初中七年级数学因式分解

合集下载

初中数学之因式分解知识点汇总

初中数学之因式分解知识点汇总

初中数学之因式分解知识点汇总因式分解1. 因式分解的概念:把一个多项式化成几个整式的积的形式,这样的式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。

2. 因式分解与整式乘法的关系因式分解与整式乘法都是整式变形,两者互为逆变形。

因式分解是将“和差”的形式化为“积”的形式,而整式乘法是将“积”化为“和差”的形式。

注:分解因式必须进行到每一个多项式的因式都不能再分解为止,即分解因式要彻底。

3. 公因式多项式的各项都含有的公共因式叫做这个多项式各项的公因式。

系数——取各项系数的最大公约数;字母——取各项都含有的字母;指数——取相同字母的最低次幂。

例如:多项式pa+pb+pc 中因式p 即为多项式各项的公因式。

因式分解九大方法:(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。

如果把乘法公式反过来就是把多项式分解因式。

于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。

这种分解因式的方法叫做运用公式法。

(二)平方差公式1.平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。

这个公式就是平方差公式。

(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2 和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2 =(a+b)2a2-2ab+b2 =(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。

初中数学因式分解常见的6种方法和7种应用

初中数学因式分解常见的6种方法和7种应用

因式分解的六种方法及其应用因式分解的常用方法有:(1)提公因式法;(2)公式法;(3)提公因式法与公式法的综合运用.在对一个多项式因式分解时,首先应考虑提公因式法,然后考虑公式法.对于某些多项式,如果从整体上不能利用上述方法因式分解,还要考虑对其进行分组、拆项、换元等.方法一提公因式法题型1 公因式是单项式的因式分解1.若多项式-12x2y3+16x3y2+4x2y2的一个因式是-4x2y2,则另一个因式是()A.3y+4x-1 B.3y-4x-1C.3y-4x+1 D.3y-4x【解析】B2.分解因式:2mx-6my=__________.【解析】2m(x-3y)3.把下列各式分解因式:(1)2x2-xy;(2)-4m4n+16m3n-28m2n.【解析】(1)原式=x(2x-y).(2)原式=-4m2n(m2-4m+7).题型2公因式是多项式的因式分解4.把下列各式分解因式:(1)a(b-c)+c-b;(2)15b(2a-b)2+25(b-2a)2.【解析】(1)原式=a(b-c)-(b-c)=(b-c)(a-1).(2)原式=15b(2a-b)2+25(2a-b)2=5(2a-b)2(3b+5).方法二公式法题型1直接用公式法5.把下列各式分解因式:(1)-16+x4y4;(2)(x2+y2)2-4x2y2;(3)(x2+6x)2+18(x2+6x)+81.【解析】(1)原式=x4y4-16=(x2y2+4)(x2y2-4)=(x2y2+4)(xy+2)(xy-2).(2)原式=(x 2+y 2+2xy )(x 2+y 2-2xy )=(x +y )2(x -y )2.(3)原式=(x 2+6x +9)2=[(x +3)2]2=(x +3)4.题型2 先提再套法6.把下列各式分解因式:(1)(x -1)+b 2(1-x );(2)-3x 7+24x 5-48x 3.【解析】(1)原式=(x -1)-b 2(x -1)=(x -1)(1-b 2)=(x -1)(1+b )(1-b ).(2)原式=-3x 3(x 4-8x 2+16)=-3x 3(x 2-4)2=-3x 3(x +2)2(x -2)2.题型3 先局部再整体法7.分解因式:(x +3)(x +4)+(x 2-9).【解析】原式=(x +3)(x +4)+(x +3)·(x -3)=(x +3)[(x +4)+(x -3)]=(x +3)(2x +1). 题型4 先展开再分解法8.把下列各式分解因式:(1)x (x +4)+4;(2)4x (y -x )-y 2.【解析】(1)原式=x 2+4x +4=(x +2)2.(2)原式=4xy -4x 2-y 2=-(4x 2-4xy +y 2)=-(2x -y )2.方法三 分组分解法9.把下列各式分解因式:(1)m 2-mn +mx -nx ;(2)4-x 2+2xy -y 2.【解析】(1)原式=(m 2-mn )+(mx -nx )=m (m -n )+x (m -n )=(m -n )(m +x ).(2)原式=4-(x 2-2xy +y 2)=22-(x -y )2=(2+x -y )(2-x +y ).方法四 拆、添项法10.分解因式:x 4+14. 【解析】原式=x 4+x 2+14-x 2=⎝⎛⎭⎫x 2+122-x 2=⎝⎛⎭⎫x 2+x +12(x 2-x +12). 