(1)方程式表示法:用数学表达式表示信号。

(2)波形表示法:用图形表示信号。

2.离散时间信号的表示方法:(1)序列表示法:用数学序列表示信号。

(2)图形表示法:用折线图表示离散时间信号。

三、连续时间系统的性质1.线性性质:(1)加性:输入信号之和对应于输出信号之和。

(2)齐次性:输入信号的倍数与输出信号的倍数相同。

2.时不变性:系统的输出不随输入信号在时间上的变化而变化。

3.扩展性:输入信号的时延会导致输出信号的时延。

4.稳定性:系统的输出有界,当输入信号有界时。

5.因果性:系统的输出只依赖于当前和过去的输入信号值。

6.可逆性:系统的输出可以唯一地反映输入信号的信息。

四、离散时间系统的性质1.线性性质:具有加性和齐次性。

2.时不变性:输入信号的时移会导致输出信号的相应时移。

3.稳定性:系统的输出有界,当输入信号有界时。

4.因果性:系统的输出只依赖于当前和过去的输入信号值。

五、连续时间系统的分类1.时不变系统:输入信号的时移会导致输出信号的相应时移。

2.线性时不变系统:具有加性和齐次性。

3.时变系统:输入信号的时移会导致输出信号的相应时移,并且系统的系数是时间的函数。

4.非线性系统:不具有加性和齐次性。

六、离散时间线性时不变系统的分类1.线性时变系统:输入信号的时移会导致输出信号的相应时移。

信号与系统期末重点总结

信号与系统期末重点总结

信号与系统期末重点总结一、信号与系统的基本概念1. 信号的定义:信号是表示信息的物理量或变量,可以是连续或离散的。

2. 基本信号:单位阶跃函数、冲激函数、正弦函数、复指数函数等。

3. 常见信号类型:连续时间信号、离散时间信号、周期信号、非周期信号。

4. 系统的定义:系统是将输入信号转换为输出信号的过程。

5. 系统的分类:线性系统、非线性系统、时不变系统、时变系统。

二、连续时间信号与系统1. 连续时间信号的表示与运算(1)复指数信号:具有指数项的连续时间信号。

(2)幅度谱与相位谱:复指数信号的频谱特性。

(3)周期信号:特点是在一个周期内重复。

(4)连续时间系统的线性时不变性(LTI):线性组合和时延等。

2. 连续时间系统的时域分析(1)冲激响应:单位冲激函数作为输入的响应。

(2)冲击响应与系统特性:系统的特性通过冲击响应得到。

(3)卷积积分:输入信号与系统冲激响应的积分运算。

3. 连续时间系统的频域分析(1)频率响应:输入信号频谱与输出信号频谱之间的关系。

(2)Fourier变换:将时域信号转换为频域信号。

(3)Laplace变换:用于解决微分方程。

三、离散时间信号与系统1. 离散时间信号的表示与运算(1)离散时间复指数信号:具有复指数项的离散时间信号。

(2)离散频谱:离散时间信号的频域特性。

(3)周期信号:在离散时间中周期性重复的信号。

(4)离散时间系统的线性时不变性:线性组合和时延等。

2. 离散时间系统的时域分析(1)单位冲激响应:单位冲激序列作为输入的响应。

(2)单位冲击响应与系统特性:通过单位冲激响应获取系统特性。

(3)线性卷积:输入信号和系统单位冲激响应的卷积运算。

3. 离散时间系统的频域分析(1)离散时间Fourier变换(DTFT):将离散时间信号转换为频域信号。

(2)离散时间Fourier级数(DTFS):将离散时间周期信号展开。

(3)Z变换:傅立叶变换在离散时间中的推广。

