九年级数学 二次函数单元测试卷(含答案解析)

九年级数学 二次函数单元测试卷(含答案解析)
九年级数学 二次函数单元测试卷(含答案解析)

九年级数学二次函数单元测试卷(含答案解析)一、初三数学二次函数易错题压轴题(难)

1.图①,二次函数y=ax2+bx+c(a≠0)的图象经过点A(﹣1,0),并且与直线y=1 2 x

﹣2相交于坐标轴上的B、C两点,动点P在直线BC下方的二次函数的图象上.

(1)求此二次函数的表达式;

(2)如图①,连接PC,PB,设△PCB的面积为S,求S的最大值;

(3)如图②,抛物线上是否存在点Q,使得∠ABQ=2∠ABC?若存在,则求出直线BQ的解析式及Q点坐标;若不存在,请说明理由.

【答案】(1)y=1

2

x2﹣

3

2

x﹣2;(2)﹣1<0,故S有最大值,当x=2时,S的最大值

为4;(3)Q的坐标为(5

3

,﹣

28

9

)或(﹣

11

3

92

9

).

【解析】

【分析】

(1)根据题意先求出点B、C的坐标,进而利用待定系数法即可求解;

(2)由题意过点P作PH//y轴交BC于点H,并设点P(x,1

2

x2﹣

3

2

x﹣2),进而根据S

=S△PHB+S△PHC=1

2

PH?(x B﹣x C),进行计算即可求解;

(3)根据题意分点Q在BC下方、点Q在BC上方两种情况,利用解直角三角形的方法,求出点H的坐标,进而分析求解.

【详解】

解:(1)对于直线y=1

2

x﹣2,

令x=0,则y=﹣2,

令y=0,即1

2

x﹣2=0,解得:x=4,

故点B、C的坐标分别为(4,0)、(0,﹣2),抛物线过点A、B两点,则y=a(x+1)(x﹣4),

将点C的坐标代入上式并解得:a=1

2

故抛物线的表达式为y=

1

2

x2

3

2

x﹣2①;

(2)如图2,过点P作PH//y轴交BC于点H,

设点P(x,

1

2

x2﹣

3

2

x﹣2),则点H(x,

1

2

x﹣2),

S=S△PHB+S△PHC=

1

2

PH?(x B﹣x C)=

1

2

×4×(

1

2

x﹣2﹣

1

2

x2+

3

2

x+2)=﹣x2+4x,

∵﹣1<0,故S有最大值,当x=2时,S的最大值为4;

(3)①当点Q在BC下方时,如图2,

延长BQ交y轴于点H,过点Q作QC⊥BC交x轴于点R,过点Q作QK⊥x轴于点K,∵∠ABQ=2∠ABC,则BC是∠ABH的角平分线,则△RQB为等腰三角形,

则点C是RQ的中点,

在△BOC中,tan∠OBC=

OC

OB

1

2

=tan∠ROC=

RC

BC

则设RC=x=QB,则BC=2x,则RB22

(2)

x x

5=BQ,

在△QRB中,S△RQB=

1

2

×QR?BC=

1

2

BR?QK,即

1

2

2x?2x=

1

2

5,

解得:KQ

5

∴sin∠RBQ=

KQ

BQ

5

5x

4

5

,则tanRBH=

4

3

在Rt △OBH 中,OH =OB?tan ∠RBH =4×

43=163,则点H (0,﹣16

3

), 由点B 、H 的坐标得,直线BH 的表达式为y =4

3

(x ﹣4)②, 联立①②并解得:x =4(舍去)或53

, 当x =

53时,y =﹣289,故点Q (53,﹣289); ②当点Q 在BC 上方时,

同理可得:点Q 的坐标为(﹣113,929

); 综上,点Q 的坐标为(53,﹣289)或(﹣113,929

). 【点睛】

本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质、解直角三角形、面积的计算等,注意分类讨论思维的应用,避免遗漏.

2.如图,抛物线()2

50y ax bx a =+-≠经过x 轴上的点1,0A 和点B 及y 轴上的点

C ,经过B C 、两点的直线为y x n =+.

(1)求抛物线的解析式.

(2)点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t 为何值时,PBE △的面积最大并求出最大值. (3)过点A 作AM BC ⊥于点M ,过抛物线上一动点N (不与点B C 、重合)作直线

AM 的平行线交直线BC 于点Q .若点A M N Q 、、、为顶点的四边形是平行四边形,求

点N 的横坐标.

