固体超强酸催化长链烷基酚的合成研究

合集下载

固体超强酸固定床催化正丁醇制备丁醚研究

固体超强酸固定床催化正丁醇制备丁醚研究

固体超强酸固定床催化正丁醇制备丁醚研究正丁醚,又名二丁醚,是一种性能良好的有机溶剂,其蒸汽压低,且基本不溶于水,对有机化合物的溶解能力强,所以它是较乙醚更为良好的萃取剂,可作为有机合成中的惰性介质及溶剂。

同时作为液态醚类,在提高柴油十六烷值(CN)的同时,也可促进柴油完全燃烧,降低尾气烟度,是一类较理想的柴油机含氧燃料。

微波技术以其特有的优点受到各国化学工作者的关注。

与常规加热法相比,微波辐射促进合成方法具有显著的节能、提高反应速率、缩短反应时间、减少污染且能实现一些常规方法难以实现的反应等优点。

由美国CEM公司研制的Discover微波精确有机合成系统,是世界上唯一无需机械转动的单模微波有机合成系统,也是唯一的通过内置系统软件控制所有条件和系统参数的微波合成系统,在专业微波合成反应方面已经显示了它的优越性。

Discover采用专利环形腔设计,单模微波,自动变频输出,普通的微波辐射更集中,使反应更快速。

正丁醚,又名二丁醚,是一种性能良好的有机溶剂,对许多有机化合物都有很强的溶解力。

正丁醚同水的分离性好,在贮存时生成过氧化物毒性和危险性少,是安全性很高的溶剂。

正丁醚是对称醚,在酸催化下醇分子间失水是制备对称醚的传统制备方法。

制备正丁醚的实验方法都是采用一次把正丁醇和浓硫酸原料加进反应瓶,混合均匀后加热回流,将生成的水分出,温度控制在135℃以下,产率都在32%~36%左右。

曾有人研究认为正丁醚产率受分水量影响,随着分出水量的增加产率提高可达50%。

采用正丁醚的传统制备方法时有机物易碳化,副产物多,且产品难分离提纯,催化剂不可重复使用,污染较大,有待进一步改进,将催化剂改为固体超强酸可有效解决这些问题。

本文采用固体超强酸做催化剂,对超强酸催化制备正丁醚的工艺条件进行了研究。

一、实验部分1.仪器与试剂。

正丁醇(CP 天津市天大化工实验厂)管式固定床反应系统(北京卫星制造厂)HPGC/6890/MS5973气-质联用仪,美国;色谱条件:弹性石英毛细管柱、载气He、气化室280℃、接口温度280℃、柱温80℃、以15℃/min升温至150℃,再以20℃/min升温至240℃;质谱条件:电离源EI、电子能量70ev、离子源温度230℃、质量范围30-500v、电压1.40kv。