四、采样与重构1. 采样理论(1)奈奎斯特采样定理:采样频率必须大于信号频率的两倍。

信号与系统知识点详细总结

信号与系统知识点详细总结

信号与系统知识点详细总结1. 信号与系统概念信号是指一种可以传递信息的载体,它可以是电气信号、光信号、声音等形式,常见的信号有连续信号和离散信号两种。

连续信号是定义在连续的时间域上的信号,例如声音信号;离散信号是定义在离散的时间域上的信号,例如数字信号。

系统是对输入信号进行加工处理的装置,它可以是线性系统或非线性系统、时变系统或时不变系统。

线性系统具有叠加性质,即输入信号的线性组合对应于输出信号的线性组合;非线性系统不满足叠加性质。

时变系统的特性随着时间的变化而改变,时不变系统的特性与时间无关。

2. 信号的分类信号可以按多种属性进行分类,例如按时间属性分类可分为连续信号和离散信号;按能量和功率分类可分为能量信号和功率信号,能量信号在有限时间内的总能量是有限值,功率信号在无穷时间内的平均功率是有限值;按周期性分类可分为周期信号和非周期信号,周期信号在一定时间间隔内具有重复的规律性。

3. 时域分析时域分析是指对信号在时间域上的特性进行分析,主要包括信号的幅度、相位、频率等方面。

信号的幅度是指信号的大小,可以用振幅来表示;相位是指信号在时间轴上的偏移量;频率是指信号的周期性特征。

时域分析的工具主要包括冲激响应、单位阶跃响应、单位斜坡响应等。

冲激响应是指系统对单位冲激信号的响应,它可以用来描述系统的线性性、时不变性等性质;单位阶跃响应是指系统对单位阶跃信号的响应,可以用来求系统的单位脉冲响应;单位斜坡响应是指系统对单位斜坡信号的响应,可以用来在频域中求系统的频率响应。

4. 频域分析频域分析是指对信号在频域上的特性进行分析,主要包括信号的频谱分布、频率成分等方面。

频域分析的工具主要包括傅里叶变换、傅里叶级数、拉普拉斯变换等。

傅里叶变换是将信号在时间域和频域之间进行转换的一种数学工具,可以将时域信号转换成频域信号,也可以将频域信号转换成时域信号。

傅里叶级数是对周期信号进行频域分析的工具,可以将周期信号展开成一组正弦和余弦函数的线性组合;拉普拉斯变换是对信号在复频域上的分析工具,用于分析线性时不变系统的频域特性。

信号与系统知识点总结

信号与系统知识点总结

信号与系统知识点总结一、信号的分类:1.连续时间信号与离散时间信号:连续时间信号是在连续时间范围内存在的信号,如声音、电流;离散时间信号是在离散时间点上存在的信号,如数字音频信号、数字图像信号。

2.狄拉克脉冲信号与单位脉冲序列:狄拉克脉冲信号是一种无限大振幅、无限短时间持续的信号,用以表示一个突变或冲击,常用于信号的表示与合成;单位脉冲序列是一种以离散单位间隔的脉冲序列。

二、系统的分类:1.连续时间系统与离散时间系统:与信号的分类类似,系统也可以分为连续时间系统和离散时间系统。

2.线性系统与非线性系统:线性系统遵循线性叠加原理,输出响应与输入信号成正比,如线性滤波器;非线性系统在输入信号改变时,输出响应不满足比例关系。

3.时变系统与时不变系统:时变系统的特性随时间变化,而时不变系统的特性与时间无关。

三、信号的基本运算:1.基本信号的表示与合成:可以将任意信号表示为一系列基本信号的线性组合;2.信号的时移、尺度变换与反褶:时移操作将信号在时间轴上整体左移或右移;尺度变换通过拉伸或压缩信号的时间轴来改变信号长度和时间刻度;反褶操作是将信号沿时间轴进行翻转。