【答案】(1)2

65y x x =-+- (2)2t =

;(3

52或4

或52

【解析】 【分析】

(1)先确定A 、B 、C 三点的坐标,然后用待定系数法解答即可;

(2)先求出AB 、BC 的长并说明△BOC 是等腰直角三角形,再求出点P 到BC 的高d

)454d BP sin t =??=

-,则12PBE

S

BE d =?

?

)()12442t t t =?-=-,再根据二次函数的性质即可确定最大值;

(3

)先求出4542

AM AB sin =??=?

=N 作直线AM 的平行线交直线BC 于点,Q 则,再说明四边形AMNQ

是平行四边形,得到NQ AM ==;再过点

N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H 结合题意说明NQH 为等腰直角三角

形,求得4NH =

==;设()

2

,65N m m m -+-,则(),0G m ,

(),5H m m -,最后分点N 在x 轴上方时、点N 在x 轴下方且5m >时和1m <三种情况

解答即可. 【详解】

解:()1因为直线y x n =+经过B C 、两点,且点B 在x 轴上,点C 在y 轴上, ∵()(),,00,B n C n -

∴抛物线2

5y ax bx =+-经过点1,0A ,点(),0B n -,点()0,C n ,

∴250505a b an bn n +-=??--=??-=?,解得51,6n a b =-??

=-??=?

所以抛物线的解析式为2

65y x x =-+-.

()2∵()()()1,05,0,0,,5,A B C -

∴4,AB BC BOC ==为等腰直角三角形, ∴45,ABC ∠=

由题意得4,2,02BP t BE t t =-=<≤点P 到BE

的距离)454d BP sin t =??=

-

所以1

2

PBE

S

BE d =??

)()1244222

t t t t =??-=-;

∵二次函数()()42

f t t =-的函数图象开口向下,零点为0和4, ∴04

22

t +=

=时,

∴()()()22422

max f t f ==??-=即2t =时,PBE △的面积最大,且最大值

()

3由题意得454AM AB sin =??== 过点N 作直线AM 的平行线交直线BC 于点,Q 则,NQ BC ⊥ ∵点,A M N Q 、、为顶点的四边形是平行四边形,

∴NQ AM ==

过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H ∵:5BC l y x =-,

∴NQH 为等腰直角三角形,

∴4,NH =

==

设()

2

,65N m m m -+-, 则(),0G m ,(),5H m m -,

①点N 在x 轴上方时,此时()()2

655,NH m m m =-+---

∴()

()2

6554m m m -+---=,即()()140,m m --=

解得1m =(舍,因为此时点N 与点A 重合)或4m =;

②点N 在x 轴下方且5m >时,此时()()2

565,NH m m m =---+- ∴()(

)

2

5654m m m ---+-=,即2

540,m m --=

解得5m =

<(舍)或m =

③点N 在x 轴下方且1m <时,此时()()

2

565,NH m m m =---+-

∴()(

)

2

5654m m m ---+-=,即2

540,m m --=解得52m =

或52

m +=(舍)

综上所述,5414,2m m +==

,541

2

m -=符合题意, 即若点,A M N Q 、、为顶点的四边形是平行四边形, 点N 的横坐标为

5412-或4或5412

+.

【点睛】

本题主要考查了二次函数的性质、平行四边形的判定与性质,掌握二次函数的性质以及分类讨论思想是解答本题的关键

3.如图,直线l :y =﹣3x +3与x 轴,y 轴分别相交于A 、B 两点,抛物线y =﹣x 2+2x +b 经过点B .

(1)该抛物线的函数解析式;

(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值; (3)在(2)的条件下,当S 取得最大值时,动点M 相应的位置记为点M '. ①写出点M '的坐标;

②将直线l 绕点A 按顺时针方向旋转得到直线l ',当直线l ′与直线AM '重合时停止旋转,在旋转过程中,直线l '与线段BM '交于点C ,设点B ,M '到直线l '的距离分别为d 1,d 2,当d 1+d 2最大时,求直线l '旋转的角度(即∠BAC 的度数).

【答案】(1)2y x 2x 3=-++;(2)2

1525228

S m ??=--+ ??? ,258;(3)

①57,24M ??

'

???

;②45° 【解析】 【分析】

(1)利用直线l 的解析式求出B 点坐标,再把B 点坐标代入二次函数解析式即可求出b 的值.

(2)设M 的坐标为(m ,﹣m 2+2m +3),然后根据面积关系将△ABM 的面积进行转化.