磺酸型固体酸催化剂的制备与应用研究进展

磺酸型固体酸催化剂的制备与应用研究进展

第31卷第6期2009年11月南 京 工 业 大 学 学 报 (自然科学版)J OURNAL O F NAN JI NG UN I V ERS I TY OF TEC HNOLOGY (N atural Science Ed i tion)V o.l 31N o .6N ov .2009do:i 10.3969/.j issn .1671-7627.2009.06.023磺酸型固体酸催化剂的制备与应用研究进展曾昌凤1,陈军2,张利雄2,路勇3(1.南京工业大学机械与动力工程学院,江苏南京210009;2.南京工业大学化学化工学院,材料化学工程国家重点实验室,江苏南京210009;3.华东师范大学绿色化学与化工过程绿色化上海市重点实验室,上海200062)收稿日期:2009-04-13基金项目:华东师范大学绿色化学与化工过程绿色化上海市重点实验室开放课题基金资助项目作者简介:曾昌凤(1966 ),女,四川彭州人,副教授,硕士,主要研究方向为化工反应与分离设备;张利雄(联系人),教授,E m ai:l m ail 4catalys i s@yahoo .co .摘 要:将磺酸基团引入到固体载体表面制备磺酸型固体酸以替代传统的硫酸催化剂.对磺酸型固体酸催化剂的制备和应用研究进展进行了综述.介绍了在中孔硅分子筛(如M C M 41、SB A 15)、中孔炭分子筛(如C M K 3、C MK 5)、半炭化炭材料、炭纳米管等载体上引入磺酸基团的方法和其中一些催化剂的催化性能,探讨这些制备方法和所制得催化材料的优点和存在的问题.关键词:磺酸型固体酸;浓硫酸;催化材料;分子筛中图分类号:O 611 62 文献标志码:A 文章编号:1671-7627(2009)06-0104-07Revie w on preparati on and application of sulfonated soli d aci d catal ystsZENG Chang feng 1,CHEN Jun 2,Z HANG L i x i o ng 2,L U Yong3(1.Co lleg e o fM echanic and Dyna m ic Eng i neering ,N an ji ng U niversity of T echnology ,N anji ng 210009,Ch i na ;2.State K ey L aboratory o fM ater i a l s O r i ented Che m ica l Eng ineer i ng ,Coll ege o f Che m i stry and Chem i ca l Eng i neering ,N an ji ng U niversity of T echnology ,N anji ng 210009,Ch i na ;3.Shanghai K ey L aboratory of G reen Che m istry and Che m ical P rocesses ,D epart ment o f Che m i stry ,East Chi na N or m a lU n i versity ,Shangha i 200062,Ch i na)Abst ract :Su lfonate ac i d group ( SO 3H )w as i n troduced on the surface of solid supports to prepare sul fonated so lid acid catalysts for substituting traditional sulfuric ac i d catalys.t The research progress on the preparati o n and the applicati o n of su lfonated so li d cata l y sts w as rev ie w ed .The m ethods for i n troducingSO 3H i n to or dered m esoporous silicas (such as MC M 41and SBA 15),ordered m esopo r ous carbons (such as C MK 3and C MK 5),i n co m plete carbonized or gan ic products ,and carbon nanotubes and the catalytic properties of the resu lting cata l y stsw ere presented .The advantages and pr oble m s o f t h ese prepa rati o n m ethods w ere d iscussed .K ey w ords :sulfonated so li d ac i d ;su lfuric acid ;cata l y tic m ateria;l m o lecu lar sieve 酸催化反应是化学工业中重要的反应之一,目前工业生产中还在大量使用液体酸,如H 2SO 4、H F 等酸催化剂.但是液体酸在使用过程中容易腐蚀设备,需要特殊的中和步骤来分离酸和产物,而且无法重复利用,仅因无法回收使用,每年有超过15M t 的浓H 2SO 4被丢弃[1],对环境造成了很大的污染.这些都造成生产成本增加、环境污染等不良后果,也浪费大量的资源.鉴于 绿色化学 和 绿色工业 的原则[2],必须改进生产工艺,以减少化工生产对环境和人类健康所造成的不利影响.相对于液体酸而言,固体酸具有无毒、不易腐蚀设备、环境友好、可循环使用等优点,因而受到人们的广泛关注.近几十年来,人们一直在寻找开发能够代替液体酸的固体酸催化剂[3-4].磺酸型固体酸的开发成为一个研究的热点,其研究思路是在一些载体(如中孔硅分子筛、中孔炭分子筛、无定型炭等)上通过各种方法引入磺酸基团,使之具有与硫酸相当的酸性.本文以各种主要载体为类别,对这些方法和所制得的酸性催化剂的性能进行综述.1 中孔硅分子筛沸石分子筛,如Y、ZS M 5等是石油化工和化学工业领域中非常重要的催化材料.由于其孔径较小,对涉及大分子的催化反应性能欠佳.自1992年M o b il公司成功合成M41S系列孔径在2~50nm中孔硅分子筛以来,分子筛在催化领域的研究进入了一个新的阶段[5].但它们的表面酸性很弱,必须进行后处理或通过在骨架中引入其他元素来满足反应所需的酸性.所以M argolese等[6-10]以此为载体,在其上引入磺酸根、丙基磺酸等酸性基团,制得磺酸型分子筛.所采用的方法主要有后合成嫁接法[8,11-14]和原位共缩合合成法[7,9,15-17].采用这2种方法所制备的新型固体酸在缩聚、酯化及酰化等反应中表现出较好催化性能[7,9,15-20].1 1 后合成嫁接法后合成嫁接法主要是利用中孔硅分子筛表面的硅羟基与巯基( S H)烷氧基硅烷反应,将 SH接入中孔分子筛,后经H2O2将 S H氧化成磺酸基,从而得到负载有机磺酸的固体酸.如将3 巯基烷氧基硅烷与预先合成的M C M 41反应,使部分共价硫醇嫁接到M C M 41的 OH上,再经H2O2氧化制得H SO3 丙基 M C M 41;该固体酸在甘油和月桂酸、油酸的酯化反应中表现出较好的催化活性[8].随后D iaz等[21]发现,用甲基代替丙基,所得H SO3 甲基 M C M 41的酸性更强.此外,为了避免使用昂贵的巯基烷氧基硅烷和后续的氧化步骤,陈静等[11]采用两步后合成法,即先将纯硅M C M 41与苯甲醇反应使其表面接枝苄基,再通过苄基与氯磺酸反应将苯磺酸接枝到介孔分子筛上,制备了H SO3 苯基 MC M 41固体酸,其比表面积和孔容分别为976m2/g和0 42c m3/g,比接枝前的MC M 41稍有减少,酸量为4 2mm ol/g.袁兴东等[22]采用后合成法制备出含碘酸基的介孔分子筛SBA 15 SO3H,并与直接法获得的催化剂进行了比较,发现后者的酸中心多于前者;酯化反应结果表明,直接法合成的催化剂比后合成法具有更高的稳定性,且简便、快捷、高效[23].高国华等[24]利用后接枝法将含有磺酸基团的硅烷偶联剂引入MC M 41,得到的酸性介孔有机 无机杂化材料在苯甲醛与乙二醇的缩醛反应中显示了较好的催化活性.合成嫁接法制备磺酸型中孔硅分子筛尽管操作较简单,但所能嫁接上的磺酸基团的数量受到中孔硅分子筛表面活性羟基数量的限制;同时,由于孔道大小的制约,不是所有的内表面羟基都能得以利用,从而导致有机酸性基团不能均匀地接到载体上.此外,依所选烷基的不同还可能导致中孔硅分子筛的孔道被堵塞[25].