四、系统的基本性质:1.因果系统与非因果系统:因果系统的输出只依赖于过去或当前的输入,而不依赖未来的输入;非因果系统的输出可能依赖于未来或当前输入。

2.稳定系统与非稳定系统:稳定系统的输出有界,输入有界就会导致输出有界;非稳定系统的输出可能会趋向无穷。

3.线性时不变系统的冲击响应与频率响应:冲击响应是输入为单位脉冲时的输出响应;频率响应是输入为正弦波时的输出响应,常用于分析系统的频率特性。

五、信号与系统的分析方法:1.时域分析与频域分析:时域分析是通过对信号在时间上的变化进行分析,如冲击响应、脉冲响应、单位阶跃响应等;频域分析是通过对信号在频率上的特性进行分析,如频谱、频率响应等。

2.傅里叶变换与傅里叶级数:傅里叶变换是将时间域信号转换为频域信号,常用于连续时间信号的分析;傅里叶级数是将周期性信号分解为多个正弦和余弦信号的叠加。

信号与系统第1章总结

信号与系统第1章总结

第一章:信号与系统的基本概念1.1 信号的基本概念一、什么是信号信号是信息的表现形式。

例如,光信号、声信号和电信号等。

二、信号的分类1、确定性信号和随机信号()f t 确定性信号有确定的函数表达式2、周期信号和非周期信号f(t)=f(t+kT) k=1,2,3...周期信号3、连续时间信号和非连续时间信号时间t 连续的是连续时间信号,时间变量t 只取特定值的为离散时间信号4、有始信号和无始信号0t t <若,0()0,f t t =为起始点三、典型的连续时间信号1、正旋信号21()cos(),,,2f t A wt T f w f w T πϕπ=+===AMFMPM A w ϕ不为常数,调幅信号不为常数,调频信号不为常数,调相信号欧拉公式:cos 2sin 2j j e e j j ee jθθθθθθ-+--=⎧⎪⎪⎨⎪⎪⎩=2、指数信号为实数αα,)(t ke t f =3、复指数信号(一种数学模型)(),st f t ke s jw δ==+4、抽样信号sin (),a ts t t t =-∞<<∞性质1、偶函数,随着t 的增大,幅值减小0sin 2()lim 1a x tt t →==性质:t=0,s3sin 0,1, 2...t t k k π=⇒==±±性质:过零点1.2 信号的运算一、信号的时域变换1、平移(时移)000()()()()()()f t f t t f t f t t f t f t t =±→-→+右移,左移2、反转以纵轴为中心,左右反转()()f t f t =-t 3、展缩{011,()(),a a f t f at <<>=,扩展压缩二、信号的相加、相乘、微分和积分1、相加:对应点相加2、相乘:主要用于信号的截取3、微分:t 4∞、积分:指(-,0)上积分t-(),f d t ττ∞⎰为变量t<0()0t 1()t>1()1t t t f d f d tf d ττττττ-∞-∞-∞=<<==⎰⎰⎰当时,当0时,当时,1.3 奇异信号----------------------------------------------------一种数学模型信号的取值或导数出现了奇异值(极大),趋于无穷一、单位阶跃信号{0,01,0()t t t ε<>=t因果信号{0,0(),0()()t f t t f t t ε<>=二、单位冲击信号----------------也是一种数学模型作用时间极短,但幅值极大{()0,0()1,1t t t dt δδ+∞-∞=∀≠=⎰即冲激强度为性质1:抽样性0000001.()()(0)()2.()()(0)()3.()()(0)()(0)4.()()()()()t t t t f t t f t f t t t f t t f t t d f t d f f t t t d f t t t d f t δδδδδδδδ+∞+∞-∞-∞+∞+∞-∞-∞=-=-==-=-=⎰⎰⎰⎰性质2:卷积特性1212()()()()()f t f t f t f f t d τττ+∞-∞=*=-⎰0005.()()()()()6.()()()()()f t t f t d f t f t t t f t t d f t t ττδτδτδτδτ+∞-∞+∞-∞*=-=*-=--=-⎰⎰注:一个信号与冲激信号的卷积就是信号本身三、阶跃、冲激信号的关系 {0,01,0()()()()t t t d t d t t dt δττεεδ<-∞>===⎧⎰⎨⎩注:阶跃信号求导即为冲激信号1.4 信号分解为冲激信号的叠加1.5系统及分类一、分类1.连续时间系统:微分方程离散时间系统:差分方程2.线性系统:叠加性、齐次性f(t)→系统→y(t) kf(t)→系统 →ky(t)f1(t)+f2(t)→系统→y1(t)+y2(t)当齐次和叠加只要有一个不满足则是非线性的3.因果系统:响应不早于激励非因果系统4.时变系统是不变系统:输入输出都做相应的变化,并不随时间变化二、线性时不变系统(LTI 系统)性质1:线性、齐次性、叠加性Yzi(t):零输入响应,外部激励为0,仅在初始状态作用下的响应 Yzs(t):零状态响应,仅在外部激励作用下的响应性质2:是不变性性质3:微分、积分性f(t)→系统→y(t)()y ()f t t ''→→系统t -()()tf t dt y t dt-∞∞→→⎰⎰系统 性质4:因果性。

