部编人教版七年级下册数学《多项式的因式分解》教案
因式分解数学教案优秀5篇

因式分解数学教案优秀5篇更多因式分解数学教案资料,在搜索框搜索因式分解数学教案(篇1)教学目标1.学问与技能了解因式分解的意义,以及它与整式乘法的关系.2.过程与方法经历从分解因数到分解因式的类比过程,把握因式分解的概念,感受因式分解在解决问题中的作用.3.情感、态度与价值观在探究因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养乐观的进取意识,体会数学学问的内在含义与价值.重、难点与关键:1.重点:了解因式分解的意义,感受其作用.2.难点:整式乘法与因式分解之间的关系.3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.教学方法:采用“激趣导学”的教学方法.教学过程:一、创设情境,激趣导入【问题牵引】请同学们探究下面的2个问题:问题1:720能被哪些数整除?谈谈你的想法.问题2:当a=102,b=98时,求a2-b2的值.二、丰富联想,展示思维探究:你会做下面的填空吗?1.ma+mb+mc=()();2.x2-4=()();3.x2-2xy+y2=()2.【师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.三、小组活动,共同探究【问题牵引】(1)下列各式从左到右的变形是否为因式分解:①(x+1)(x-1)=x2-1;②a2-1+b2=(a+1)(a-1)+b2;③7x-7=7(x-1).(2)在下列括号里,填上适当的项,使等式成立.①9x2(______)+y2=(3x+y)(_______);②x2-4xy+(_______)=(x-_______)2.四、随堂练习,巩固深化课本练习.【探研时空】计算:993-99能被100整除吗?五、课堂总结,发展潜能由学生自己进行小结,老师提出如下纲目:1.什么叫因式分解?2.因式分解与整式运算有何区别?六、布置作业,专题突破选用补充作业。
因式分解数学教案(篇2)【教学目标】1、了解因式分解的概念和意义;2、认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
《多项式的因式分解》教案

《多项式的因式分解》教案《《多项式的因式分解》教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!一、教学目标1.使学生进一步理解因式分解的意义;2.使学生了解平方差公式的几何意义,掌握公式的形式和特征;3.会运用平方差公式进行简单的分解因式;4.通过对比整式乘法和分解因式的关系,进一步发展学生的逆向思维能力;5.感受整式乘法和分解因式矛盾的对立统一观点;6.培养学生积极主动参与探索的意识以及观察能力.二、教学重点、难点1.理解平方差公式的意义,弄清公式的形式和特征;2.会运用平方差公式对多项式进行分解因式.三、教具、学具多媒体演示、PPT课件、三角尺.四、教学过程(一)创设情景:1.数学游戏:教师:你给出任意两个正整数,我马上就能说出它们的平方差被哪个数整除.大家都喜欢做游戏吧?有兴趣的同学和老师来做这个游戏(教师根据学生说出的数字快速写出结果,激发学生的好奇心,调动学生的学习欲望).2.分析探寻:大家想知道老师刚才说的结果对不对吗?为什么我那么快得出结果吗?我们就从这幅图开始吧.问题:1.下图阴影部分的面积是多少?(a2-b2)2.你能将该图只剪一刀拼成长方形吗?请大家以小组的形式探寻剪拼的方法,并比较剪拼前后的面积,你得出什么结果?a2-b2=(a+b)(a-b)出示课题:9.5多项式的因式分解(平方差公式法)(二)平方差公式的特征辨析:1.对比与思考:我们现在学习的乘法公式与前面学习的整式乘法中的平方差公式是什么关系呢?乘法公式(a+b)(a-b)=a2-b2(动画演示左右两边交换过程.)反过来得:a2-b2=(a+b)(a-b)由此可见:它们是互逆的过程.问题:这个公式是用字母a和b表达的,我们能不能用文字语言表达呢?请同学之间交流总结.(归纳结论:两个数的平方差,等于这两个数的和与这两个数差的积.)2.试一试:(1)问题:例如x2-52能使用平方差公式分解因式吗?其中的x相当于公式里的a,5相当于公式里的b,然后套用公式就可以了.(2)分解因式:a2-16=a2-()2=(a+)(a-)64-b2=()2-b2=(+b)(-b)(学生解答填空,确定a和b.)