扩音机电路的设计--毕业设计
扩音机电路设计报告

实验报告实验名称:扩音机电路的设计一:课题名称:扩音机电路的设计二:报告摘要和关键字:1.摘要:本实验主要采用运算放大器和集成音频功率放大电路构成扩音机电路,将话筒送出的微弱信号放大成能推动扬声器发声的大功率信号。
报告中首先给出设计思路和总体结构框图,然后讨论各级电路具体设计和原理图,后给出了实际搭建电路测试的数据,所得的波形图,调试过程中遇到的故障和问题分析,最后对本次实验进行了总结。
2 .关键字:前置放大音调调节功率放大增益三:设计任务要求:设计实现一个对话筒输出信号具有放大功能的扩音机电路1.基本要求:1)最大输出功率不小于2W2)负载阻抗为8Ω3)具有音调调控功能,即用两个电位器分别调节高音和低音。
当输入信号为1kHz时,输出为0dB;当输入信号为100Hz正弦时,调节低音电位器可以使输出功率变化±12dB;当输入信号为10KHz时,调节高音电位器也可以使输出功率变化±12dB4)输出功率的大小连续可调,即用电位器可以调节音量的大小5)频率响应:当高、低音调电位器处于不提升也不衰减的位置时,-3dB的频率范围是80Hz~6KHz,即BW=6KHz6)输入端短路时,噪声输出电压的有效值不超过10mv,直流输出电压不超过50mv,静态电源电流不超过100mA7)设计该电路的电源电路2.提高要求:其他扩音机电路的设计方案四:所用元器件及测试仪表清单单片集成功率放大电路TDA2030A(1个)面包板(1个)二极管1N4001(2个)电位器500K(2个)电位器10K(1个)驻极体话筒(1个)功率电阻(1个)散热片(1个)电阻电容若干导线若干其他函数信号发生器万用表示波器五:设计思路与总体结构框图图表1扩音机电路的原理框图扩音机电路主要采用运算放大器和集成功率放大电路构成,原理框图如图表1所示。
前置放大主要完成小信号的放大,一般要求输入阻抗高,输出阻抗低,频带宽,噪声小;音调控制主要实现对输入信号高低音的提升和衰减;功率放大器决定整个电路的输出功率、非线性失真系数等指标,要求效率高、失真尽可能小、输出功率大。
音频放大器(扩音机)的毕业设计

江苏城市职业学院五年制(高职)毕业设计(论文)设计课题音频放大器的设计学校年级专业姓名学号指导教师职称二○一一年十一月摘要音频放大器是一种通用性较强的应用电路,它广泛用于收音机、录音机、电视机和扩音机等整机产品中,用来把微弱的声音电信号进行放大,以获得足够大的输出功率推动扬声器。
它也是音响装置重要的组成部分,通常把它叫做扩音机。
本课题是经典音频放大器应用设计,经过功力晶体再把放大的信号.透过扬声器放出声音.其动作原理是把电气讯号转换为声音讯号的转换器。
扬声器为电子产品之声音输出端的重要零组件,其应用范围广泛,可装置于各型耳机或头机内,如随身听、音响、无线电通讯、多媒体电脑、录音工程或电子字典,用来收听声音与音乐,也可装置于电话自动拨打器,用来打电话。
关键词:OTL;集成电路;输入级;输出级;放大器目录摘要 (Ⅰ)第一章毕业设计及任务 (1)第一节设计任务书 (1)第二节设计的基本要求和实现方法 (2)第二章音频放大器概述 (3)第一节毕业课题的背景及意义 (3)第三章主要性能指标 (4)第四章直流稳压电源 (5)第一节两种稳压类型概述 (5)第二节稳压电源的指标和集成稳压器 (9)第三节硅稳压二极管稳压电路 (12)第五章基本设计方法 (14)第一节电压增益分配和确定电源电压 (14)第二节功率输出级的计算 (15)第三节推动级和衰减式音调控制电路的计算 (16)第四节 OCL功率放大器的设计 (19)第五节音频控制电路的设计 (23)第六章印制电路板的设计 (31)设计体会 (34)参考文献 (35)附录音频放大器总电路 (36)第一章 毕业设计及任务第一节 设计任务书1.设计题目设计一台高保真OCL 音频放大器 2.技术指标⑴ 最大不失真输出功率:Pom ≥10W ; ⑵ 负载电阻(扬声器):RL=8Ω; ⑶ 频率响应:ffHL~=50HZ~20KHZ ;⑷ 音调控制范围:低音:100HZ ±12dB 高音:10KHZ ±12dB ⑸ 输入电压:mV U i 100≤; ⑹ 失真度:%2≤r⑺ 稳定性:在电源为±15~24V 范围内变化时,输出零点漂移mV 100≤。
扩音机电路的设计