这些都是在采用该方法时需要注意的问题.1 2 原位共缩合合成法原位共缩合合成法是在合成中孔硅分子筛的溶胶 凝胶过程中,将含有巯基的烷氧基硅烷作为反应物与合成中孔硅分子筛所需的硅源、表面活性剂和碱同时加入到合成液中,经水热自组装后,再用HNO3或H2O2将 SH氧化成磺酸基得到负载有机磺酸的固体酸.Li m等[26]将3 巯基烷氧基硅烷(M PTS)、正硅酸甲酯(T MOS)、十六烷基三甲基溴化铵(CTAB)、Na OH、水和甲醇按摩尔比为1 2 5 0 42 0 96 272 66配制合成液,室温下搅拌12h 后于95 合成36h,再在HC l/C H3OH/H2O中回流处理以萃取出表面活性剂,得到含有机基团的MC M 41,其中S质量分数为10 88%(n(S)/ m(S i O2)=4 7mm o l/g),与原始配料中S含量(n(S)/m(S i O2)=4 8mm o l/g)相当.该材料先用20%HNO3润湿后,再在浓HNO3中搅拌24h即可将巯基氧化为磺酸基,且S含量保持不变,从而制得磺酸型MC M 41.不过MC M 41的有序度稍有降低.与此类似,M argo lese等[6]在合成SBA 15的反应物中直接加入3 巯基烷氧基硅烷,在313K下搅拌20h,再在373K下老化24h后,过滤干燥,用乙醇回流除去模板,得到含巯丙基的SBA 15.在室温下用H2O2将巯丙基氧化成丙基磺酸后,用1m o l/L 的硫酸处理试样2h,过滤烘干后得到了酸量较高的磺酸型SB A 15.其XRD峰形与SB A 15完全相同,仅峰强度有所减小.而H2O2的氧化时间对试样的峰强度有很大的影响,氧化时间越长,峰强度越105第6期曾昌凤等:磺酸型固体酸催化剂的制备与应用研究进展低,说明试样的有序度减弱.其比表面积也随着氧化时间的增加而减小.由酸碱滴定可知,试样的酸量随着氧化时间的增加而增大.所以,通过调节H2O2的氧化时间就可以制备出一系列不同比表面积、不同酸量的磺酸型SB A 15,以满足不同反应体系的需求.之后,为了得到孔径较大的磺酸型中孔硅,M ar go lese等[6]通过调节正硅酸乙酯(TEOS)的用量,制备了孔径大于6nm、比表面积为674m2/g、酸量为1 64mm o l/g的磺酸型SBA 15.该催化剂在醇类脱水生成醚的反应中显示出较高的选择性,特别是在甲醇和丁醇的脱水反应中,在温度低于400K的情况下,选择性达100%[27].随后的研究也表明,采用该方法所制备的磺酸型中孔硅分子筛中的磺酸基团的浓度大于采用后合成嫁接法制备的试样[28].同时,产物的孔径也较大,有利于大分子如脂肪酸及其酯在孔道中的扩散[29].后续的研究表明,通过选择与磺酸基团相连的有机基团的类型,可以调变所制得的磺酸基中孔硅分子筛的酸强度[30].如采用巯基上带吸电子能力更强的基团(如苯基基团)的硅烷,所制得的磺酸基中孔硅分子筛的酸强度得到显著的提高.此外,有机基团的选择还影响最终酸性催化剂的活性.M baraka 等[17]分别将丙基磺酸根和芳香基磺酸根连接到SBA-15上,之后在H2O2中氧化、干燥、水洗,最后用1m o l/L的硫酸酸化处理、水洗干燥后,得到比表面积为735和540m2/g、酸量为1 44和0 92mm o l/ g(H+)的SBA-15-SO3H和SBA-15-ph-SO3H.它们被用于棕榈酸的酯化反应,在酸醇摩尔比为1 20、反应温度为358K、催化剂用量为棕榈酸质量的10%的反应条件下,尽管SB A-15-ph-SO3H的比表面积和酸量都低于SB A-15-SO3H,但是SBA -15-ph-SO3H的催化活性要明显高于SB A-15 -SO3H,说明磺酸根连接的有机基团对最终制备的催化剂的催化活性确实有较大的影响.D iaz等[31]在研究前人成果的基础上,由原位合成法制备了H SO3 -甲基-MC M-41、H SO3-乙基 MC M 41、H SO3 甲基/乙烯基 M C M 41固体酸,用于丙三醇与月桂酸、油酸的酯化反应,并研究了烷基链长度对所得固体酸催化活性的影响.由实验结果可知,在丙三醇与月桂酸的酯化反应中,H SO3 乙基 MC M 41表现出最高的催化活性,373K下反应6h,月桂酸的转化率高达93%;而相同条件下,用H SO3 甲基/乙烯基 M C M 41催化,其转化率只有80%;相比之下,H SO3 甲基 M C M 41的催化活性最低,其转化率仅为63%.相同的情况也发生在丙三醇与油酸的酯化反应中,393K的温度下反应4h,油酸的转化率分别为90%、60%和40%.由上述结果可知,当磺酸根与MC M 41表面的距离即烷基链长度有一个最佳值,此时的磺酸型固体酸的催化活性最高.这主要是由于甲基的引入,导致固体酸的亲水性有所降低,不利于反应的进行.因此,有研究先采用原位共缩合合成法制备有机磺酸 中孔硅分子筛固体酸,再采用后合成接枝法调变磺酸型中孔分子筛的表面亲/疏水性.M baraka 等[13,31]将用原位共缩合合成法制得的SBA 15 SO3H在398K下干燥后,将其与疏水的有机硅烷混合,在甲苯中回流4h,再于空气中干燥过夜和萃取器中用C H2C l2/(C2H5)2O萃取24h,干燥后得到含有有机磺酸根和有机疏水基团的SB A 15 SO3H,并用于生物柴油的制备.由于该疏水型SBA 15 SO3H 含有疏水基团,所以油脂较易与SBA 15孔道壁上的酸性基团接触,且反应后水和脂肪酸甲酯易于排除孔道,有利于酸催化反应的进行.张明伟等[32]亦采用水热法直接合成表面含丙磺酸基和不同烷基(如甲基、辛基和十六烷基)的疏水性介孔分子筛固体酸SBA 15 SO3H,其硫质量分数为3 53%~ 4 255%,酸含量为(0 84~1 08)mm o l/g,相对润湿接触角 r(SBA 15SO3H)< r(C H3 SB A 15 SO3H) < r(C8H17 SBA 15 SO3H)< r(C16H33 SBA 15 SO3H),催化剂对冰醋酸和正丁醇的酯化反应转化率可达75 5%,转化率随相对润湿角的增大而增大.2 无定型炭炭材料由于其在强酸碱环境下良好的化学稳定性一直都是催化剂研究中广泛采用的载体.2004年,H ara等[1]将萘在N2保护下半炭化,再用大量浓H2SO4于523K下磺化15h,引入磺酸根,得到具有酸性的炭材料.试样经核磁共振谱仪检测确定磺酸基团被引入到芳香碳原子上.由中和滴定测得试样的酸量为4 9mm ol/g,大约为萘酸量的5倍.由试样的热质量损失分析可知,该材料能在473K的高温下保持稳定.将其代替浓硫酸,用于乙酸乙酯的合成、2,3 二甲基 2丁烯的水合反应,其催化效果接近于浓硫酸,明显优于铌酸等传统固体酸.而在乙酸环己酯的水解反应中,其催化活性是浓硫酸的2倍.但106南 京 工 业 大 学 学 报 (自然科学版)第31卷是在一定反应温度下或在大于323K的水中,由萘为原料制备的磺酸型炭材料的磺酸根容易脱落,导致催化剂失活.其后,研究者们以价格更为低廉的蔗糖[33]、葡萄糖[2]等为原料,在高于573K的高温下热解后,得到黑色的带有少量羟基的多环芳香炭材料,随后在浓H2SO4或发烟H2SO4中于423K磺化,用磺酸根取代羟基,得到比较坚硬的磺酸型炭材料.由试样的结构分析可知,它是由含有 OH、 COOH和 SO3H的无定型炭组成,而且不同的炭化温度和不同的硫酸浓度均对最终炭材料的酸量和催化活性有很大的影响.由元素分析和中和滴定[2]的结果综合而得,相对于其他的炭化温度,在673K下炭化再磺化而得的炭材料的酸量最大.随着炭化温度的升高,炭材料上的羟基减少,磺化引入的磺酸根也相对减少;用发烟硫酸磺化而得的炭材料的酸量要比用浓硫酸磺化的大将近一倍.由于发烟硫酸的价格以及操作上的危险性等因素,一般选择价格低廉而又相对安全的浓硫酸.这些由糖类炭化、磺化而制得的酸性炭材料几乎不溶于任何溶剂(如水、甲醇、乙醇、苯、己烷和N,N-二甲基甲酰胺等),而且仅需通过简单的机械搅拌,它们就能均匀地分散在溶液中,停止搅拌一段时间后,由于重力作用而沉积在容器底部,易于与溶液分离.这有利于催化反应结束后固体催化剂与液体反应物、产物的分离.以蔗糖为原料制备的炭材料被用于生物柴油的制备[33],其催化活性约为浓硫酸的1/2,是萘催化剂[1]的2倍.而用发烟硫酸磺化,所得磺酸型炭材料的酸密度是浓硫酸磺化的2倍,催化活性也相应地成倍增加.反应完毕过滤出催化剂后,在滤液中没有发现 SO3H,这说明以蔗糖为原料制备的磺酸型炭材料能重复使用,而且没有失活现象发生.以葡萄糖为原料制备的磺酸型炭材料被用于2,3-二甲基-2-丁烯的水合以及乙酸的酯化反应[2],并与浓H2SO4、铌酸等传统的酸性催化剂作了比较.结果表明,在2,3-二甲基-2-丁烯的水合反应中,相同的反应条件下,由浓H2SO4催化所得2,3-二甲基-2-丁醇的产率为4 4%,铌酸仅为0 4%,而磺酸型炭材料表现出较好的催化活性,产率为3%,若用发烟H2SO4磺化,所得炭材料的催化活性略优于浓H2SO4,产率达4 5%;在乙酸的酯化反应中,磺酸型炭材料依然表现出优越的催化活性,约为浓H2SO4活性的1/7,用发烟H2SO4磺化而得的炭材料的催化活性依然是用浓H2SO4磺化所得炭材料的2倍.由反应数据可知,炭化温度确实对所得炭材料的催化活性有很大的影响.当炭化温度小于723K,所得的炭材料的催化活性较好;随着炭化温度的升高,炭材料的活性降低,所以一般选择673K的炭化温度.但是上述材料均为无定形结构,且比表面积较小,仅2m2/g.较小的比表面积不利于有机分子的扩散,导致反应物分子不能与酸性位很好的接触,使反应速度变慢.