(3)下列多项式能否用平方差公式分解因式?说说你的理由.①a2+b2②b2-a2③a2+(-b2)④-a2-b2⑤a2-b ⑥a2-b2-c(这里的6题是根据公式的变形,是学生自主辨析公式特点的好机会,一定让学生自己讨论,只要能辨别哪些能用公式就可以了.先让学生判断,并说出为什么能用又为什么不能用的理由.最后,让学生讨论总结能用平方差公式分解的多项式的特征.)1.由两项组成;2.两项的符号相反;3.每项都能写成某个式子的平方.(三)例题教学:(1)例1:把下列多项式分解因式:①36-25x2;②16a2-9b2.分析:观察是否符合平方差公式的形式,应引导学生把36、25x2、16a2、9b2改写成62、(5x)2、(4a)2和(3b)2形式,能否准确的改写是本题的关键.解:36-25x2=62-(5x)2=(6+5x)(6-5x)16a2-9b2=(4a)2-(3b)2=(4a+3b)(4a-3b)((1)对于多项式中的两部分不明显的平方形式,应先变形为平方形式,再运用公式分解,以免出现16a2-9b2=(16a+9b)(16a-9b)的错误.(2)在此还要提醒防止出现分解后又乘开的现象,这是旧知识的“倒摄作用”所引起的现象.)设计问题:现在来揭示在这节课开始时我们做的那个数学游戏吧.你们知道老师是怎么计算得那么快了吗?(学生已经会使用平方差公式进行简单的计算了,能迅速得出正确结果,同时也和这节课的开头遥相呼应.)(2)尝试与交流:③分解因式:(a-b)2-(c-b)2;④分解因式:9(a+b)2-4(a-b)2.(在这里,尤其要重视对运用平方差公式前的多项式的观察和心算,而后是进行变形.这一点在这儿尤为重要.设计本题的目的是让学生加深理解平方差公式中的a、b不仅可以表示数字、一般单项式,也可以表示多项式,进一步渗透整体、类比的思想.)对于题④上课教师鼓励学生先讨论,再让语言组织能力强的同学到黑板前把解法讲解给大家听.(3)小结与思考:a2-b2=(a+b)(a-b)问题:公式中的a和b分别可以是什么式子呢?(公式中的a和b 可以是数字、字母、数字与字母的积、多项式等,但都能化成一个式子平方的形式.)小结:使用平方差公式分解因式的步骤(学生以小组进行讨论总结,教师跟随讨论引导).(1.审.2.找.3.转.4.套.5.验.)(四)数学活动:请同学们设计能用平方差公式分解因式的题目,请其他同学做出解答,你再给予评价.活动要求:每位同学都写一个能够用平方差公式分解因式的题目,其中两名同学点其他组的同学到黑板前解答,其余同学小组之间互相交换,按要求进行因式分解.然后出题者要当众表述出题意图并给做题的同学以评价.(本环节是这节课的灵魂环节,是对本节所学知识掌握程度的检验,所以要求教师能充分放手给学生,让学生大胆争论.同时鼓励学生把自己认为值得推荐的题目展示给大家.)(五)学以致用:如图,求圆环形绿化区的面积S.解:S=π×322-π×182=π×(322-182)=π(32+18)(32-18)=π50×14=700π(m2)答:这个绿化区的面积是700πm2.(在这里列出算式后可以让学生自己讨论怎么计算,要让学生解释他的解法,可能解释为逆运用乘法结合律,也可能解释为合并同类项,都要予以肯定,在这儿不要怕浪费时间,通过分析我们能将所学数学知识用于解决实际问题,同时也是将本节知识与提公因式法的综合运用.)(六)课堂小结:共同分享这节课的收获!运用本节课知识时有哪些注意点?(七)作业题:必做题:课本练一练第2题;习题9.5第3题.选做题:992-1是100的整倍数吗?请写出你的解答过程.(必做与选做相结合,体现作业的合理性和层次性.)(八)课外连连看:英国数学家德·摩根在青年时代,曾有人问他:“您今年多大年龄?”摩根想了想说:“今年,我的年龄和我弟弟年龄的平方差是141,你能算出我的年龄和我弟弟的年龄吗?”假设德·摩根的年龄为x岁,他弟弟的年龄为y岁,你能算出他们的年龄吗?(既培养学生学习数学的兴趣也增长了学生的数学知识.)《多项式的因式分解》教案这篇文章共7102字。
人教版因式分解教学设计(精选8篇)