方法五 整体法题型1 “提”整体11.分解因式:a (x +y -z )-b (z -x -y )-c (x -z +y ).【解析】原式=a (x +y -z )+b (x +y -z )-c (x +y -z )=(x +y -z )(a +b -c ).题型2 “当”整体12.分解因式:(x+y)2-4(x+y-1).【解析】原式=(x+y)2-4(x+y)+4=(x+y-2)2.题型3“拆”整体13.分解因式:ab(c2+d2)+cd(a2+b2).【解析】原式=abc2+abd2+cda2+cdb2=(abc2+cda2)+(abd2+cdb2)=ac(bc+ad)+bd(ad+bc)=(bc+ad)(ac+bd).题型4“凑”整体14.分解因式:x2-y2-4x+6y-5.【解析】原式=(x2-4x+4)-(y2-6y+9)=(x-2)2-(y-3)2=(x+y-5)(x-y+1).方法六换元法15.分解因式:(1)(a2+2a-2)(a2+2a+4)+9;(2)(b2-b+1)(b2-b+3)+1.【解析】(1)设a2+2a=m,则原式=(m-2)(m+4)+9=m2+4m-2m-8+9=m2+2m+1=(m+1)2=(a2+2a+1)2=(a+1)4.(2)设b2-b=n,则原式=(n+1)(n+3)+1=n2+3n+n+3+1=n2+4n+4=(n+2)2=(b2-b+2)2.因式分解的7种应用因式分解是整式的恒等变换的一种重要变形,它与整式的乘法是两个互逆的过程,是代数恒等变形的重要手段,在有理数计算、式子的化简求值、几何等方面起着重要作用.应用一用于简便计算1.利用简便方法计算:23×2.718+59×2.718+18×2.718.【解析】23×2.718+59×2.718+18×2.718=(23+59+18)×2.718=100×2.718=271.8.2.计算:2 0162-4 034×2 016+2 0172.【解析】2 0162-4 034×2 016+2 0172=2 0162-2×2 016×2 017+2 0172=(2 016-2 017)2=1.应用二用于化简求值3.已知x-2y=3,x2-2xy+4y2=11.求下列各式的值:(1)xy;(2)x2y-2xy2.【解析】(1)∵x-2y=3,∴x2-4xy+4y2=9,∴(x2-2xy+4y2)-(x2-4xy+4y2)=11-9,即2xy=2,∴xy=1.(2)x2y-2xy2=xy(x-2y)=1×3=3.应用三用于判断整除4.随便写出一个十位数字与个位数字不相等两位数,把它的十位数字与个位数字对调得到另一个两位数,并用较大两位数减去较小的两位数,所得的差一定能被9整除吗?为什么?【解析】所得的差一定能被9整除.理由如下:不妨设该两位数个位上的数字是b,十位上的数字是a,且a>b,b不为0,则这个两位数是10a+b,将十位数字与个位数字对调后的数是10b+a,则这两个两位数中,较大的数减较小的数的差是(10a+b)-(10b+a)=9a-9b=9(a-b),所以所得的差一定能被9整除.应用四用于判断三角形的形状5.已知a,b,c是△ABC的三边长,且满足a2+b2+c2-ab-bc-ac=0,判断△ABC形状.【解析】∵a2+b2+c2-ab-bc-ac=0,∴2a2+2b2+2c2-2ab-2bc-2ac=0.即a2-2ab+b2+b2-2bc+c2+a2-2ac+c2=0.∴(a-b)2+(b-c)2+(a-c)2=0.又∵(a-b)2≥0,(b-c)2≥0,(a-c)2≥0,∴a-b=0,b-c=0,a-c=0,即a=b=c,∴△ABC为等边三角形.应用五用于比较大小6.已知A=a+2,B=a2+a-7,其中a>2,试比较A与B的大小.【解析】B-A=a2+a-7-a-2=a2-9=(a+3)(a-3).因为a>2,所以a+3>0,从而当2<a<3时,a-3<0,所以A>B;当a=3时,a-3=0,所以A=B;当a>3时,a-3>0,所以A<B.应用六 用于解方程(组)7.已知大正方形的周长比小正方形的周长多96 cm ,大正方形的面积比小正方形的面积多960 cm 2.请你求这两个正方形的边长.【解析】设大正方形和小正方形的边长分别为x cm ,y cm ,根据题意,得⎩⎪⎨⎪⎧4x -4y =96,①x 2-y 2=960,② 由①得x -y =24,③;由②得(x +y )(x -y )=960,④把③代入④得x +y =40,⑤;由③⑤得方程组⎩⎪⎨⎪⎧x -y =24,x +y =40,,解得⎩⎪⎨⎪⎧x =32,y =8. 故大正方形的边长为32 cm ,小正方形的边长为8 cm.应用七 用于探究规律8.观察下列各式:12+(1×2)2+22=9=32,22+(2×3)2+32=49=72,32+(3×4)2+42=169=132,…. 你发现了什么规律?请用含有字母n (n 为正整数)的等式表示出来,并说明理由.【解析】规律:n 2+[n (n +1)]2+(n +1)2=[n (n +1)+1]2.理由如下:n 2+[n (n +1)]2+(n +1)2=[n (n +1)]2+2n 2+2n +1=[n (n +1)]2+2n (n +1)+1=[n (n +1)+1]2.。