课程设计报告课程名称:模拟电子技术基础设计名称:扩音机电路设计姓名:学号:班级:成绩:指导教师:起止日期:2009年12月28日至2010年1月1日课程设计任务书扩音机电路的设计一、 设计的目的和意义(一)、实验目的1,了解扩音机电路的形成和用途。
2,掌握音频放大电路的一种实现方法。
3,提高独立设计电路和验证试验的能力。
(二)、意义:对以后的毕业设计打下基础,锻炼个人的学习和查阅资料的能力以及对课外相关本专业知识的了解。
二、 设计原理扩音机电路的工作原理与音频功率放大器的工作原理相似,具有放大音频先好并将其还原纯真声音信号的电子装置。
扩音机电路时一个典型的多级放大器,其原理如下图所示。
前置级主要完成对小信号的放大。
一般要求输入阻抗要高,输出阻抗低,频带宽度要宽,噪声要小。
音调控制级主要实现对输入信号高、低音的提升和衰减。
功率放大器决定了整机的输出功率、非线性失真系数等指标,要求效率高、失真尽可能小、输出功率大。
首先根据技术指标要求,对整机电路作适当安排,确定各级的增益分配,然后对各级电路进行具体的设计计算。
因为P0max=8W 。
所以此时的输出电压:V0=RL P m ax *0 =8V 。
要使输入为5mv 的信号放大到8v 的输出,所需要的总放大倍数为1600倍,扩音机中各级增益的分配为:前置级电压放大倍数为80;音调控制级中频电压放大倍数为1;功率放大级电压放大倍数为20。
三、 详细设计及实验步骤1、 前置放大级由于信号源提供的信号非常微弱,因此在音调控制器前面要加一级前置放大级。
该前置放大级的下限频率要小于音调控制器的低音转折频率,前置放大器的上限频率要大于音调控制器的高音转折频率。
前置放大器采用集成运算放大器电路,具体电路结构如下图所示图 1 前置放大电路考虑对噪声、频率响应的要求,运算放大器选用LF353双运放,该运放是场效应管输入型高速低噪声集成器件,其输入阻抗极高。
前置级由LF353组成两级放大器完成。
扩音器电路的设计

扩音器电路的设计1.设计目标和规格首先,需要明确扩音器电路的设计目标和规格。
设计目标包括所需放大的音量范围,输入电压范围,输出阻抗等。
设计规格包括放大倍数,频率响应范围,失真程度等。
2.放大器选择选择合适的放大器是设计扩音器电路的关键。
常见的两种放大器类型是运放放大器和功率放大器。
运放放大器的优点是放大精度高,功率放大器的优点是输出功率大。
在设计中可以根据实际需求和成本考虑选择合适的放大器。
3.输入电路设计输入电路的设计主要是为了适应不同的输入源和提供适当的输入阻抗。
常见的输入电路包括差分输入电路和单端输入电路。
差分输入电路可以提供更好的抗干扰能力,单端输入电路则成本更低。
根据设计需求选择合适的输入电路。
4.输出电路设计输出电路的设计主要是为了适应不同的输出负载和提供适当的输出阻抗。
常见的输出电路包括普通放大电路和功率放大电路。
普通放大电路适用于小功率输出,功率放大电路适用于大功率输出。
根据设计需求选择合适的输出电路。
5.反馈电路设计反馈电路可用于提高放大器的性能。
负反馈电路通过将输出信号与输入信号进行比较,使得输出信号更接近输入信号,从而减小失真程度和提高稳定性。
常见的反馈电路包括电压反馈和电流反馈。
根据设计需求选择合适的反馈电路。
6.音频处理电路设计音频处理电路可以用于调节音频信号的音量、频率和音色等特性。
常见的音频处理电路包括音量控制电路、均衡器电路和低通、高通滤波器电路等。
根据设计需求选择合适的音频处理电路。
7.供电电路设计供电电路的设计包括直流电源和滤波电路。
直流电源为放大器提供稳定的工作电压,滤波电路用于滤除电源中的高频噪声。
根据设计需求选择合适的供电电路。
8.PCB布局设计9.电路仿真和调试在完成电路设计后,进行电路仿真和调试是非常重要的。
通过仿真和调试可以验证设计方案的正确性,识别和解决可能出现的问题,进一步优化电路性能。
总结:扩音器电路的设计需要考虑目标和规格、放大器选择、输入输出电路设计、反馈电路设计、音频处理电路设计、供电电路设计、PCB布局设计以及电路仿真和调试等方面。
扩音器的设计-毕业设计

扩音器的设计学生:XXX 指导老师:XXX内容摘要:近几年来,计算机技术进入了前所未有的快速发展时期,随着电子信息技术的发展关于音响放大器在电子技术基础中所处的位置越来越重要,它不仅是电子信息专业的一个重要部分,而且在其他类专业工程中也是不可缺少的。
放大器电路做为子系统的应用,发展更是迅速,已成为新一代电子设备不可缺少的核心部件,其现实生活中的运用也是非常普遍和广泛。