人教版因式分解教学设计(精选8篇)篇一:《因式分解》教学设计教学准备教学目标知识与能力1.了解多项式公因式的意义,初步会用提公因式法分解因式;2.通过找公因式,培养观察能力.过程与方法1.了解因式分解的概念,以及因式分解与整式乘法的关系;2.了解公因式概念和提取公因式的方法;会用提取公因式法分解因式.情感态度与价值观1.在探索提公因式法分解因式的过程中学会逆向思维,渗透化归的思想方法;2.培养观察、联想能力,进一步了解换元的思想方法;教学重难点重点:能观察出多项式的公因式,并根据分配律把公因式提出来.难点:识别多项式的公因式.教学过程一、新课导入请同学们想一想?993-99能被100整除吗?解法一:993-99=970299-99=970200解法二:993-99=99(992-1)=99(99+1)(99-1)=100×99×98=970200(1)已知:x=5, a-b=3,求ax2-bx2的值.(2)已知:a=101,b=99,求a2-b2的值.你能说说算得快的原因吗?解:(1) ax2-bx2=x2(a-b)=25×3=75.(2)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400二、新知探究1、做一做:计算下列各式:①3x(x-2)=__3x2-6x②m(a+b+c)= ma+mb+mc③(m+4)(m-4)=m2-16④(x-2)2=x2-4x+4⑤a(a+1)(a-1)=a3-a根据左面的算式填空:①3x2-6x=(_3x__)(_x-2__)②ma+mb+mc=(_m_)(a+b+c_)③m2-16=(_m+4)(m-4_)④x2-4x+4=(x-2)2⑤a3-a=(a)(a+1)(a-1)左边一组的变形是什么运算?右边的变形与这种运算有什么不同?右边变形的结果有什么共同的特点?总结:把一个多项式化成了几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.整式乘法因式分解与整式乘法是互逆过程因式分解在am+bm=m(a+b)中, m叫做多项式各项的公因式.公因式:即每个单项式都含有的相同的因式.提公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成乘积的形式.这种分解因式的方法叫做提公因式法.确定公因式的方法:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取多项式各项中都含有的相同的字母;(3)相同字母的指数取各项中最小的一个,即最低次幂.三、例题分析例1把12a4b3+16a2b3c2分解因式.解:12a4b3+16a2b3c2=4a2b3·3a2+4a2b3·4c2=4a2b3(3a2+4c2)提公因式后,另一个因式:①项数应与原多项式的项数一样;②不再含有公因式.例2 把2ac(b+2c)- (b+2c)分解因式.解:2ac(b+2c) -(b+2c)= (b+2c)(2ac-1)公因式可以是数字、字母,也可以是单项式,还可以是多项式.例3把-x3+x2-x分解因式.解:原式=-(x3-x2+x)=-x(x2-x+1)多项式的第一项是系数为负数的项,一般地,应提出负系数的公因式.但应注意,这时留在括号内的每一项的符号都要改变,且最后一项“-x”提出时,应留有一项“+1”,而不能错解为-x(x2-x).四、当堂训练1.(1)9x3y3-12x2y+18xy3中各项的公因式是 3xy_.(2)5x2-25x的公因式为 5x .(3)-2ab2+4a2b3的公因式为-2ab2.(4)多项式x2-1与(x-1)2的公因式是x-1.2.如果(x+y)(x2-xy+y2)-(x+y)xy有公因式(x+y),那么另外的因式是 (x-y)2课后小结1.分解因式把一个多项式分解成几个整式的积的形式,叫做分解因式,分解因式和整式乘法互为逆运算.2.确定公因式的方法一看系数二看字母三看指数3.提公因式法分解因式步骤(分两步)第一步找出公因式;第二步提公因式.4.用提公因式法分解因式应注意的问题(1)公因式要提尽;(2)其中一项全部提出时,这一项除以公因式时的商是1,这个1不能漏掉;(3)多项式的首项取正号.板书一、因式分解把一个多项式化成了几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.二、提公因式法如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成乘积的形式.这种分解因式的方法叫做提公因式法.am+bm=m(a+b)二、例题分析例1、例2、例3、三、当堂训练篇二:《因式分解》教学设计一、内容和内容解析1.