信号与系统知识点总结

信号与系统知识点总结

信号与系统知识点总结一、信号与系统概念1. 信号的基本概念信号是指传输信息的载体,可以是任意形式的能量,例如声音、图像、视频等。

信号分为连续信号和离散信号两种类型。

连续信号是指在任意时间范围内都有定义的信号,离散信号是指只在某些离散点上有定义的信号。

2. 系统的概念系统是指对输入信号进行处理并产生输出信号的过程。

系统分为线性系统和非线性系统两种类型。

线性系统满足叠加原理和齐次性质,而非线性系统不满足这两个性质。

3. 信号与系统的分类信号与系统可以按照不同的分类方式进行划分。

例如,按时间域和频率域可以将信号和系统分为时域信号和系统以及频域信号和系统。

二、时域分析1. 时域中的基本概念在时域中,信号经常被表示为在时间轴上的波形。

对信号进行时域分析,可以揭示信号的变化规律和特征。

例如,信号的幅度、频率、相位等特征。

2. 时域信号的表示时域信号可以分为连续信号和离散信号两种类型。

连续信号通常可以由函数来表示,而离散信号则可以用序列或数组来表示。

3. 线性时不变系统线性时不变系统是指系统具有线性和时不变两个性质。

线性性质意味着系统满足叠加原理和齐次性质,时不变性质意味着系统的响应与输入信号的时移无关。

三、频域分析1. 傅里叶变换傅里叶变换是将信号在时域中的表示转换为频域中的表示的数学工具。

它可以将信号转换为频谱,揭示信号的频率成分和能量分布。

傅里叶变换分为连续傅里叶变换和离散傅里叶变换两种。

2. 滤波器的频域特性滤波器可以用来对信号进行频域处理。

常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

滤波器对不同频率成分的信号有不同的响应,能够用来滤除不需要的频率分量,或者突出需要的频率分量。

3. 抽样定理抽样定理是指在进行模拟信号的离散化表示时,需要保证抽样率足够高,以避免混叠失真。

根据抽样定理,模拟信号进行离散化表示的采样频率需要大于信号最高频率的两倍。

四、系统响应分析1. 系统的时域响应系统的时域响应是指系统对输入信号的时域响应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号与系统总结第一章1.2 信号的分类重点周期信号和非周期信号,特别是周期序列;能量信号和功率信号的定义;连续时间信号,离散时间信号,模拟信号,数字信号,抽样信号的区别1.3 典型信号抽样信号及其性质,单位冲激信号及其性质(特别是乘积性质和抽样特性),冲激偶函数单位斜变信号-------------- 单位阶跃信号------------------单位冲激信号------------------冲激偶信号1.4 信号的运算主要掌握时移(用t-b 代替t ),反褶(用-t 代替t ),尺度变换(用at 代替t ),注意单位冲激信号的尺度变换性质)0()()(x dt t x t '-='⎰∞∞-δ)()()(00t x dt t x t t '-=-'⎰∞∞-δ0)(='⎰+∞∞-dt t δ)()()()(000t t t x t t t x -=-δδ)()0()()(t x t t x δδ=)0()()(x dt t t x =⎰∞∞-δ)()()(00t x dt t t t x =-⎰∞∞-δ()t aat δδ1)(=1.5信号的分解交直流的分解,奇偶分解 脉冲分解 ⎰∞∞--=ττδτd )()()( t f t f阶跃信号分解()()()()τττd t u f t f t f