初中数学因式分解教案5篇

初中数学因式分解教案5篇

初中数学因式分解教案5篇初中数学因式分解教案篇1知识点:因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。

教学目标:理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。

考查重难点与常见题型:考查因式分解能力,在中考试题中,因式分解出现的频率很高。

重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。

习题类型以填空题为多,也有选择题和解答题。

教学过程:因式分解知识点多项式的因式分解,就是把一个多项式化为几个整式的积。

分解因式要进行到每一个因式都不能再分解为止。

分解因式的常用方法有:(1)提公因式法如多项式其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式。

(2)运用公式法,即用写出结果。

(3)十字相乘法对于二次项系数为l的二次三项式寻找满足ab=q,a+b=p的a,b,如有,则对于一般的二次三项式寻找满足a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行。

分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号。

(5)求根公式法:如果有两个根X1,X2,那么1、教学实例:学案示例2、课堂练习:学案作业3、课堂:4、板书:5、课堂作业:学案作业6、教学反思:初中数学因式分解教案篇2教学目标1、知识与技能会应用平方差公式进行因式分解,发展学生推理能力。

2、过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性。

3、情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值。

重、难点与关键1、重点:利用平方差公式分解因式。

初中数学:因式分解常用的6种方法

初中数学:因式分解常用的6种方法

初中数学:因式分解常用的6种方法
分解因式技巧
1.分解因式与整式乘法是互为逆变形。

2.分解因式技巧掌握:
①等式左边必须是多项式;
②分解因式的结果必须是以乘积的形式表示;
③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;
④分解因式必须分解到每个多项式因式都不能再分解为止。

注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。

1、提取公因式
如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

ab+ac=a(b+c)
2、公式法
a²-b²=(a+b)× (a-b)
(a+b)²=a²+2ab+b²
(a-b)²=a²-2ab+b²
3、分组分解法
ax+ay+bx+by =a(x+y)+b(x+y) =(a+b)(x+y)
4、十字相乘法
x+(p+q)x+pq=(x+p)(x+q)
5、裂项法
bc(b+c)+ca(c-a)-ab(a+b)
=bc(c-a+a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)
=c(c-a)(b+a)+b(a+b)(c-a)
=(c+b)(c-a)(a+b)
6、配方法
x²+3x-40
=x²+3x+2.25-42.25
=(x+1.5)²-(6.5)²
=(x+8)(x-5)。

初中数学因式分解的12种方法

初中数学因式分解的12种方法

因式分解常用12种方法及应用【因式分解的12种方法】把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。