内容用因式分解法解一元二次方程.2.内容解析教材通过实际问题得到方程,让学生思考解决方程的方法除了之前所学习过的配方法和公式法以外,是否还有更简单的方法解方程,接着思考为什么用这种方法可以求出方程的解,从而引出本节课的教学内容.解一元二次方程的基本策略是降次,因式分解法将一个一元二次方程转化为两个一次式的.乘积为零,是解一些一元二次方程较为简便灵活的一种特殊方法.体现了降次的思想,这种思想在以后处理高次方程时也很重要.基于以上分析,确定出本节课的教学重点:会用因式分解法解特殊的一元二次方程.二、目标和目标解析1.教学目标(1)了解用因式分解法解一元二次方程的概念;会用因式分解法解一元二次方程;(2)学会观察方程特征,选用适当方法解决一元二次方程.2.目标解析(1)学生能理解因式分解法的概念,掌握因式分解法解一元二次方程的一般步骤,会利用因式分解求解特殊的一元二次方程;(2)学生通过对比一元二次方程的结构类型,选用适当的方法合理的解方程,增强解决问题的灵活性.三、教学问题诊断分析学生在此之前已经学过了用配方法和公式法求一元二次方程的解,然后通过实际问题,获得一个显然可以用“提取公因式法”而达到“降次”目的的方程,从而引出因式分解法解一元二次方程,体现了从简单的、特殊的问题出发,通过逐步推广而获得复杂的、一般的问题,符合学生的认知规律.在实际的教学中,学生在利用因式分解法解方程式往往会在因式分解上存在着一定的困难,从而不能将方程化成两个一次式乘积的形式.另外在面对一元二次方程时,缺乏对方程结构的观察,从而在方法的选择上欠佳,缺乏解决问题的灵活性,增加了计算的难度,降低了计算的准确性.为了突破这一难点,应带领学生认真观察方程的结构,对比方法的难易简便,从而选择合理的方法解决一元二次方程.本节课的难点:学会观察方程特征,选用适当方法解决一元二次方程.四、教学过程设计1.创设情景,引出问题问题一根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么物体经过xs离地面的高度(单位:m)为.根据上述规律,物体经过多少秒落回地面(结果保留小数点后两位)?师生活动:学生积极思考并尝试列方程,可有学生解释如何理解“落回地面”.【设计意图】学生首先要理解实际问题背景下代数式的意义,理解落回地面的意义就是高度为零,就是表示高度的代数式的值为零,从而列出方程.在阅读并尝试回答的过程中让他们感受在生活、生产中需要用到方程,从而激发学生的求知欲.2.观察感知,理解方法问题二如何求出方程的解呢?师生活动:学生从已有的知识出发,考虑用配方法和公式法解决问题,教师再一步引导学生观察方程的结构,学生进行深入的思考,努力发现因式分解法方法解方程.【设计意图】通过配方法和公式法的选择,更好地让学生对比感受因式分解法的简便,为本节课的教学内容做好知识上的铺垫和准备.问题三如果,则有什么结论?对于你解方程有什么启发吗?师生活动:学生很容易回答有或的结论.由此进一步思考如何将一元二次方程化为两个一次式的乘积.【设计意图】通过观察,引导学生进一步思考,发现用因式分解中提取公因式法解方程更加简便,从而学生会对方法的选择有一定的理解.问题四上述方法是是如何将一元二次方程降为一次的?师生活动:学生通过对解决问题过程的反思,体会到通过提取公因式将一元二次方程化为了两个一次式的乘积的形式,得到两个一元一次方程,教师注重引导学生观察方程在因式分解过程中的变化,在学生总结发言的过程中适当引导.【设计意图】让学生对比不同解法,不是用开平方降次,而是先因式分解,使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种节一元二次方程的方法叫做因式分解法.在反思小结的过程中,理解因式分解法的意义,从而引出本节课的教学内容.3.例题示范,灵活运用例解下列方程师生活动:提问:(1)如何求出方程(1)的解呢?说说你的方法.(2)对比解法,说说各种解法的特点.学生积极思考,积极回答问题,对比解法的不同.【设计意图】问题(1)的提出是开放式的,学生可能会回答将括号打开,然后利用配方法或公式法,也有些学生会观察到如果将当作一个整体,利用提取公因式的方法直接就化为两个一次式乘积为零的形式.通过问题(2)的思考讨论,让学生体会解法的利弊,注重观察方程自身的结构.师生活动:提问:(1)方程(2)与方程(1)对比,在结构上有什么不同?(2)谈谈方程(2)的解法.