(3)①由(2)可知m =5

2

,代入二次函数解析式即可求出纵坐标的值. ②可将求d 1+d 2最大值转化为求AC 的最小值. 【详解】

(1)令x =0代入y =﹣3x+3, ∴y =3, ∴B (0,3),

把B (0,3)代入y =﹣x 2+2x+b 并解得:b =3, ∴二次函数解析式为:y =﹣x 2+2x+3. (2)令y =0代入y =﹣x 2+2x+3,

∴0=﹣x 2+2x+3, ∴x =﹣1或3,

∴抛物线与x 轴的交点横坐标为-1和3,

∵M在抛物线上,且在第一象限内,

∴0<m<3,

令y=0代入y=﹣3x+3,

∴x=1,

∴A的坐标为(1,0),

由题意知:M的坐标为(m,﹣m2+2m+3),∴S=S四边形OAMB﹣S△AOB=S△OBM+S△OAM﹣S△AOB

=1

2

×m×3+

1

2

×1×(-m2+2m+3)-

1

2

×1×3

=﹣1

2

(m﹣

5

2

)2+

25

8

∴当m=5

2

时,S取得最大值

25

8

(3)①由(2)可知:M′的坐标为(5

2

7

4

).

②设直线l′为直线l旋转任意角度的一条线段,过点M′作直线l1∥l′,过点B作BF⊥l1于点F,

根据题意知:d1+d2=BF,

此时只要求出BF的最大值即可,

∵∠BFM′=90 ,

∴点F在以BM′为直径的圆上,

设直线AM′与该圆相交于点H,

∵点C在线段BM′上,

∴F在优弧'

BM H上,

∴当F与M′重合时,

BF可取得最大值,

此时BM′⊥l1,

∵A(1,0),B(0,3),M′(5

2

7

4

),

∴由勾股定理可求得:AB =10,M′B =55

,M′A =854

, 过点M′作M′G ⊥AB 于点G , 设BG =x ,

∴由勾股定理可得:M′B 2﹣BG 2=M′A 2﹣AG 2, ∴

8516

﹣(10﹣x )2=125

16﹣x 2,

∴x =

510

, cos ∠M′BG =

'BG BM =2

2

,∠M′BG= 45? 此时图像如下所示,

∵l 1∥l′,F 与M′重合,BF ⊥l 1 ∴∠B M′P=∠BCA =90?, 又∵∠M′BG=∠CBA= 45? ∴∠BAC =45?. 【点睛】

本题主要考查了一次函数与二次函数的综合以及一次函数旋转求角度问题,正确掌握一次函数与二次函数性质及综合问题的解法是解题的关键.

4.如图,过原点的抛物线y=﹣

12

x 2

+bx+c 与x 轴交于点A (4,0),B 为抛物线的顶点,连接OB ,点P 是线段OA 上的一个动点,过点P 作PC ⊥OB ,垂足为点C . (1)求抛物线的解析式,并确定顶点B 的坐标;

(2)设点P 的横坐标为m ,将△POC 绕着点P 按顺利针方向旋转90°,得△PO′C′,当点O′和点C′分别落在抛物线上时,求相应的m 的值;

(3)当(2)中的点C′落在抛物线上时,将抛物线向左或向右平移n (0<n <2)个单位,

点B 、C′平移后对应的点分别记为B′、C″,是否存在n ,使得四边形OB′C″A 的周长最短?若存在,请直接写出n 的值和抛物线平移的方向,若不存在,请说明理由.

【答案】(1)2122

y x x =-

+,点B (2,2);(2)m=2或209m =;(3)存在;n=

27时,抛物线向左平移. 【解析】 【分析】

(1)将点A 和点O 的坐标代入解析式,利用待定系数法即可求得二次函数的解析式,然后利用配方法可求得点B 的坐标;

(2)由点A 、点B 、点C 的坐标以及旋转的性质可知△△PDC 为等腰直角三角形,从而可得到点O′坐标为:(m ,m ),点C′坐标为:(32m ,2

m

),然后根据点在抛物线上,列出关于m 的方程,从而可解得m 的值;

(3)如图,将AC′沿C′B 平移,使得C′与B 重合,点A 落在A′处,以过点B 的直线y=2为对称轴,作A′的对称点A″,连接OA″,由线段的性质可知当B′为OA″与直线y=2的交点时,四边形OB′C″A 的周长最短,先求得点B′的坐标,根据点B 移动的方向和距离从而可得出点抛物线移动的方向和距离. 【详解】

解:(1)把原点O (0,0),和点A (4,0)代入y=12

-

x 2

+bx+c . 得040c b b c =?

?-++=?,

∴02c b =??=?

∴2211

2(2)222

y x x x =-

+=--+. ∴点B 的坐标为(2,2).