扩音机电路是把微弱的声音信号放大成能推导尿管扬声器的大功率信号,主要由运算放大器和集成音频功率放大器构成。
电路结构分为前置放大,音频控制,功率放大三部分。
前置放大主要完成小信号的放大,一般要求输入阻抗攻,输出阻抗低,频带宽,噪音要小,音频控制主要是实现对输入信号高、低音的提升和衰减;功率放大器决定了整机的输出功率大。
关键字:扩音器功率放大器音频控制The design of the amplifierAbstract:In recent years, computer technology into an unprecedented period of rapid development, the development of electronic information technology for the audio amplifier an increasingly important location in the electronic technology, it is not only an important part of the Electronic Information andin other types of professional engineering is also indispensable. The amplifier circuit as a subsystem of the application, to develop more rapidly and has become indispensable to the core components of a new generation of electronic devices, their use in real life is also very common and widespread. The amplifier circuit is weak voice signal amplification can push the catheter speaker's high-power signal is mainly composed of operational amplifiers and integrated audio power amplifier. The circuit structure is divided into pre-amplification, audio controls, power amplifier parts. The preamp to complete small-signal amplification, and general requirements for the input impedance of the attack, low output impedance, wide band, noise, the audio control to achieve the input signal, bass enhancement and attenuation; power amplifier determines the overall output powerKeywords: amplifier power amplifier tone control目录前言 (1)1 概述 (2)2 总体设计方案 (2)2.1 前置放大器 (2)2.2 音调控制电路 (3)2.3 功率放大器 (8)3 设计原理分析 (9)4 扩音器的调试 (10)5 结束语 (12)参考文献 (13)扩音器设计前言设计一个实用的音频功率放大器。
扩音机电路设计报告

扩音机电路设计报告1.引言:扩音机是一种可以放大声音的电子设备,广泛用于会议、演讲、教学等场合。
在本设计报告中,我们将介绍一种基于放大器电路的扩音机设计。
该设计可以实现低功率输入信号的放大,以产生高功率输出来扩大声音。
2.设计目标:本次设计的目标是设计一个能够放大输入信号的扩音机电路,并具有以下特性:-低噪声放大器:确保输入信号的清晰度和准确性;-高增益:保证输入信号可以被放大到足够大的水平,以产生高功率输出;-功率放大:将放大的信号驱动一个功率放大器,以产生高功率输出。
3.设计方案:本次设计基于模拟电路,包括三个主要模块:前置放大器、主放大器和功率放大器。
3.1前置放大器:前置放大器负责对输入信号进行低噪声放大。