学生观察方程(2)与方程(1)的区别,用类比划归的思想解决问题.【设计意图】问题(2)的方程需要先进行移项,将方程化为右侧等于零的结构,然后得到一个平方差的结构,利用平方差公式将一元二次方程化为两个一次式的乘积为零的结构.4.巩固练习,学以致用完成教材P14练习1,2.【设计意图】巩固性练习,同时检验一元二次方程解法掌握情况.5.小结提升,深化理解问题五(1)因式分解法的一般步骤是什么?解下列方程1.【设计意图】利用提取公因式法解方程.2.【设计意图】利用平方差公式解方程.3.【设计意图】利用因式分解法不适合的方程可选择用公式法或配方法解决.4.【设计意图】选用适当的方法解方程.篇三:《因式分解》教学设计教学目标认知目标:(1)理解因式分解的概念和意义(2)认识因式分解与整式乘法的相互关系,相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
因式分解教案5篇

式分解教案5篇因式分解教案篇一教学目标:1.知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力。
2.过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法。
3.情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想。
教学重、难点:用提公因式法和公式法分解因式。
教具准备:多媒体课件(小黑板)教学方法:活动探究法教学过程:引入:在整式的变形中,有时需要将一个多项式写成几个整式的乘积的形式,这种变形就是因式分解。
什么叫因式分解?知识详解知识点1因式分解的定义把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
(1)因式分解与整式乘法是相反方向的变形。
例如:(2)因式分解是恒等变形,因此可以用整式乘法来检验。
怎样把一个多项式分解因式?知识点2提公因式法多项式ma+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式。
ma+mb+mc二m(a+b+c)就是把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法。
例如:x2-x=x(x-l),8a2b-4ab+2a=2a(4ab-2b+1)。
探究交流下列变形是否是因式分解?为什么?(1)3x2y-xy+y=y(3x2-x);(2)x2-2x+3=(x-1)2+2;(3)x2y2+2xy-1=(xy+1)(xy-1);(4)xn(x2-x+1)=xn+2-xn+1+xn.典例剖析师生互动例1用提公因式法将下列各式因式分解。
(1)-x3z+x4y;(2)3x(a-b)+2y(b-a);分析:(1)题直接提取公因式分解即可,(2)题首先要适当的变形,再把b-a 化成-(a-b),然后再提取公因式。
初中数学因式分解教案

初中数学因式分解教案一、教学目标:1. 知识与技能:学生能够理解因式分解的概念,掌握提公因式法、公式法等基本的因式分解方法,并能够运用这些方法解决实际问题。
2. 过程与方法:通过观察、分析、归纳等数学活动,培养学生的逻辑思维能力和数学表达能力,提高学生解决数学问题的能力。
3. 情感态度价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学的价值和魅力。
二、教学重难点:1. 教学重点:掌握因式分解的基本方法,能够运用提公因式法、公式法等进行因式分解。
2. 教学难点:如何正确找出多项式各项的公因式,以及如何确定提公因式后的另外一个因式。
三、教学过程:1. 引入新课:通过复习多项式乘法,引导学生思考:如何将一个多项式化为几个整式的积的形式?从而引出因式分解的概念。
2. 探索新知:(1) 提公因式法:引导学生观察两个多项式的乘积,找出它们之间的公因式,并将公因式提出来。
例如,分解因式:x^2 - 4x + 4,我们可以先提出公因式x,得到x(x - 4),然后再利用平方差公式进行进一步分解。
(2) 公式法:引导学生掌握平方差公式和完全平方公式,并能够运用这两个公式进行因式分解。
例如,分解因式:x^2 - 9,我们可以利用平方差公式a^2 - b^2 = (a + b)(a - b)进行分解,得到(x + 3)(x - 3)。