为了解决上述磺酸型炭材料的缺点,人们将此方法应用于规整中孔炭分子筛.3 中孔炭分子筛中孔炭分子筛分别继承了中孔硅分子筛孔道结构和炭材料稳定性的优点,而在催化、吸附、传感器、电容器等领域受到广泛的关注[34-37].2007年,Bu dar i n等[38]以玉米淀粉为原料,在水中形成凝胶后再结晶,为了防止结构的坍塌而采用低表面张力的溶剂(一般为乙醇)交换出材料中的水,干燥后得到膨胀的中孔淀粉.最后,在中孔玉米淀粉中掺杂有机酸(如对甲苯磺酸等)后,在真空下炭化,制得具有中孔结构的磺酸型炭材料.炭化温度不同,所得的中孔炭材料的结构也不同.炭化温度由423K升至923K,所得的炭材料从无定形结构变为石墨结构,表面也由亲水性变为疏水性.该材料虽然具有较大的比表面积(180m2/g),平均孔径为6nm,但是它并非是有序的中孔结构,材料中还含有一定量的孔径在0 5nm左右的微孔,而且其制备方法较为复杂,玉米淀粉的选取也较为苛刻.所以,Bossaert 等[29]和W ang等[39]直接在中孔炭分子筛C MK-3和C MK-5上,分别采用气相沉积法和表面化学改性法,制备了孔径分布均匀、结构有序的磺酸型中孔炭分子筛H SO3-C MK-3和H SO3-C MK-5.其中,W ang等[39]在制备H SO3-C MK-5时,是直接以高温炭化而得的中孔炭分子筛C MK-5为基底,在其表面用次磷酸还原重氮盐(4-苯基-重氮磺酸盐),引入磺酸根.C MK-5磺化后,其孔径、比表面积和孔容均有所减小,分别从4 6n m、1436m2/ g和2 0c m3/g降至3 3nm、843m2/g和0 82c m3/g.由其电子显微镜图可知,磺化并没有改变C MK-5的六边形结构,仅X射线衍射峰强度较C MK 5有所减小.由酸碱滴定可知,H SO3 C MK 5的酸量为(1 93 0 08)mm o l/g(H+),远远高于磺酸型中孔分子筛的酸量.C MK 5是疏水性材料,而107第6期曾昌凤等:磺酸型固体酸催化剂的制备与应用研究进展H SO3 C MK 5由于含有亲水性的H SO3基团,变为亲水性材料,所以它可用于疏水和亲水的反应体系.该H SO3 C MK 5被用于双酚A的催化合成反应,酚到双酚A的最大转换率为28 6%,在其他的一些酸催化反应中也显示出较高的催化活性和较强的稳定性,回收重复反应5次后,没有发生明显的失活现象.传统制备中孔炭分子筛的方法一般采用高温炭化,这有助于得到较为坚硬的中孔结构,但是高温炭化使所得炭材料上缺少有机基团.而X i n g等[40]通过控制炭化温度,得到富含羟基等有机基团的中孔炭分子筛C MK-3,X射线衍射表征结果显示,炭化温度对所得中孔炭材料的结构有较大的影响:在炭化温度高于773K时,所得炭材料在小角度有明显X射线衍射峰,说明在较低的炭化温度下,所得的中孔炭分子筛也具有规整的中孔结构.炭化温度既影响了中孔炭分子筛C MK-3的结构,也影响了最终磺酸型中孔炭分子筛的酸强度.不同炭化温度下所得试样的红外光谱表征结果表明,在823K炭化的C MK-3上有大量的有机基团存在.该试样经磺化后有明显的S O振动峰,其酸量为1 2mm o l/g;而在1173K炭化的C MK-3在磺化后没有发现S O振动峰,说明1173K的高温已经使试样完全炭化,所以无法引入磺酸根.优化的制备H SO3-C MK-3磺酸型中孔炭分子筛的条件为823K炭化和气相磺化法引入磺酸根.所制备的试样经核磁共振和N2吸附等表征显示,磺化并没有改变中孔炭分子筛的结构,但磺化后的C MK-3的比表面积、孔容和孔径均有所减小.将其用于催化环己酮肟经Beckm ann重排制备己内酰胺的反应,环己酮肟的转化率达91%,己内酰胺的选择性为84%,而且仅需通过简单的活化处理,就可恢复其催化活性,且能重复反应多次.同样,磺酸型中孔炭分子筛的催化活性来源于其上的 SO3H.但是过低的炭化温度致使所得中孔炭分子筛的强度减弱,炭层较松散,而过高的炭化温度致使炭材料上的有机基团全部被热解,难以引入磺酸根,所以想要得到坚硬而且酸量高的磺酸型中孔炭分子筛,需要改变制备方法.为此,Liu 等[41]采用浸渍法先将蔗糖负载在MC M-48的表面,再经半炭化和磺化,制得酸性C-MC M-48复合催化材料,在中孔硅分子筛表面负载一层炭有利于提高其水热稳定性.4 炭纳米管炭纳米管作为一种结构新颖的材料也被广泛应用制备催化剂的研究.如有研究以H2SO4-HNO3混合溶液对炭纳米管进行化学改性,使其表面产生羧酸基团[42],得到具有酸性的催化材料.但由于炭纳米管表面的酸性基团很少,因此,通过表面改性以增加酸性基团密度的研究还需深入.对于磺酸型炭纳米管的制备,是先将炭纳米管在1m o l/g的HNO3中于333K氧化3h,再于393K下干燥得到酸化的炭纳米管.之后,将其在大量浓硫酸中,于523K下磺化18h,冷却水洗过滤后,得到了酸量为1 90mm o l/g的磺酸型炭纳米管[43].在此过程中炭纳米管没有被浓硫酸氧化.将这种新型的质子酸催化剂用于乙酸甲酯的催化,并与硫酸处理的活性炭、硝酸处理的炭纳米管作比较,结果发现,磺酸型炭纳米管的催化活性明显优于其他两种催化剂,为它们的3倍.而且在重复使用3次后,其催化活性依然保持不变,完全可以代替传统的液体酸.5 结论与展望从以上的介绍可以看出,磺酸型固体酸催化材料由于其催化性能与传统的硫酸相当,有望成为环境友好型的替代催化剂,所以,十多年来,其研究十分活跃.总的来说,通过选择适宜的载体、制备方法和磺化措施可以调节磺酸型固体酸的比表面积、酸量和表面亲/疏水性质,从而调变其催化性能.不过,还存在以下一些问题需要进一步研究1)在载体的选择方面,中孔硅分子筛由于其固有的水热稳定性方面的弱点和表面羟基数量较少的问题,作为磺酸型固体酸的制备还需在这两个方面进行改性;无定型炭和炭纳米管比表面积还有待提高;中孔炭分子筛的价格较高,需要开发新方法以降低其成本.2)在制备方法方面,制备过程中要采用昂贵的巯基烷氧基硅烷,有些制备步骤繁多,还需要进一步开发新的制备技术.3)上述制备得到的磺酸型固体酸的催化稳定性及重复性还有待提高,特别是在一些催化反应中结构容易塌陷、酸性基团容易脱落等;其中,水中的稳定性尤为重要,因为许多反应如酯化、水解等都会有水产生,而上述研究中的许多磺酸型固体酸的结构在沸水中容易塌陷,而有关催化剂失活再生的问题还少有研究.4)寻找适宜这种磺酸型催化材料反应的工作还有待加强,因为目前这些催化剂108南 京 工 业 大 学 学 报 (自然科学版)第31卷参与的反应体系大多是如酯化和醚化等有水产生的反应.5)磺酸型固体酸还具有良好的离子交换和质子传导性能,这方面的研究还非常缺乏.这些都是使其实现工业化所需进行的研究方向.目前有研究表明,在中孔硅分子筛表面负载一层炭有利于提高其水热稳定性[41],也许将中孔硅分子筛与炭材料相结合制备磺酸型固体酸可能会成为一个研究方向.参考文献:[1] H ara M,Yos h i da T,Takagak i T,et a.l A car b on m aterial as astrong p rot on i c aci d[J].Ange w Che m In t Ed,2004,43(22):2955-2958.[2] Ok a mu raM,Takagak i A,Toda M,et a.l Aci d catal yzed reacti onson flexible pol ycycli c aro m ati c carbon i n a m orphous carbon[J].Che m M ater,2006,18(13):3039-3045.[3] Cor m a A.Inorgan ic solid aci ds and their use i n aci d catal yzed hyd rocarbon reacti ons[J].Che m Rev,1995,95(3):559-614.[4] H aller G.Ne w catal yti c concepts fro m ne w m ateri als:understandi ng catal ysis fro m a fundamen tal perspective,past,presen t,andf u t u re[J].J C at a,l2003,216(1/2):12-22.[5] K res ge C T,Leono w i czM E,Roth W J,et a.l Ord ered m es oporousm olecu l ar s i eves syn t hesized by a li qu i d cryst a l te m p l ate m echan is m[J].N at u re,1992,359:710-712.[6] M argolese D,C hristiansen S C,Chm el k a B F,et a.l D irect syn t hes es of ordered SBA 15m es oporous silica contai n i ng su lf on ic acidgroups[J].Che m M ater,2000,12(8):2448-2450.