我们选择了放大器电路中常用的差分放大器设计。
差分放大器可以有效地抑制输入信号中的噪声,并具有较高的增益和共模抑制比。
另外,在输入和输出之间加入适当的滤波器可以进一步提高信号质量。
3.2主放大器:主放大器将前置放大器放大后的信号进一步放大。
我们选择了类AB 功放电路来实现主放大器。
类AB功放具有较高的效率和较低的失真,适用于音频放大应用。
为了实现高增益,我们采用多级放大器的结构。
3.3功率放大器:功率放大器将主放大器放大后的信号驱动扬声器,产生高功率的声音输出。
我们选用了功放电路设计中常见的互补对称结构。
使用互补对称结构可以提高输出功率和效率,并且减少对地的电位差。
4.电路实现:我们基于以上设计方案实现了扩音机的电路。
4.1前置放大器电路:前置放大器电路采用了差分放大器的设计。
通过设置合适的电流源和电阻值,实现了合适的增益和共模抑制比。
在输入和输出之间添加了适当的低通滤波器来抑制高频噪声。
4.2主放大器电路:主放大器电路采用了多级放大器的结构。
每个级别都使用了类AB功放,以实现较高的增益。
同时,每个级别之间通过耦合电容进行耦合,以确保信号的顺畅传输。
4.3功率放大器电路:功率放大器电路采用了互补对称结构。
毕业设计-扩音机实验实训电路设计

苏州经贸职业技术学院毕业论文扩音机实验实训电路设计目录摘要........................................................................ 2..引言:...................................................................... 2.. 1扩音机电路总体设计 ........................................................ 3. 2扩音机电压放大的设计 ..................................................... 3.2.1电压放大的比较和选择 ...............................................3.2.2运放的选择 .......................................................... 4.2.3放大电路设计 ........................................................ 4.2.3.1放大级......................................................... 5.2.3.2音调控制电路.................................................. 5. 3扩音机功率放大的设计 ...................................................... 6.3.1功放的选择 .......................................................... 6.3.2电路设计 ............................................................ 6.3.2.1LM386集成功放的介绍 (6)3.2.2功放电路设计................................................... 7. 4扩音机的电路制作 ......................................................... 8.4.1扩音机原理图的绘制 ................................................. 8.4.2扩音机印制板电路板的绘制 (8)5扩音机硬件实物的制作与调试 ............................................... 9.5.1扩音机硬件实物的制作 ............................................... 9.5.2扩音机硬件实物的调试与检修 ......................................... 1.0 6小结.................................................................... .1.1 7谢辞 (11)8参考文献 ................................................................ .1.1 9附录 (12)扩音机实验实训电路设计摘要:扩音机的作用就是将来自信号源的微弱电信号进行放大,产生足够大的电流以驱动扬声器发出声音。