3. 巩固练习:提供一些练习题,让学生运用所学的因式分解方法进行解答,巩固所学知识。
4. 课堂小结:总结本节课所学的因式分解方法,强调提公因式法和公式法在因式分解中的应用,以及正确找出多项式各项的公因式和确定提公因式后的另外一个因式的方法。
四、课后作业:1. 完成教材后的相关练习题。
2. 总结因式分解的方法和技巧,写一篇关于因式分解的心得体会。
通过以上教学设计,希望能够帮助学生掌握因式分解的基本方法,提高学生解决数学问题的能力,激发学生学习数学的兴趣。
多项式的因式分解教案

C. m²-2mn+n²=(m+n)2
D. 4x²-y²=(4x+y)(4x-y)
【答案】A
(六)阅读材料,了解因式分解的意义
1、 为将来学习分式的约分化简打下基础
课件展示:类比分数的约分,进行分式的约分过程
2、 类似于用乘法分配律的简便运算,我们可以用简便方法求出某些代数式的值。
3.1 多项式的因式分解教案
课题
多项式的因式分解
课型
新授课
教学目标
1. 理解因式分解的概念,了解因式分解的意义。
2. 知道因式分解与整式乘法的联系和区别。
3. 会用多项式的乘法检验因式分解是否正确。
4. 体验类比思想在数学学习中的应用价值。
教学重点
1.理解因式分解的概念。
2.会用多项式的乘法检验因式分解是否正确。
三、课堂练习,固基提能
(一)巩固练习
1、 三个数4,6,14的最大公因数是.
【答案】2
【思路】先将每个数分解质因数,再找出这些数的公共的因数,求得的积就是最大公因数.
2、 36,60的最大公因数是.
【答案】12
3、下列等式从左到右的变形是因式分解的是()
A. x(x-4y)=x²-4xy
B. a²-2a-1=a(a-2)-1
(2)不是。因为(m+3)(m-2)+2不是几个多项式的积。3、阅读第34页“阅读材料”
(四)教学例2
例2检验下列因式分解是否正确。
(1)x²+xy=x(x+y);
(2)a²-5a+6=(a-3)(a-2);
(3)4m²-n²=(2m-n)(2m+n)
因式分解教案模板(10篇)

因式分解教案模板(10篇)因式分解教案 1教学目标:1、进一步巩固因式分解的概念;2、巩固因式分解常用的三种方法3、选择恰当的方法进行因式分解4、应用因式分解来解决一些实际问题5、体验应用知识解决问题的乐趣教学重点:灵活运用因式分解解决问题教学难点:灵活运用恰当的因式分解的方法,拓展练习2、3教学过程:一、创设情景:若a=101,b=99,求a2-b2的值利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。
二、知识回顾1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式.判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)(1)._2-4y2=(_+2y)(_-2y)因式分解(2).2_(_-3y)=2_2-6_y整式乘法(3).(5a-1)2=25a2-10a+1整式乘法(4)._2+4_+4=(_+2)2因式分解(5).(a-3)(a+3)=a2-9整式乘法(6).m2-4=(m+4)(m-4)因式分解(7).2πR+2πr=2π(R+r)因式分解2、规律总结(教师讲解):分解因式与整式乘法是互逆过程.分解因式要注意以下几点:(1).分解的对象必须是多项式.(2).分解的结果一定是几个整式的乘积的形式.(3).要分解到不能分解为止.3、因式分解的方法提取公因式法:-6_2+6_y+3_=-3_(2_-2y-1)公因式的概念;公因式的求法公式法:平方差公式:a2-b2=(a+b)(a-b)完全平方公式:a2+2ab+b2=(a+b)24、强化训练教学引入师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。
现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
动画演示:场景一:正方形折叠演示师:这就是我们得到的正方形。
下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。
9.5《多项式的因式分解》教案