t-'+=⎰+001.7 系统的分类线性系统的齐次性和叠加性,时不变系统,因果系统,稳定系统第二章2.1 LTI 系统的数学模型和传输算子传输算子的运算规则,用算子电路建立LTI 系统数学模型2.2系统微分方程的经典解 齐次解和特解2.3 系统零输入响应的求解N 阶齐次微分方程的算子和初始状态的解 ()()()()()()0,00,0010111---'''=++++n n n ny y y y t y a p a p a p2.4 系统的冲激响应和阶跃响应定义:冲激响应的定义为输入为单位冲激信号时系统的零状态响应求解:h (t )的形式与系统零输入响应的形式相同,不同在于系数求法不同,h(t)的系数由H(p)的部分分式的系数确定,而零输入响应的系数由初始状态值确定阶跃响应:为冲激响应的积分2.5 系统零状态响应-----卷积积分2.6 卷积运算的性质 时移性 微积分特性与()t δ()t ε的卷积性质()()τττd t h x t y -=⎰∞∞-)(()()()()()()t f t f t y j i j i -*=21()()()t f t t f =*δ()()()11t t f t t t f -=-*δ()()()t x t t x '='*δ()()()()()t x t t x k k =*δ()()()()()00t t x t t t x k k -=-*δ()()()ττεd f t t f t⎰∞-=*第三章 连续时间信号的频谱------傅里叶变换 3.1 完备正交函数集的概念 3.2周期信号的傅里叶级数傅里叶级数的性质:对称性和奇偶性 3.3 周期矩形脉冲信号的频谱分析 1、离散性,频率间隔为2、直流、基波及各次谐波分量的大小正比脉冲幅度E 及脉冲宽度,反比周期T3、无穷多根谱线总结:离散性、谐波性、收敛性3.4非周期信号的频谱------傅里叶变换(FT )3.4.2 常用傅里叶变换对3.5 傅里叶变换性质3.5.2 周期信号的傅里叶变换Tπω20=第四章 连续时间系统的频域分析 信号无失真传输条件:● 幅频特性在全频域内为常数,系统具有无限宽的均匀宽带,所有频率分量的增益为常数k ● 系统的相频特性是通过原点的直线,相移与频率成正比理想低通滤波器的冲激响应为t<0时有响应出现说明系统是非因果的,系统是物理不可实现的。

并且该系统是失真系统,因大部分高频分量被完全抑制了。

时域抽样定理和频域抽样定理()ωπωωωωd e e t h t j t j CC021--⎰=()()()[]000121t t Sa e t t j C C C C t t j -=--=--ωπωωωπω第六章 离散时间信号与系统的时域分析 6.2典型序列及其特性单位样值序列性质:抽样性 线性性单位阶跃序列单位矩形序列斜变序列,实指数序列,正弦序列,周期序列,虚指数序列和复指数序列6.4离散时间系统的基本性质 线性、移不变性、因果性、稳定性()⎩⎨⎧≠==001n n n δ()()(0)()x n n x n δδ=(),()()0 , x n m nx m n m m nδ=⎧⎪-=⎨≠⎪⎩()()()m x n x m n m δ∞=-∞=-∑()()()()() +-+-+=-=∑∞=210n n n m n n m δδδδε()()()1--=n n n εεδ()()N n n n R N --=εε)(()m n N m -=∑-=δ16.5常系数线性差分方程的求解1、递推法(适用于阶数较低的差分方程) 结论:常系数线性差分方程所描述的系统只有在系统的初始状态为零时,才是线性时不变因果的。