扩音机电路的设计毕业设计

扩音机电路的设计毕业设计毕业设计:扩音机电路设计摘要:本论文旨在设计一种扩音机电路,以实现音频信号的放大和扩音功能。
通过对市场上现有扩音机电路的分析和比较,结合实际需求,设计了一种基于放大器、滤波器和功率放大器组成的扩音机电路,并在实际应用中对其进行了测试。
结果表明,该电路设计能够有效地放大音频信号,提高音质和音量,具有较高的实用性和可靠性。
关键词:扩音机;电路设计;放大器;滤波器;功率放大器1.引言扩音机是一种常见的电子设备,广泛应用于演讲、会议、培训、广播等场合,用于放大音频信号,提高音质和音量。
随着科技的进步,扩音机的电路设计也在不断改进和创新。
本论文旨在设计一种基于放大器、滤波器和功率放大器组成的扩音机电路,以满足用户对音频放大和扩音的需求。
2.扩音机电路设计2.1放大器设计在扩音机电路中,放大器起到放大音频信号的作用。
可以选择不同类型的放大器,如电子管放大器、晶体管放大器等。
本设计选择使用晶体管放大器。
晶体管放大器具有功率提高、频率响应宽等特点。
通过对晶体管的级联和偏置,可以实现对音频信号的放大。
2.2滤波器设计为了提高音质,需要对音频信号进行滤波处理。
本设计选择使用RC滤波器。
RC滤波器是一种简单而有效的滤波器,可以实现对低频和高频信号的滤除。
通过合理选取RC的值,可以实现对音频信号的滤波和频率响应的调节。
2.3功率放大器设计在放大后的音频信号经过滤波器处理后,需要使用功率放大器来提高音量。
功率放大器的设计需要考虑功率输出、失真程度和效率等因素。
在本设计中,选择使用AB类功率放大器。
AB类功率放大器具有音质好、功率大、温度低等优点。
通过合理选取功率晶体管和输出电路的参数,可以实现对音频信号的有效放大和音量的提高。
3.实验结果与分析搭建了基于放大器、滤波器和功率放大器的扩音机电路原型,并进行了实际测试。
结果表明,该电路设计能够有效地放大音频信号,提高音质和音量。
在实验中,音频信号通过输入端口进入放大器,经过放大后再经过滤波器进行滤波处理,最后经过功率放大器进行功率输出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成绩齐鲁理工学院课程设计说明书题目扩音器的设计课程名称模拟电子啊技术二级学院机电工程学院专业电气工程及其自动化班级 2015级学生姓名沈坤学号 201510530039指导教师设计起止时间:2016年12月12日至2016年12月16日目录第1章方案设计 (2)第2章单元电路设计 (2)2.1前置放大器的设计 (2)2.2音调控制器的设计 (3)2.2.1低频工作时元器件参数的计算 (5)2.2.2高频工作时元器件参数的计算 (7)2.3功率输出级的设计 (10)2.3.1确定电源电压 (10)2.3.2功率输出级设计 (11)2.3.3电阻R17~R12的估算 (11)2.3.4确定静态偏置电路 (11)2.3.5反馈电阻R13与R14的确定 (12)参考文献 (13)附录1 总电路原理图 (14)扩音器的设计摘要:很多场合(如商场、学校、车站、体育场等)都安装有广播系统,它的主要功能是播放音乐、广播通知和要闻。
这些广播系统都含有扩音设备,用以把从话筒、录放卡座、CD机送出的微弱信号放大成能推动扬声器发声的大功率信号。
根据实际需要和放大器件的不同,扩声电路的设计也有很多种类。
作为电子线路的课题设计,本课题提出的扩声电路性能指标比较低,主要采用理论课题里介绍的运算放大集成电路和音频功率放大集成电路来构成扩声电路。
这种性能指标低的扩音器主要在于价格便宜,制作简单,不需要太多昂贵的集成块。
关键词扩声;音频功放;放大电路第1章方案设计采用运算集成电路和音频功率放大集成电路设计一个对话筒输出信号具有放大能力的扩声电路。
其电路方框图如图1-1所示:图1-1扩声电路原理框图前置放大主要完成对小信号的放大,一般要求输入阻抗高,输出阻抗低,频带要宽,噪声要小;音量控制主要实现对输入信号高、低音的提升和衰减。