《多项式的因式分解》教案教学目标1、使学生能明确因式分解与整式乘法之间的关系,让学生在探索中进行新知识的比较,理解因式分解的过程,发现因式分解的基本方法;2、使学生明白可以将因式分解的结果现乘出来就能检验因式分解的正确性.3、激发学生的兴趣,让学生体会到数学的应用价值.重点难点重点掌握提公因式法,公式法进行因式分解;难点怎么样进行多项式的因式分解,如何能将多项式分解彻底;关键:灵活应用因式分解的常用方法,对于每个多项式分解因式分解彻底. 教学设计一、知识回顾:运用前两节课的知识填空:1、()m a b c ++= ;2、()()a b a b +-= ;3、2()a b += .二、探索问题:请完成以下填空:1、()()ma mb mc ++= 2、22()()a b -= 3、2222()a ab b ++= 通过学生的动手,发现:运用多项式乘法的逆思维来探索出因式分解的新知识,“探索”与“回忆”正好相反,它是把一个多项式化成几个整式的乘积的形式,这就是因式分解.(1)中的多项式ma mb mc ++中的每一项都含有相同因式m ,称m 为公因式,把公因式提出来,多项式ma mb mc ++就可以分解成两个因式m 与a b c ++的积了,这种因式分解的方法,叫做提公因式法;(2)、(3),是利用乘法公式对多项式进行因式分解,这种因式分解的方法称之为公式法.师:由a (a +1)(a -1)得到a 3-a 的变形是什么运算?由a 3-a 得到a (a +1)(a -1)的变形与这种运算有什么不同?你还能举一些类似的例子加以说明吗?[生]由a(a+1)(a-1)得到a3-a的变形是整式乘法如:m(a+b+c)=ma+mb+mc(1)ma+mb+mc=m(a+b+c) (2)联系:等式(1)和(2)是同一个多项式的两种不同表现形式.区别:等式(1)是把几个整式的积化成一个多项式的形式,是乘法运算.等式(2)是把一个多项式化成几个整式的积的形式,是因式分解.即ma+mb+mc=m(a+b+c).所以,因式分解与整式乘法是相反方向的变形.练习下列各式从左到右的变形,哪些是因式分解?(1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);(3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2.[生](1)左边是整式乘积的形式,右边是一个多项式,因此从左到右是整式乘法,而不是因式分解;(2)左边是一个多项式,右边是几个整式的积的形式,因此从左到右的变形是因式分解;(3)和(2)相同,是因式分解;(4)是因式分解.[师]大家认可吗?[生]第(4)题不对,因为虽然x2-3x=x(x-3),但是等号右边x(x-3)+2整体来说它还是一个多项式的形式,而不是乘积的形式,所以(4)的变形不是因式分解.[师]大家会计算(a+b)(a-b)吗?[生]会.(a+b)(a-b)=a2-b2.[师]对,这是大家学过的平方差公式,我们是在整式乘法中学习的.从式子(a+b)(a-b)=a2-b2中看,由等号左边可以推出等号右边,那么从等号右边能否推出等号左边呢?即a2-b2=(a+b)(a-b)是否成立呢?[生]能从等号右边推出等号左边,因为多项式a2-b2与(a+b)(a-b)既然相等,那么两个式子交换一下位置还成立.[师]很好,a2-b2=(a+b)(a-b)是成立的,那么如何去推导呢?这就是我们即将学习的内容:因式分解的问题.明确目标,互助探究:1、讨论993-99能被100整除吗?你是怎样想的?与同伴交流.[生]993-99能被100整除.因为993-99=99×992-99=99×(992-1)=99×9800=99×98×100其中有一个因数为100,所以993-99能被100整除.[师]993-99还能被哪些正整数整除?[生]还能被99,98,980,990,9702等整除.[师]从上面的推导过程看,等号左边是一个数,而等号右边是变成了几个数的积的形式.2、议一议你能尝试把a3-a化成n个整式的乘积的形式吗?与同伴交流.[师]大家可以观察a3-a与993-99这两个代数式.[生]a3-a=a(a2-1)=a(a-1)(a+1)3、做一做(1)计算下列各式:①(m+4)(m-4)=__________;②(y-3)2=__________;③3x(x-1)=__________;④m(a+b+c)=__________;⑤a(a+1)(a-1)=__________.