因式分解的方法多种多样,现总结如下:1.提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。

例1.分解因式x3-2x2-x(2003淮安市中考题)x3-2x2-x=x(x2-2x-1)2.应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。

@初中生家长例2.分解因式a2+4ab+4b2(2003南通市中考题)解:a2+4ab+4b2=(a+2b)23.分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3.分解因式m2+5n-mn-5m解:m2+5n-mn-5m=m2-5m-mn+5n@初中生家长=(m2-5m)+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4.十字相乘法对于mx2+px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4.分解因式7x2-19x-6分析:1×7=7,2×(-3)=-61×2+7×(-3)=-19解:7x2-19x-6=(7x+2)(x-3)5.配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。

@初中生家长例5.分解因式x2+6x-40解x2+6x-40=x2+6x+(9)-(9)-40=(x+3)2-(7)2=[(x+3)+7][(x+3)–7]=(x+10)(x-4)6.拆、添项法可以把多项式拆成若干部分,再用进行因式分解。

初中生因式分解

初中生因式分解

因式分解是将一个多项式表达为几个多项式的乘积的过程。

对于初中生来说,通常需要掌握以下几种基本的因式分解方法:
1. 提公因式法:如果多项式的各项中都有公共的因子,可以提取出来,使得原多项式变为公因子与剩余部分的乘积。

例如:ax + ay = a(x + y)
2. 分组分解法:将多项式的各项分成几组,每组提出公因子,再将提取公因子后的表达式进行合并。

例如:ax + ay + bx + by = a(x + y) + b(x + y) = (a + b)(x + y)
3. 完全平方公式法:利用完全平方公式(a + b)^2 = a^2 + 2ab + b^2和(a - b)^2 = a^2 - 2ab + b^2进行因式分解。

例如:x^2 + 6x + 9 = (x + 3)^2
4. 差平方公式法:利用差平方公式a^2 - b^2 = (a + b)(a - b)进行因式分解。

例如:x^2 - 9 = (x + 3)(x - 3)
5. 十字相乘法:适用于形如ax^2 + bx + c的三项式的因式分解,其中a、b、c是常数。

例如:x^2 + 5x + 6 = (x + 2)(x + 3)
6. 配方法:通过添加和减去同一个数,将二次项和一次项的部分转换为完全平方的形式。

例如:x^2 + 4x = x^2 + 4x + 4 - 4 = (x + 2)^2 - 4
7. 其他特殊公式:如立方和公式、立方差公式等,用于特定形式的多项式因式分解。

因式分解是初中数学中的一个重要知识点,它不仅能够帮助简化多项式的表达,还是解决方程、不等式等问题的重要工具。

浙教版七年级下数学因式分解难题

浙教版七年级下数学因式分解难题

一■分式知识要点回顾1.因式分解几中常用方法①提取公因式法。

②乘法公式法:a2-b2二a b a-b ;a2_2ab b2二a_b 2。

③分组分解法:ma mb na nb = m a b n a b j i:a b m n。

④十字相乘法:x2・a・bx・ab=x・ax・b。

2.分式的有关概念A A .C A A 十C(1 )分式的基本性质:一=——C或—= --------- (C M0),其中A , B, C均为整式。

B B *C B B + C(2)分式的约分分式的约分依据是分式的基本性质,约去分子和分母中相同因式的最低次幕,约去分子和分母系数的最大公约数。

(3)分式的通分把两个或多个因式通分,先求出各个分式分母的最简公分母,再用分式的基本性质变形,达到通分目的。

(4)分式的运算①分式乘法法则: a c•—=ac - 。

b d bd②分式除法法则: a c / d : _ adb d bc bca c a 二c③分式的加减法:(1)同分母分式相加减:;(2)异分母分式相加减:b b ba c ad bc ad 二bc———= 十 = -------------- 。