[7] Isabel D,C arlos M A,Fed ericoM,et a.l Co m b i ned al ky l and s u lf on i c aci d f uncti onali zati on ofM CM 41 t ype silica,esteri fi cati onof glycero l w i th f atty aci ds:esteri fi cati on of glycerol w it h fattyaci d s[J].J Cata,l2000,193(2):295-302.[8] M erci er L,Pi nnavaia T J.Access i n m esoporous materi als:advantages of a un i for m pore stru cture i n t he des i gn of a heavy m etalion ads orben t f or environm en t al re m ed i ation[J].Adv M ater,1997,9(6):500-503.[9] BossaertW D,D evos D E,van Rh ij n W M,et a.l M esoporou s s u lf on i c aci ds as selecti ve heterogen eous catal ysts for t he syn t hesisofm on ogl yceri des[J].J C at a,l1999,182(1):156-164. [10] van Rh ij n W M,Devos D E,S el s B F,et a.l A n e w fa m ily of mes oporous m olecu l ar si eves prepared w ith li qu i d crystal te m plat es[J].C he m Co mmun,1998(3):317-318.[11] 陈静,韩梅,孙蕊,等.卞基磺酸接枝M C M-41介孔分子筛的合成与表征[J].无机化学学报,2006,22(9):1568-1572.Chen J i ng,H an M e,i Sun Ru,i et a.l Syn t hesis and characterizati onof b enz y l s u l phonic acid f unctionalizedM C M 41[J].C h i n J InorgChe m,2006,22(9):1568-1572.[12] Dufaud V,DavisM E.Design of heterogen eou s catal ysts vi a mu ltip le acti ve site pos iti oning i n organ ic i n organ ic hybri d m ateri als[J].J Am Che m Soc,2003,125(31):9403-9413.[13] M barak a I K,Shank s B H.D es i gn of mu ltifuncti on ali zed m esoporous sili cas for es t erification of fatt y aci d[J].J C at a,l2005,229(2):365-373.[14] Para m badath S,Ch i da m bara m M,S i ngh A P.Synthes i s,ch aract eri zation and catal ytic prop erties of b enzyl sulph on i c aci d f un cti onalized Zr T M S catalysts[J].C atal Tod ay,2004,97(4):233-240.[15] Jaen icke S,C huah G K,Li n X H,et a.l O rgan ic i norgan i c hyb ri dcatal ysts for aci d and base cat alyzed reacti on s[J].M icroporM esoporM at er,2000,35:143-153.[16] D i az I,M o'h i no F,Perez Pari en t e J.et a.l S ynthesis,characteri zati on and catal ytic activit y of M CM 41 t yp e m es oporous s ilicasf uncti onalized w it h s u lf onic aci d[J].App l C atal A:Gen,2001,205(1/2):19-30.[17] M baraka IK,R adu D R,L i n V C,et a.l O rganosu lf on ic aci d functi ona li zed m es oporous sili cas for the esterifi cati on of f atty aci d[J].J Cata,l2003,219(2):329-336.[18] B runel D,B l an c A C,Gal arneau A,et a.l Ne w trends i n t he des i gn of s upported catal ysts on m es oporous silicas and their app licati ons i n fi ne che m icals[J].C atal Tod ay,2002,73(1/2):139-152.[19] Das D,Lee J F,Ch eng S.Selecti ve s ynthesis of b i sph enol A overm esoporou sM CM s ilica catal ysts functi onaliz ed w ith su lf on ic aci dgroups[J].J Cata,l2004,223(1):152-160.[20] 黄艳蕾,陈扬英,刘秀梅,等.苯基改性的中孔分子筛SBA 15的合成及其磺化[J].催化学报,2004,25(5):413-416H uang Yan l e,i Chen Yangyi ng,L i u X i u m e,i et a.l Synthesis andsulfonati on of phenyl m od ifi ed SBA 15m es oporous m ol ecu l ars i eve[J].Ch i n J C at a,l2004,25(5):413-416.[21] D i az I,Pariente E,Sastre.Syn t h es i s ofM C M 41materi als functi ona li sed w i th dial kylsilane group s and t he i r cat alytic acti vity i nthe esterifi cati on of gl ycerol w ith fatty aci ds[J].App l C atal A:Gen,2003,242(1):161-169.[22] 袁兴东,沈健,李国辉,等.表面含磺酸基的介孔分子筛催化剂SBA-15-SO3H的制备及其催化性能[J].高等学校化学学报,2002,23(12):2332-2335.Yuan X i ngdong,Shen Ji an,L iGuohu,i et a.l Preparari on of h i gh lyacti ve esterificati on catal yst SBA 15m esoporou s s ilica functi onali zed w it h s u lfon i c aci d group[J].Ch e m J Ch i n U n i v,2002,23(12):2332-2335.[23] 袁兴东,沈健,李国辉,等.表面含磺酸基的介孔分子筛SBA15 SO3H的直接合成[J].催化学报,2003,24(2):83-860.Yuan X i ngdong,Shen Jian,L i Guohu,i et a.l D i rect s yn t h es i s ofSBA 15m esoporous sili ca f unctionalized w it h s u lfon i c acid groups[J].Ch i n J C ata,l2003,24(2):83-86.[24] 高国华,周文娟,何鸣元.磺酸基功能化M C M-41有机-无机杂化材料的合成与表征[J].催化学报,2005,26(5):357-359.Gao Guohua,Zh ouW en j u an,H eM i ngyuan.Synthes i s and c h aracteri zation ofM CM 41 SO3H organ ic i norgan ic hybri ds[J].Ch i n JC at a,l2005,26(5):357-359.109第6期曾昌凤等:磺酸型固体酸催化剂的制备与应用研究进展。