[生]解:①(m+4)(m-4)=m2-16;②(y-3)2=y2-6y+9;③3x(x-1)=3x2-3x;④m(a+b+c)=ma+mb+mc;⑤a(a+1)(a-1)=a(a2-1)=a3-a.(2)根据上面的算式填空:①3x2-3x=( )( );②m2-16=( )( );③ma+mb+mc=( )( );④y2-6y+9=( )2.⑤a3-a=( )( ).[生]把等号左右两边的式子调换一下即可.即:①3x2-3x=3x(x-1);②m2-16=(m+4)(m-4);③ma+mb+mc=m(a+b+c);④y2-6y+9=(y-3)2;⑤a3-a=a(a2-1)=a(a+1)(a-1).[师]能分析一下两个题中的形式变换吗?[生]在(1)中,等号左边都是乘积的形式,等号右边都是多项式;在(2)中正好相反,等号左边是多项式的形式,等号右边是整式乘积的形式.[师]在(1)中我们知道从左边推右边是整式乘法;在(2)中由多项式推出整式乘积的形式是因式分解.把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解(factorization).总结归纳,课堂反馈本节课学习了因式分解的意义,即把一个多项式化成几个整式的积的形式;还学习了整式乘法与因式分解的关系是相反方向的变形.布置作业:课后习题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1 多项式的因式分解
1.理解因式分解的概念;(重点)
2.会判断一个变形是否是因式分解.(难点)
一、情境导入
学校有一个长方形植物园,面积为a2-b2,如果长为a+b,那么宽是多少?
二、合作探究
探究点一:因式分解定义的理解
下列从左到右的变形中是因式分解的有()
①x2-y2-1=(x+y)(x-y)-1;②x3+x=x(x2+1);③(x-y)2=x2-2xy+y2;④x2-9y2=(x+3y)(x-3y).
A.1个B.2个C.3个D.4个
解析:①没把一个多项式转化成几个整式积的形式,故①不是因式分解;③是整式的乘法,故③不是因式分解;②④是因式分解;故选B.
方法总结:因式分解与整式的乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.因式分解是两个或几个因式积的表现形式,整式乘法是多项式的表现形式.
探究点二:因式分解与整式乘法的关系
【类型一】检验因式分解是否正确
检验下列因式分解是否正确.
(1)x3+x2=x2(x+1);
(2)a2-2a-3=(a-1)(a-3);
(3)9a2-12ab+4b2=(3a-2b)2.
解析:分别计算等式右边的几个多项式的乘积,再与左边的多项式相比较看是否相等.
解:(1)因为x2(x+1)=x3+x2,所以因式分解x3+x2=x2(x+1)正确;
(2)因为(a-1)(a-3)=a2-4a+3≠a2-2a-3,所以因式分解不正确;
(3)因为(3a-2b)2=9a2-12ab+4b2,所以因式分解9a2-12ab+4b2=(3a-2b)2正确.
方法总结:检验因式分解是否正确,只要看等式右边的几个多项式的乘积与等式左边的多项式是否相等.
变式【类型二】 求字母的值
已知三次四项式2x 3-5x 2-6x +k 分解因式后有一个因式是x -3,试求k 的值及另一个因式.
解析:此题可设此三次四项式的另一个因式为(2x 2-mx -k 3
),将两因式的乘积展开与原三次四项式比较就可求出k 的值.
解:设另一个因式为2x 2-mx -k 3,∴(x -3)(2x 2-mx -k 3)=2x 3-5x 2-6x +k ,2x 3-mx 2-k 3
x -6x 2+3mx +k =2x 3-5x 2-6x +k ,2x 3-(m +6)x 2-(k 3-3m )x +k =2x 3-5x 2-6x +k ,∴m +6=5,k 3
-3m =6,解得m =-1,k =9,∴另一个因式为2x 2+x -3.
方法总结:因为整式的乘法和分解因式互为逆运算,所以分解因式后的两个因式的乘积一定等于原来的多项式.
三、板书设计
多项式的因式分解⎩⎪⎨⎪⎧因式的概念因式分解的概念因式分解与整式乘法的关系
本节课从生活中的实例出发,引导出因式分解这一课题,让学生认识到因式分解与整式乘法是互逆的变形,因此可以利用整式乘法来检验因式分解是否正确.本节课重在通过因式分解概念的学习,激发学生的学习兴趣,为本章后继学习奠定坚实的基础。