b 一d bd bd bd3.分式方程(1)定义:只含分式或分式和整式,并且分母里含有未知数的方程叫做分式方程。

(2)解分式方程。

温馨提示:(1)在方程两边都乘以最简公分母时,切勿漏项;(2)验根是必要步骤。

二•巩固练习1.解下列分式方程‘ 2 小x 1 -x 2x (2)x_2 x -5x 6 x_3 2 -x , 11 -x -3 3 - x2.因式分解2 2a -6ab 12b 9b -4a x2_ 2xy「xz yz y2x2 -7x 6 x2 4x - 523x -11x 10 2x -11x 242 2x y 「3xy 2 2y -12y-282 2 2 x 4 -16xx 2「4xy _1 4y 2o12a b x-y -4ab y-x3.分式的混合运算(a 2-5a 21) 且-b . a? -a+2b‘ a 2+4ab+4 b 2a 1 a 1a —1 a -2a 1 a亠 a 2 -42 2xr. E y _ 2y打如* x2+6xy+9y £ 时卩2x-6 ,4-4x x 2(x 3)x 2 x -6 3—x其中a=1.4. 化简求值2x 2x -8/ X -2 x 4、—2十(x 3 2x xx x 1a 2「5a 6 a 2 -5a 4 a 「3 T—2 2a —16 a -4 a 41 —x 3 (2)x^ g 厂2),其中1 x= . 25•计算2 2x -x_2x x-6X2_X_6 X2X_2的结果是6.当m为非负数时,求代数式———3有最大值还是最小值,并求出此最值。