S042-/Mx0y固体酸催化剂(四)

S042-/Mx0y固体酸催化剂(四)

Dan Fraenkel通过此法Zr(SO4)2、 TiOSO4、FeSO4、AI2(SO4) 3、 SnSO4热分解制得相应的固体酸, 并且关联了S含量、表面积、晶粒尺 寸、催化活性之间的关系,得到了一 些常见金属盐热分解控制温度 表
2 制备条件对S042- /Mx O y固体酸 的影响
• SO42-/M xOy 固体酸的制备条件不仅对其 物理性质如表面积、孔体积、孔径、孔径 分布、硫含量有影响,而且对其晶型、酸 位结构、酸性(酸位强度、酸位数量、酸位 类型)和催化性能(活性、选择性、稳定性) 都有一定影响。
1 S042- /Mx 0y 固体酸的制备
• S042- /Mx 0 y固体酸的制备包括两个步骤: 金属氧化物的制备 S042-的引入
• 其中最关键的是金属氧化物的制备,不同的 制备方法对催化剂性能有很大的影响
1.1沉淀一浸渍法
沉淀一浸渍法是S042- /Mx 0 y固体酸制备 中最常用的方法 具体步骤如下:将相应的金属盐在碱性条 件下水解形成氢氧化物沉淀,经陈化、过 滤、洗涤后干燥得无定形金属氧化物,再 经硫酸浸渍后干燥、焙烧后制得S042- /M xOy固体酸
3 SO42- /Mx Oy 固体酸性能的改进
• SO42-/M xOy 固体酸一般都具有较好的初始催化 活性,但是重复使用性能较差。 • 通过对载体和促进剂两方面所作的改进,能改善 催化剂的物理性质,如:孔道结构、比表面积、 机械强度等; • 同时也可以改善催化剂的活性和稳定性,提高催 化剂的使用寿命,增加抗毒能力。
2.3 金属盐种类的影响
• 金属盐种类的不同,由其生成的凝胶粒子的粒径也不相同, 生成的金属氧化物的比表面积随之变化。实验 在选取金属盐时,除了考虑催化剂的比表面积、品粒大小 等因素外,更重要的是金属盐所含的阴离子必须容易除去 或者对催化剂的性能无副作用 • 在制备SO42- /M xOy 型固体酸时,金属盐的选取应该尽 量避开硫酸盐、硫化物等,如硫化物混杂在催化剂中,可 能会影响催化效果,甚至使催化剂中毒

化学中的固体酸催化技术

化学中的固体酸催化技术

化学中的固体酸催化技术是一种被广泛应用的化学反应技术。

通过使用固体酸作为催化剂,可以加速一些化学反应,提高反应效率和产量。

这种技术在化工生产、精细化工、环保和能源等领域都有着重要的应用。

一、固体酸催化的基本原理固体酸催化作用是指在固体酸的引导下,反应物分子发生了催化作用。

通常情况下,固体酸催化剂表面有许多质子化的酸性中心可以吸附和活化反应物分子。

酸性中心的活性与表面活性位、等离子体酸浓度有关。

当反应物进入固体酸内部活性中心时,由于酸性中心活性的特殊性质,会使反应物分子发生电荷重分布或极化。

这样,反应物分子的化学活性被激发,形成了更加易于参与反应的活性种子。

二、固体酸催化的应用(1)酯化反应酯化反应是一种重要的有机合成反应,可以将不同的有机酸和醇结合形成酯类。

酯化反应通常需要使用酸性催化剂来推动反应。

传统上,这种反应通常采用稀硫酸或者磷酸作为催化剂。

但是,这些酸性催化剂不仅反应过程中需要特别注意操作,而且会产生大量的废水和废气。

而采用固体酸催化技术时,可以使反应条件比传统酸性催化得到很大改善。

固体酸催化剂本身就是固体颗粒,反应操作和回收都比较方便,并且反应副产物较少,废物排放也得到大大减少。

(2)裂解反应化学生产过程中的一部分重要反应就是裂解反应。

固体酸催化技术可以帮助促进原料的改性,使之符合裂解反应的要求,成为更优质的底物,从而提高产率。

同时,固体酸催化剂不仅可以用于原料的改性,还可以作为罗东油、沥青等沉积物的加氢裂解催化剂。

其酸碱性比较均衡,并具有良好的介孔水平,所以可以有效地促进反应。

(3)裂化反应在精细化工和能源方面,裂化反应也是一个非常重要的领域。

固体酸催化技术通过调整催化剂的酸性中心,可以改变反应速率和反应产物的结构。

因此,可以通过催化剂的设计来调整反应条件,提高产量、产物纯度和选择性。

因此,固体酸催化技术在制备芳香烃、烯烃等方面也具有广泛的应用。

三、未来前景随着科技的进步和社会的发展,固体酸催化技术在各个领域得到的广泛应用。

苯酚的烷基化反应

苯酚的烷基化反应

苯酚的烷基化反应苯酚的烷基化反应是指将苯酚中的氢原子进行取代,引入烷基基团的反应过程。

这种反应有多种方法可用,可根据反应条件、底物和催化剂的不同而选择不同的方法。

1. Friedel-Crafts烷基化反应:Friedel-Crafts烷基化反应是一种常用的苯酚烷基化方法。

它由查尔斯·弗里德尔和詹姆斯·克拉福兹于19世纪末提出,是最早被发现的烷基化方法之一。

主要是通过酸催化实现的。

反应的具体机理是:首先,酸催化剂(如铝氯化物、硫酸或氯化亚砜)与Brönsted或Lewis酸络合生成活性离子;然后,苯酚通过氧原子上的孤对电子与活性离子相互作用生成复合物;最后,复合物中的烷基离子进行亲核取代,形成目标产物。