第2章单元电路设计2.1 前置放大器的设计由于话筒提供发信号非常弱,故一般在音调控制器前面要加一个前置放大器。
该前置放大器的下限频率要小于音频控制器的低音转折频率,上限频率要大于音频控制器的高音转折频率。
考虑到所设计电路对频率响应及零输入(及输入短路)时的噪声、电流、电压的要求,前置放大器选用集成运算放大器LF353。
它是一种双路运算放大器,属于高输入阻抗低噪声集成器件。
其输入阻抗高为104MΩ,输入偏置电流仅有50х10-12A,单位增益频率为4MHZ,转换速率为13V/us,用做音频前置放大器十分理想,其外引线图如图2-1所示图2-1LF353外引线图前置放大电路由LF353组成的两极放大电路完成,如图2-2所示。
第一级放大电路的A u1=10,即1+R3/R2=10,取R2=10KΩ,R3=100KΩ。
取A u2=10(考虑增益余量),同样R5=10KΩ,R6=100Ω。
电阻R1、R2为放大电路偏置电阻,取R1=R4=100KΩ。
耦合电容C1与C2取10uF,C4与C11取100uF,以保证扩声电路的低频响应。
图2-2前置放大器其他元器件的参数选择为:C3=100pF,R7=22KΩ。
电路电源为±12V。
2.2 音调控制器的设计音调控制器的功能是,根据需要按一定的规律控制、调节音响放大器的频率响应,更好地满足人耳的听觉特性。
一般音调控制器只对低音和高音信号的增益进行提升或衰减,而中音信号的增益不变,音调控制器的电路结构有多种形式,常用的典型电路结构如图2-3所示。
该电路的音调控制曲线(即频率响应)如图2-4所示。
音调控制曲线中给出了相应的转折频率:F l1表示低音转折频率,F l2表示中音下限频率,F0表示中音频率(即中心频率),要求电路对此频率信号没有衰减和提升作用,F h1表示中音上限频率,F h2表示高音转折频率。
图2-3音调控制器电路图2-4 音频控制器频率响应曲线音调控制器的设计主要是根据转折频率的不同来选择电位器、电阻及电容参数。
2.2.1 低频工作时元器件参数的计算音调控制器工作时在低音时(即F <F l ),由于电容C 5<C 6=C 7故在低频时C 5可看成开路,音频控制电路此时可简化为图2-5,图2-6所示电路。
图2-5所示为电位器RP 1中间抽头处在左端,对应于低频提升最大的情况。
图2-6所示电位器RP 1中间抽头处在最右端,对应于低频衰减最大的情况。
下面分别进行讨论。
图2-5 低频提升电路f/HzAu/dB -20db/10倍数FL1 100Hz 10Hz FH2图2-6 低频衰减器1、低频提升由图2-5可求出低频提升电路的频率响应函数为11218110)(0wl jw wl jwR RRP R U U j i ++⋅+-==ω式中, 1711RP R C wL =,)()(10171012R R C R RP wL RP += 当频率F 远远小于F l1时,电容C 7近似开路,此时的增益为8101R R R A RP L += 当频率升高时,C 7的容抗减小,当频率F 远远小于F l1时,C 7近似短路,此时的增益为8100R R A = 在F l1<F <F l2的增益范围内电压增益衰减率为-20dB/10倍频,即-6dB/倍频(若40HZ 对应的增益是20dB ,则2⨯40HZ=80HZ 时所对应的增益是14dB )本设计要求中频增益为A 0=1(0dB ),且在100HZ 处有±12dB 的调节范围。
故当增益为0dB 时,对应的转折频率为400HZ (因为从12dB 到0dB 对应两个倍频程,所以对应频率是400HZ )因此音调控制器的低音转折频率f 11=f l2/10=40HZ 。
电阻R 8,R 10及RP 1的取值范围一般为几千欧姆到几百千欧姆。
若取值过大,则运算放大器的漏电流的影响变大;若取值过小,则流入运算放大器的电流将超过其最大输出能力。
这里取R RP1=470KΩ。
由于A 0=1,故R 8=R 10。
又因为w l2/w l1=(R RP1+R 10)/R 10=10,所以R 8=R 10=RR P1/(10-1)=52KΩ,取R 9=R 8=R 10=51KΩ。
电容C 7可由式)114.32(117RP L R f C ⋅⨯=求得:C 7=0.00085uF ,取C 7=0.01uF 。