因此,系统的性质不仅取决于描述系统的差分方程本身,还取决于给定系统的初始状态。

一个常系数线性差分方程所表征的并不一定是一个线性时不变因果系统,方程和初始状态两者才能完整地描述一个物理系统。

2、经典法=齐次解+特解 当为单根时,齐次解为 当为k 重特征根时,齐次解为特解形式见183页表6-23、全响应解=零输入响应+零状态响应 零输入响应1122()n n n N Ny n C C C λλλ=+++…()()112111211111121211 =KK knK n K n n nkK K k K K nK K y n C n Cn C n C n C C n C n C n C λλλλλλλ----=---==++++++++∑……()()()()()()()011,22,,0Nkk zizi zi zi a y n k y y y y y N y N =-------⎫=⎪⎬⎪===⎭∑● 零状态响应解法:经典法(齐次解+特解),传输算子法(部分分式分解法)6.6离散系统的h(n)和s(n) ● h(n)方法:迭代法+经典法(零状态响应)+传输算子法(部分分式分解法) 传输算子法德见191页表6-3 ● S(n) ()()()()()()()()00120,00,1,,1zszs zs Nkk Mzs r r zs zs zs yy y N a y n k b x n r n y y y N ==-=-==-=-⎫=-≥⎪⎬⎪-⎭∑∑()()nk s n h k =-∞=∑()()nk s n h k ==∑因果系统为6.7 离散系统的卷积和6.7.2 性质:1、2、3、6.7.3计算方法:定义法;图形法;序列阵列表法;对位相乘求和;算子法对位相乘求和法()()()n x n x n =*δ()()()m n x n x m n -=*-δ121212()*()(),,x n n n n x n n n n n δ--=--()()()k x n x n n k ∑==*0ε()()()()1212n k x n x k x n x n =-∞∇*=*∑{}(){}() 2,1, 3, 2, 4 0, 1, 4, 2 0 0 0 0 0 2 1 3 2 4 8 4 12 8 16+ h n x n =⨯={}() 4 2 6 4 80, 2, 9, 11, 16, 18 20 8zs y n ↑=序列阵列表算子法6.8 用h(n)表征的线性移不变系统的特性()()()()()()()()()()()()121212 =x n x n x n X E n X E n X E X E n X E n δδδδ=*=*=1、稳定性2、因果性3、记忆性()0,0≠=n n h4、可逆性6.9 反卷积方法:时域法(递推法),变换域法(z 变换法) ()n h n ∞=-∞<∞∑()0,0h n n =<()()()())(**n n h n h n h n h inv inv δ==第七章离散时间信号与系统的频域分析第八章8.1 定义8.3 z 变换的收敛域和几类序列的收敛域8.4常用序列的z 变换8.5 z 变换的性质线性、序列位移、尺度、时域反转、微分、时域卷积、共轭性、z 域积分、时域累加、初值定理、终值定理8.6 z 反变换部分分式法、留数法、幂级数法(选讲)8.7 z 变换、拉氏变换、付氏变换s 平面与z 平面的映射关系,()n δ()n ε()n n ε()1---n n ε()n a n ε()1---n a n ε()n an x =z变换与拉氏变换表示式之间的关系(不讲,DSP 上会讲的)8.8离散时间系统的z域分析8.8.1差分方程的求解:分为零状态响应和零输入响应分别求解,另外注意差分方程两边取单边z变换8.8.2 系统函数:即为零状态响应与激励信号的z变换之比,即H(z)8.8.3系统函数的零极点分布及系统特性稳定性、因果性、稳定因果性、可逆性8.8.4 零极点分布与系统频率响应(可不讲,DSP 里会讲)。

相关文档
最新文档