2. 直接烷基化反应:直接烷基化反应是一种无需使用酸催化剂的方法,而是通过高温或高压条件下进行。

这种方法在苯酚烷基化过程中主要利用自由基取代反应进行。

反应的具体机理是:在高温下,溶剂或蒸汽中的烷基卤化物或有机卤化物分解生成自由基,然后与苯酚发生自由基取代反应,生成相应的烷基苯醇产物。

该方法具有操作简便、反应条件温和等优点。

3. 应用碱催化剂的烷基化反应:应用碱催化剂的烷基化反应是选择性烷基化的一种方法。

在该方法中,选择性烷基化是通过酚的质子化和碱中的官能团进行中和来实现的。

最常用的碱是碱金属(如钠或钾)、碱式金属氢碳酸盐(如氢氧化钠或碳酸氢钠)等。

反应的具体机理是:首先,酚通过质子化反应生成质子化物;然后通过质子化物与碱中的官能团进行中和,生成相应产物。

这种方法适用于较高活性烷基化试剂的烷基化反应,并且由于使用的是碱催化剂而不是酸催化剂,会产生较少的副反应和副产物。

以上是苯酚的一些常见烷基化反应方法,不同的方法适用于不同的实际应用需要。

这些方法可以根据反应条件、底物和催化剂的不同进行选择,以实现对苯酚进行烷基化取代,进而得到所需的目标产物。

酸催化碱催化酚醛树脂

酸催化碱催化酚醛树脂

酚醛树脂是一种重要的合成高分子材料,广泛应用于防腐蚀、胶粘剂、阻燃材料、砂轮片制造等行业。

其合成过程主要包括酸催化合成和碱催化合成两种方式,这两种方式在反应条件、产物结构和应用领域上存在一定差异。

1. 酸催化酚醛树脂:
酸催化下的酚醛树脂合成主要涉及酚和甲醛的加成反应,生成羟甲基酚。

然后在酸性条件下,羟甲基酚之间的缩合反应形成酚醛树脂。

酸催化反应通常使用硫酸、盐酸等强酸作为催化剂。

在此过程中,反应体系保持酸性环境,有利于羟甲基酚的稳定存在和加成反应的进行。

酸催化酚醛树脂通常具有较高的化学稳定性、耐热性能和机械强度。

然而,由于酸性条件下易生成较小的分子间缩合物,因此酸催化酚醛树脂的相对分子质量较低,且易溶于酒精等有机溶剂。

2. 碱催化酚醛树脂:
碱催化下的酚醛树脂合成同样包括酚和甲醛的加成反应,但在碱性条件下,进一步的缩合反应更为容易,从而形成网状结构的大分子酚醛树脂。

碱催化反应常用的催化剂有氨水、碳酸钠、氢氧化钠等。

在碱性环境下,酚醇处于稳定状态,易于发生缩合反应。

因此,碱催化酚醛树脂通常具有较高的相对分子质量,且不溶于酒精等有机溶剂。

此外,碱催化酚醛树脂具有良好的柔韧性和耐水性。

酸催化酚醛树脂和碱催化酚醛树脂在结构、性能和应用领域上有所差异。

选择合适的催化方法可根据实际需求进行调整,以满足不同应用场景的需求。

苯酚的烷基化反应

苯酚的烷基化反应

苯酚的烷基化反应苯酚的烷基化反应是将苯酚中的氢原子被烷基基团取代的反应。

这种反应可以通过酸催化、碱催化或金属催化来实现。

一种常用的方法是酸催化烷基化反应。

在酸催化条件下,苯酚与烷基化试剂反应生成相应的烷基苯醚。

常用的烷基化试剂有甲醇、乙醇、丙醇等,催化剂可以是浓硫酸、过磷酸或氯化亚砜等。

以甲醇为烷基化试剂为例,反应可以写作如下:C6H5OH + CH3OH → C6H5OCH3 + H2O在这个反应中,硫酸通常作为催化剂,它能够促使苯酚与甲醇发生酸碱中和反应生成苯甲醚和水。

酸催化的烷基化反应中,反应条件如温度、催化剂用量等都会影响反应的速度和产率。

另外一种常用的方法是碱催化烷基化反应。

在碱催化条件下,苯酚与卤代烷反应生成烷基苯醚。

常用的卤代烷有氯甲烷、溴乙烷等,催化剂可以是碱性金属如钠、钾等或碱性金属氢氧化物如氢氧化钠、氢氧化钾等。

以氯甲烷为烷基化试剂为例,反应可以写作如下:C6H5OH + CH3Cl + NaOH → C6H5OCH3 + NaCl + H2O在这个反应中,氢氧化钠作为催化剂,它能够使碱性环境中苯酚与氯甲烷发生取代反应,生成苯甲醚、食盐和水。

另外,金属催化烷基化反应也有一定的应用。

以铝炉渣为催化剂,苯酚与烷基卤化物反应可以得到烷基苯。

除了以上几种常用的方法,还有其他一些新颖的烷基化反应。

例如,均苯烷基化反应是一种将苯酚中的氢原子被烷基基团取代的反应,通过烃醇活化苯烷烯酸类化合物可以制备烷基苯。

总结以上,苯酚的烷基化反应是一种将苯酚中的氢原子被烷基基团取代的过程。

该反应可以通过酸催化、碱催化或金属催化来实现。

通过调整反应条件,可以控制反应的速度和产率。

这种反应在有机合成中具有广泛的应用,可以合成一系列的烷基苯类化合物。

固体超强酸催化剂

固体超强酸催化剂
5×10-5 3×10-4 5×10-3 2×10-2
0.1
4.8 71 90
与某pKa相当 的硫酸的质量
分数
N=N A
N(CH3)2
红(酸型)
[HA]S + [B]a
[A-]S + [BH+]a
测定原理:
H。= pKa + lg { [B]a / [BH+]a }
BH+
H+ + B
某 pKa 指示剂与固体酸相作用 其中: Ka = [ a H+ aB ] / a BH+
✓ 焙烧温度由150oC升高到600oC,弱酸减少,强酸增多;
但温度升高到1000oC,各强度下的酸量都大大减少
✓ 总酸量(H0 +6.8 ): 1.51 mmol/g (150oC)
各强度下酸量的两种表示:
1.80 mmol/g (300oC) 2.85 mmol/g (600oC) 最大 0.18 mmol/g (1000oC)
4 活性炭
在573K下热处理
金属氧化物 5
和硫化物
Al2O3 、TiO2、CeO2、V2O5、MoO3、WO3、 CdS、ZnS 等
6 金属盐 7 复合氧化物
MgSO4、SrSO4、CuSO4、ZnSO4、NiSO4、 Bi(NO3)3,AlPO4、BaF2、TiCl3、AlCl3等
SiO2-Al2O3、SiO2-ZrO2、 Al2O3-MoO3、 Al2O3Cr2O3、TiO2-ZnO、TiO2-V2O5、MoO3-CoO- Al2O3 、 杂多酸及其盐、合成分子筛 等
酸强度与酸量的测定
➢ 指示剂法(测定酸强度)
酸强度函数 H0(Hammett 函数)的定义 :
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

固体超强酸催化长链烷基酚的合成研究马步伟;赵振新【摘要】Long chain alkylphenols were synthesized from phenol and long chain alcohols in the presence of ZrO2/SO42- solid superacid. Factors influencing the alkylphenols yield such us calcination temperature of catalyst, catalytic dosage, reaction time, reaction temperature and molar ratios of reagents were discussed. The results showed that the solid superacid has outstanding catalytic activity on the alkylation of long chain alcohol and phenol. Especially, the catalyst possesses optimum catalytic action on the alkylations when calcination temperature is 550 ℃. When the molar ratio of reagents 1. 0 -1. 2, reaction time 3 - 4 h, catalytic dosage 0. 8 - 1. 2 g, the yield could reach up to 79%. The optimum molar ratios of phenol to alcohol, reaction temperature, reaction time, catalyst dosage should be increased slightly as the alkyl chain carbon number increases.%制备了ZrO2/SO24-型固体超强酸催化剂,在该固体超强酸的催化作用下,由长链醇和苯酚通过烷基化反应合成了系列长链烷基酚.探讨了催化剂焙烧温度、催化剂用量、反应时间、反应温度和反应醇酚比对烷基化反应的影响.结果表明,ZrO2/SO24型固体超强酸对长链醇与苯酚的烷基化反应具有良好的催化效果.当催化剂焙烧温度为550℃时催化活性最佳,酚醇比1.0~1.2,催化剂最佳用量0.8~1.2 g,反应时间3~4h,收率最高可达79%,同时反应最佳酚醇比、反应温度、反应时间和催化剂用量均随烷基链的增长略有增加.【期刊名称】《精细石油化工》【年(卷),期】2012(029)004【总页数】4页(P4-7)【关键词】固体超强酸;长链烷基酚;合成;催化【作者】马步伟;赵振新【作者单位】河南城建学院化学与化学工程系,河南平顶山467036;河南城建学院化学与化学工程系,河南平顶山467036【正文语种】中文【中图分类】TQ426.6;TQ032固体超强酸具有催化活性高、不腐蚀反应设备、无“三废”污染、制备方便、可再生重复使用、催化剂与产物分离简单等优点,成为当前催化研究的热点之一[1,2]。

烷基酚是一种重要的有机化工原料和中间体,其与环氧乙烷反应所得的长链烷基酚聚氧乙烯醚是一类良好的化学助剂,可用作石油破乳剂[3]、水煤浆分散剂[4]等。

作为水煤浆分散剂,具有良好的分散降黏作用和一定的稳定作用,和其他阴离子分散剂复配,分散降粘效果更好[5]。

工业上多采用长链烯烃在硫酸等酸性催化剂存在下对苯酚进行烷基化生产烷基酚[6],但该法存在许多弊病[7]:副反应多,易发生分子内重排、歧化;设备腐蚀严重;产物的后处理复杂;废水量大,污染环境等。