初中数学 因式分解有什么作用

初中数学 因式分解有什么作用

初中数学因式分解有什么作用因式分解在数学中有着广泛的应用和重要的作用。

以下是因式分解的一些主要作用:1. 简化计算:因式分解可以帮助我们简化复杂的计算。

通过将一个数或者一个多项式因式分解为若干个较简单的乘积,我们可以简化计算的过程。

这在进行数值计算、求解方程和进行代数运算时非常有用。

2. 解方程:因式分解可以帮助我们解决各种类型的方程。

通过将方程中的多项式进行因式分解,我们可以将复杂的方程转化为简单的线性方程或者二次方程,从而更容易地求解方程的根。

3. 理解多项式的性质:因式分解可以帮助我们理解多项式的性质和结构。

通过将多项式进行因式分解,我们可以看到多项式的因子之间的关系,了解多项式的根和零点,进而研究多项式的图像、极值点、拐点等特性。

4. 寻找最大公因数和最小公倍数:因式分解可以帮助我们寻找数之间的最大公因数和最小公倍数。

通过将数进行因式分解,我们可以找到它们的公因子和公倍数,从而确定最大公因数和最小公倍数。

5. 理解数的性质:因式分解可以帮助我们理解数的性质。

通过将一个数因式分解为质数的乘积,我们可以了解数的因数结构,从而推导出数的性质,如奇偶性、可约分性、完全平方数等。

6. 探索数论问题:因式分解在数论中有着重要的应用。

通过因式分解,我们可以研究素数、完全数、亲和数等数论问题,探索数的性质和规律。

总结起来,因式分解在数学中具有广泛的应用和重要的作用。

它可以帮助我们简化计算、解决方程、理解多项式的性质、寻找公因数和公倍数、探索数论问题等。

因此,掌握因式分解的方法和技巧对于数学学习和问题解决都是非常重要的。

希望这个解答对您有所帮助。

如果您还有任何问题,请随时提问。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单乘单 1、计算(-3x 2y)3·(-2xy 3z)2[2(a -b)3][-3(a -b)2][-32(a -b)]3423332435⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-⋅c ab b a ab·c b a c ab 532243—=2、计算(-4x n +1y n )3[(-xy)n ]2的结果是( )A .64x 5n+3y 5n B. -64x 5n+3y 5n C .12x 5n+1y 5n D.-12x 5n+1y 5n 3、若992213yx yxyx n nm m =⋅++-,则n m 43-的值为( ) (A )3(B )4 (C )5 (D )6多乘多1、(x+5)(x-7)=2、计算()()514+-y y(3x 2-2x -5)(-2x +3)(x -1)(2x -3)(3x +1)()()()()4321----x x x x3、若()()1532-+=++kx x m x x ,则m k +的值为( )(A )3- (B )5 (C )2- (D )2完全平方公式 1、(2x-4y)2 = 2、(-3a-5b)2= 3、(m -n -3)24、(2x +3y -z)25、下列式子中一定相等的是( )A 、(a- b )2 = a 2 - b 2B 、(a+ b)2 =a 2 + b 2C 、(a - b)2 = b 2 -2ab + a 2D 、(-a - b)2 = b 2 -2ab + a26、已知2249x mxy y -+是关于,x y 的完全平方式,则m = ;7、若二项式4m 2+1加上一个单项式后是一含m 的完全平方式,则单项式为8、有个多项式,它的中间项是12xy ,它的前后两项被墨水污染了看不清,请你把前后两项补充完整,使它成为完全平方式,你有几种方法?(要求至少写出两种不同的方法). 多项式:+12xy+=( )2多项式:+12xy+=( )2完全平方公式的关系1、x 2+y 2=(x+y )2- =(x -y )2+ .2、已知若3,2a b ab +=-=,则22a b += ,()2a b -= ; 已知(a+b )2=144 (a-b)2=36, 求ab 与a 2+ b 2的值3、已知x+y=0,xy=-6,则x 3y+xy 3的值是( )A .72B .-72C .0D .6 4、若a +351=a ,则221aa +=______若,41=+x x 求 441xx + = *5、已知a 2-3a +1=0.求aa 1+、221a a +和21⎪⎭⎫ ⎝⎛-a a 的值;平方差公式1、(2x-3y)(3x-2y )= ______________2、(—a+2b)(a+2b)= ______________.3、(6x-7y)(-6x-7y) = ______________4、(2a+b+3)(2a+b -3)5、(a -2b +3)(a +2b -3)6、下列计算是否正确?为什么(5x +2y)(5x -2y)=(5x)2-(2y)2=25x 2-4y 2(-1+3a)(-1-3a)=(-1)2+(3a)2=1+9a 2(-2x -3y)(3y -2x)=(3y)2-(2x)2=9y 2-4x 27、下列算式能用平方差公式计算的是( ) A.(2a +b )(2b -a ) B.)121)(121(--+x x C.(3x -y )(-3x +y ) D.(-m -n )(-m +n )妙用公式化简22222)()()(b a b a b a ++-(x +y) ( x 2+y 2) ( x -y))(44y x +2)5241(y x -2)5241(y x +[(x -y)2+(x +y)2](x 2-y 2)(2a +1)2-(1-2a )220092)1()1()1(1x x x x x x --•••------十字相乘公式1、计算: (1) (x +2)(x +1) (2) (x +2)(x -1) (3)(x -2)(x +1) (4) (x -2)(x -1) (5)(x +2)(x +3) (6) (x +2)(x -3) (7) (x -2)(x +3) (8) (x -2)(x -3) (9)(x +a )(x +b )你通过计算发现了什么规律 2、若)3)((62++=++x m x px x ,则___________==p m3、若(x+4)(x-2)= q px x ++2,则p 、q 的值是( )A 、2,8B 、-2,-8C 、-2,8D 、2,-84、两式相乘结果为1832--a a 的是( ) (A )()()92-+a a (B )()()92+-a a (C )()()36-+a a (D )()()36+-a a 整式混合运算1、(2a +1)2-(2a +1)(-1+2a)2、(1-y)2-(1+y)(-1-y)3、(1-2x)(1-3x)-4(3x -1)24、下面是小明和小红的一段对话: 小明说:“我发现,对于代数式()()()x x x x x 1033231++-+-,当2008=x 和2009=x 时,值居然是相等的.”小红说:“不可能,对于不同的值,应该有不同的结果.”在此问题中,你认为谁说的对呢?说明你的理由.5、试说明331122(24)(42)44m n m n n n ⎛⎫⎛⎫+-+-+ ⎪⎪⎝⎭⎝⎭的值与n 无关.面积公式1、通过计算几何图形的面积可表示一些代数恒等式,右图可表示的代数恒等式是: ( )A .()2222——b ab a b a +=B .()2222b ab a b a ++=+C .()ab a b a a 2222+=+D .()()22——b a b a b a =+2、按图中所示的几种方法分割正方形,你有何发现?请将你发现的结论分别用等式表示出来.3、(1)如图1,可以求出阴影部分的面积是 (写成两数平方的差的形式); (2)如图2,若将图1的阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式);(3)比较图1、图2的阴影部分面积,可以得到乘法公式 (用式子表达).4、如图,正方形卡片A 类、B 类和长方形卡片C 类各若干张,如果要拼一个长为(a +2b)、宽为(a +b)的大长方形,则需要C 类卡片 张.5、例如,由两个边长分别a 、b 、c 为的直角三角形和一个两条直角边都是c 的直角三角形拼成一个新的图形,试用不同的方法计算这个图形的面积,你能发现什么?简便计算1982 10.5×9.52.39×91+156×2.39-2.39×4722234.0766.3468.0766.3+⨯+个个个m m m 9991999999•••+•••⨯•••()117)17)(17)(17(6842+++++()()()()12121212)12(2842+•••++++n2006200420052⨯-999910199⨯⨯222)119899(100++200220022001200120012000⨯-⨯222222100994321-+•••+-+-)1011()411)(311)(211(2222-•••---数学内应用1、解方程:()()()21212322--+=-a a a2、已知a 、b 、c 、d 为四个连续的奇数,设其中最小的奇数为d=2n-1(n 为正整数),当ac-bd=88时,求出这四个奇数。