2、低频衰减在低频衰减电路中,如图6所示,若取电容C 6=C 7,则当工作频率f 远小于fL1,电容C 6近似开路,此时电路增益1810RP L R R R A += 当频率F 远大于F 12时,电容近似短路,此时电路增益8100R R A = 可见,低频端最大衰减倍数为1/10(即-20dB)。
2.2.2 高频工作时元器件参数的计算音调控制器在高频端工作时,电容C 6,C 7近似短路,此时音调控制电路可简化成图2-7所示电路。
为便于分析,将星形连接的电阻R 8=R 9=R 10转换成三角形连接,转换后如图2-8所。
所以R a =R b =R c =3R 8。
由于R c 跨接在电路的输入端和输出端之间,对控制电路无影响,故它可忽略不记。
图2-7 音调控制电路在高频段时的简化等效电路图2-8音调控制电路高频段简化电路的等效变换电路当RP2中间抽头处于最左端时,此时高频提升最大,等效电路如图2-9所示;当RP2中间抽头处于最右端时,此时高频衰减最大,等效电路如图2-10所示。
图2-9高频提升电路图2-10 高频衰减电路1、高频提升。
由图2-9可知,该电路是一个典型的高通滤波器,其增益函数为2111(wH jwwH jwRa Rb Ui Uo jw A ++∙-==) 其中,5)1111C R Ra wH +=(,51112C R wH =。
当F 远小于F h1时,电容C 5可近似开路,此时的增益为10==b R R A a(中频增益)当F 远大于F h2时,电容C 5近似为短路,此时的电压增益为11RaR R A b H = 当F h1≤F ≤F h2时,电压增益按20dB/10倍数的斜率增加。
由于设计任务中要求中频增益A 0=1,在10kHz 处有±12dB 的调节范围,所以求得F h1=2.5kHz 。
又因为ωH1/ωH2=(R 11+R a )/R 11=AH ,高频最大提升量AH 一般也取10倍,所以F h 2=AH•F h1=25kHz 。
由(R 11+R a)/R 11=AH 得:R 11=R a/(AH-1)=17KΩ,取R 11=18kΩ。
由ωH2=1/R 11C 5得:C 5=1/(2ЛF h2R 11)=354pF,取C 5=330pF 。
高音调节电位器R p 2的阻值与R p 1相同,取RR p 2=470Kω。
2、高频衰减。
在高频衰减等效电路中,由于R a =R b ,其余元器件也相同。
所以有高频衰减的转折频率与高频提升的转折率相同。
高频最大衰减1/10(即-20dB )。
2.3 功率输出级的设计功率输出级电路结构有许多种,选择由分立元器件组成的功率放大器或单片 集成功率放大器均可。
为了巩固在电子线路课程中所学的理论知识,这里选用集成运算放大器组成的典型OCT 功率放大器,其电路如图2-11所示,其中由运算放大器组成输入电压放大驱动级,由晶体管VT 1,VT 2,VT 3,VT 4组成的复合管为功率输出级。
三级管VT 1与VT 2都为NPN 管,仍组成NPN 型的复合管。
VT 3与VT 4为不同类型的晶体管,所组成的复合管导电极性由第1只脚决定,为PNP 型复合管。
图2-11 功率放大电路2.3.1 确定电源电压功率放大器的设计要求是最大输出功率W PO 8max =。
由公式L O m R U PO /2/12max ⨯=可得:RLUom Uom P Om ⋅⋅=21可得L R Po uom max 2=。
考虑到输出功率管VT 2与VT 4的饱和压降和发射极R 11与R 22的压降,电源电压常取V CC =(1.2~1.5)U Om 。
将已知参数带入上式,电源电压选取±12V 。
2.3.2 功率输出级设计1、输出晶体管的选择。
输出功率管VT2与VT4选择同类型的NPN型大功率管。
其承受的最大反向电压为U CEmax=2V CC。
每只晶体管的最大集电极电流为I Cmax V CC/RL=1.5A,每只晶体管的最大集电极功耗为:P Cmax=0.2P Omax=1.6W。
所以,在选择功率三极管时,除应使两管β的值尽量对称外,其极限参数还应满足系列关系:V BRCEO>2V CC,ICM>I Cmax,P CM>P Cmax,P CM>P Cmax。
根据上式关系,选择功率三极管为3DD01。
2、复合管的选择。
VT1与VT3分别与VT2与VT4组成复合管,它们承受的最大电压均为2V CC,考虑到R18与R20的分流作用和晶体管的损失,晶体管VT1与VT3的集电极功耗:P Cmax=(1.1-1.5)P C2max/β2而实际选择VT1,VT3参数要大于最大值。