此外最大的问题是长链烯价格昂贵反应成本高,由于长链醇的价格与长链烯相比要低很多,因此以长链醇替代长链烯作为烷基化试剂来制备烷基酚,是降低生产成本的一个重要途径。

ZrO2是唯一一种具有酸性、碱性、还原能力及氧化能力四种化学特性的金属氧化物[8-11],且由于具有高的热稳定性和化学惰性,又是P型半导体,易于产生氧空穴,并能与活性组分产生强的化学作用而被广泛用作催化剂及催化剂载体[12-13]。

ZrO2/SO42-型固体超强酸不含卤素离子,无污染、无腐蚀,用量少,易分离,可重复使用,并能在高温(773~873K)下保持活性和稳定性等优点[14]。

在烷基化反应中已有应用,但都是用于烯烃或是卤代烃为烷基化试剂的反应当中[15],且通常是与苯进行的烷基化[16],而以长链醇作为烷基化试剂对苯酚进行烷基化制备长链烷基酚,在文献中尚未见报道。

笔者通过共沉淀法制备了ZrO2/SO42-型固体超强酸催化剂,并将其应用于催化以长链醇为烷基化试剂与苯酚进行烷基化反应制备长链烷基酚的反应中,考察其对烷基化反应的催化性能。

ZrOCl2·8H2O、28%氨水、98%浓硫酸、苯酚、长链醇(碳原子数=9、12、14、16和18)、石油醚(沸程80~120℃)、乙醚均为AR级,天津韦斯实验用品公司。

IFS-25傅里叶红外光谱仪,德国Bruker;HCT-2微机差热天平,北京华运安特科技有限责任公司。

称取一定量的ZrOCl2·8H2O固体置于500 mL烧杯中,用去离子水和乙醇按体积比3∶1的混合溶液溶解,配成质量分数为8%的溶液。

在快速搅拌下向溶液中缓慢滴加浓氨水,调节溶液的pH=8~9,形成白色凝胶。

放置,陈化24h。

用蒸馏水反复洗涤至滤液中无Cl-(用AgNO3检验),于110℃干燥24h,粉碎过100目筛。

然后用1.0mol/L的H2SO4浸泡24h,110℃干燥24 h,粉碎过100目筛。

分成4份分别于不同温度焙烧3h待用。

于250mL反应瓶中,以石油醚作溶剂,加入一定量苯酚和少许ZrO2/SO42-型固体超强酸,加热到反应温度,在15min内缓慢加入适量不同碳原子数的醇,恒温反应4h,停止反应,滤出催化剂,用质量浓度为5%的NaHCO3水溶液洗涤三次,再用清水洗涤三次。

干燥过夜,常压下蒸出溶剂与反应物后,减压蒸出产品。

将少量KBr固体晶体颗粒和固体酸催化剂粉末按6∶1的质量比在玛瑙研钵中充分研细。

然后压制成透明薄片,在红外光谱仪下进行测试。

ZrO2/SO42-型固体超强酸的 DSC-TG 见图1,三次失重过程分别为300℃之前,300~550℃,550~700℃。

第一次失重主要为结合水的失去过程;第二次失重为ZrO2/SO42-表面上吸附的SO42-脱除;当温度达到550℃时开始第三次失重,是形成的ZrO2/SO42-开始分解,同时伴随着ZrO2表面SO42-的脱除,温度超过610℃时分解速度明显加快,700℃时达到最大失重速度。

在第二个失重阶段固体酸表面失去的SO42-的量值较大,说明在固体酸表面吸附有较多的SO42-,增强其酸性。

五种焙烧温度下制备得到的ZrO2/SO42-型固体超强酸,在第二次失重时,焙烧温度为550℃失重量最大,固体酸的酸性也就最强。

不同的焙烧温度下ZrO2/SO42-型固体超强酸的红外图谱中见图2,在800~1 400cm-1有多个 ZrO2/SO42-的特征吸收峰:1 216,1 135,1 082,1 042,992cm-1。

这些吸收峰的强度越大,说明固体酸表面ZrO2/SO42-的数量也就越多,表面酸中心的量就越大,酸性就越强,反之,酸性越弱。

不同的焙烧温度下这些吸收峰的强度明显不同,其中以550℃时的最强。

分析可知,焙烧温度为550℃时,固体超强酸ZrO2/SO42-的表面酸量最高,酸性也最强。

ZrO2/SO42-型固体超强酸对于长链醇与苯酚的烷基化反应具有很高的催化活性,焙烧温度对烷基化反应的影响见图3。

550℃焙烧的ZrO2/SO42-型固体超强酸具有最好的催化活性,随着对催化剂焙烧温度的升高其催化活性有所下降,这是由于焙烧温度的升高使催化剂表面酸中心下降所致。

对于不同碳原子数的醇来说,不同焙烧温度的ZrO2/SO42-催化剂的催化作用是一致的,只是随着碳原子数的增加,烷基化反应的收率稍有下降,这是由于碳链的增长,使得醇羟基在分子中所占比例迅速下降,导致反应能力下降的缘故。

以焙烧温度在550℃的ZrO2/SO42-型固体超强酸催化剂为例,采用0.1mol(9.5g)苯酚,0.1mol长链醇,反应4h,改变固体超强酸催化剂的用量,催化剂用量对烷基化反应的影响见图4。

可以看出,烷基化反应反应进行较快,加入少量固体超强酸即能达到良好的催化效果,随着催化剂用量的增加产品收率提高,但随着长链醇碳原子数的增加,催化剂的用量稍有增加,其最佳用量在0.8~1.2g之间。

以焙烧温度在550℃的催化剂为例,在120℃时,反应醇酚比为1∶1.0g固体超强酸催化下,改变反应时间,考查反应时间对长链醇与苯酚进行烷基化反应产率的影响。

反应时间对烷基化反应的影响见图5。

ZrO2/SO42-型固体超强酸催化的烷基化反应速度较快,180min时反应即接近完成,再延长反应时间产品收率稳定。

随醇的碳原子数的增加,反应时间稍有增加,但总体来讲反应时间对烷基化反应影响不大,一般情况下反应在3~4h内完成。

采用9.5g(0.1mol)的苯酚,1.0g催化剂,改变长链醇的用量,反应4h,物料配比对烷基化反应的影响见图6。

从反应结果可以看出,物料比过大,烷基化的产率反而会下降,这主要是由于醇的含量增加后,二烷基化反应的机会增加,生成较多的二取代产品,从而导致一取代烷基酚的产率下降。

在上述反应条件下,改变反应温度观察烷基酚的收率变化,反应温度对烷基化反应的影响见图7,随着醇碳原子数的增加,反应温度逐渐升高。

但温度升高对烷基化反应是不利的,温度过高二取代产品产量上升,一取代产品产率下降。

ZrO2/SO42-型固体超强酸催化剂在反应后,过滤回收可以再生。

由于在反应过程中SO42-不断的流失,导致其催化剂逐渐失活,通过对旧催化剂的洗涤、酸化、焙烧,可以重新恢复其催化活性。

随着回收再生的反复使用,催化活性逐渐下降,一般情况下,催化剂再生使用在三次以内催化效果稳定。

这是由于在反应过程中随着SO42-的不断的流失,固体表面被其他杂质占据,虽经洗涤,终不能完全清除,造成在酸化时酸化不完全,使其酸性中心降低,导致其催化活性随之下降。

ZrO2/SO42-型固体超强酸对长链醇与苯酚的烷基化反应具有良好的催化效果。

当催化剂焙烧温度为550℃时催化活性最佳,物料摩尔比1.0~1.2,反应时间为180~240min,催化剂最佳用量在0.8~1.2g,反应时间3~4h,收率最高可达79%。

相关文档
最新文档