3、一个长方形的面积为x 2-y 2,以它的长边为边长的正方形的面积为( ) A.x 2+y 2B.x 2+y 2-2xy C.x 2+y 2+2xy D.以上都不对 4、设A =(x-3)(x-7),B =(x -2)(x -8),则A ,B 的大小关系为( ) A .A >B B .A <B C .A=B D .无法确定5、若x=123456789×123456786,y=123456788×123456787,试比较x 、y 的大小试说明:6、一些小学生经常照看一位老人,这位老人非常喜欢这些孩子,每当这些孩子到他家,老人都拿出糖块招待他们,来1个孩子,就给这个孩子1块糖;来2个孩子,就给每个孩子2块糖;……(1)若第一天来了m 个女孩去看望老人,老人一共给了这些女孩多少块糖?(2)若第二天来了n 个男孩去看望老人,老人一共给了这些男孩多少块糖? (3)若第三天有(m +n )个孩子一起来看望老人,老人一共给了这些孩子多少块糖? (4)第三天得到的糖块数与前两天得到的糖块总数哪个多?多多少?为什么?求面积1、如图是长10cm ,宽6cm 的长方形,在四个角剪去4个边长为x cm 的小正方形,按折痕做一个有底无盖的长方体盒子,这个盒子的容积是( )(A )()()x x 21026--(B)()()x x x --106 (C)()()x x x 21026--(D)()()x x x --10262、古人云:凡事宜先预后立。

我们做任何事都要先想清楚,然后再动手去做,才可能避免盲目性。

一天,需要小华计算一个L 形的花坛的面积,在动手测量前小明依花坛形状画了如下示意图,并用字母表示了将要测量的边长(如图所标示),小明在列式进行面积计算时,发现还需要再测量一条边的长度,你认为他还需测哪条边的长度?请你在图中标示出来,并用字母n 表示,然后再求出它的面积。

3、用一张包装纸包一本长、宽、厚如图所示的书(单位:cm ),如果将封面和封底每一边都包进去3cm .则需长方形的包装 纸 2cm .项的来源1、若))(3(152n x x mx x ++=-+,则m = ;2、()()212-+-x mx x 的积中x 的二次项系数为零,则m 的值是: ( ) A .1 B .–1 C .–2 D .23、已知(a 2+pa +8)与(a 2-3a +q)的乘积中不含a 3和a 2项,求p 、q 的值。

4、已知()()()y x x x A 31112---+=,12-+-=xy x B ,且B A 63+的值与x 无关,求y 的值.5、求(2x 8-3x 6+4x 4-7x 3+2x -5)(3x 5-x 3+2x 2+3x -8)展开式中x 8与x 4的系数.整体思想求值1、如果,3,1-=--=+y x y x 那么=-22y x 。

2、设a-b=-2,求a2+b22 -ab的值。

3、若20a a +=,则2222009a a ++的值为 .4、已知代数式2346x x -+的值为9,则2463x x -+的值为( )A .18B .12C .9D .7 5、已知5-=+b a ,7=ab , 求b a ab b a --+22的值。

相关文档
最新文档