(2)∵点B 坐标为(2,2). ∴∠BOA=45°.

∴△PDC 为等腰直角三角形. 如图,过C′作C′D ⊥O′P 于D .

∵O′P=OP=m . ∴C′D=

12O′P=1

2

m . ∴点O′坐标为:(m ,m ),点C′坐标为:(3

2m ,2

m ).

当点O′在y=12

-x 2

+2x 上. 则?

12

m 2

+2m =m . 解得:12m =,20m =(舍去). ∴m=2. 当点C′在y=12

-x 2

+2x 上, 则12-

×(32

m )2+2×3

2m =12m ,

解得:120

9

m =,20m =(舍去). ∴m=

209

(3)存在n=2

7

,抛物线向左平移.

当m=

209时,点C′的坐标为(103

,10

9).

如图,将AC′沿C′B 平移,使得C′与B 重合,点A 落在A′处.

以过点B 的直线y=2为对称轴,作A′的对称点A″,连接OA″. 当B′为OA″与直线y=2的交点时,四边形OB′C″A 的周长最短.

∵BA′∥AC′,且BA′=AC′,点A (4,0),点C′(103

,10

9),点B (2,2). ∴点A′(

83,8

9

). ∴点A″的坐标为(

83,289

). 设直线OA″的解析式为y=kx ,将点A″代入得:8

283

9

k =, 解得:k=

76

. ∴直线OA″的解析式为y=76

x . 将y=2代入得:7

6

x=2, 解得:x=

127

, ∴点B′得坐标为(12

7

,2). ∴n=212277

-

=. ∴存在n=2

7

,抛物线向左平移.

【点睛】

本题主要考查的是二次函数、旋转的性质、平移的性质、路径最短等知识点,由旋转的性质和平移的性质求得点点O′坐标为:(m ,m ),点C′坐标为:(32m ,2

m

)以及点B′的坐标是解题的关键.

5.二次函数22(0)63

m m

y x x m m =-+>的图象交y 轴于点A ,顶点为P ,直线PA 与x 轴交于点B .

(1)当m =1时,求顶点P 的坐标; (2)若点Q (a ,b )在二次函数22(0)63

m m

y x x m m =-+>的图象上,且0b m ->,试求a 的取值范围;

(3)在第一象限内,以AB 为边作正方形ABCD . ①求点D 的坐标(用含m 的代数式表示);

②若该二次函数的图象与正方形ABCD 的边CD 有公共点,请直接写出符合条件的整数m 的值.

【答案】(1)P (2,

1

3

);(2)a 的取值范围为:a <0或a >4;(3)①D (m ,m +3); ②2,3,4. 【解析】 【分析】

(1)把m =1代入二次函数22(0)63

m m y x x m m =-+>解析式中,进而求顶点P 的坐标即可;

(2)把点Q (a ,b )代入二次函数22(0)63

m m

y x x m m =

-+>解析式中,根据0b m ->得到关于a 的一元二次不等式即一元一次不等式组,解出a 的取值范围即可;

(3)①过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,求出二次函数与y 轴的交点A 的坐标,得到OA 的长,再根据待定系数法求出直线AP 的解析式,进而求出与x 轴的交点B 的坐标,得到OB 的长;通过证明△ADF ≌△ABO ,得到AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3,求出点D 的坐标;

②因为二次函数的图象与正方形ABCD 的边CD 有公共点,由①同理可得:C (m+3,3),分当x 等于点D 的横坐标时与当x 等于点C 的横坐标两种情况,进行讨论m 可能取的整数值即可. 【详解】

解:(1)当m =1时,二次函数为212

163

y x x =-+, ∴顶点P 的坐标为(2,

1

3

); (2)∵点Q (a ,b )在二次函数22(0)63

m m y x x m m =-+>的图象上, ∴2263

m m

b a a m =

-+, 即:2263

m m

b m a a -=

-

∵0b

m ->,

2263m m a a ->0, ∵m >0,

∴2263

a a ->0, 解得:a <0或a >4,

∴a 的取值范围为:a <0或a >4;

(3)①如下图,过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,

∵二次函数的解析式为2263

m m

y x x m =-+, ∴顶点P (2,

3

m

), 当x=0时,y=m , ∴点A (0,m ), ∴OA=m ;

设直线AP 的解析式为y=kx+b(k≠0), 把点A (0,m ),点P (2,

3

m

)代入,得: 23

m b m

k b =??

?=+??, 解得:3m k b m

?

=-???=?,

∴直线AP 的解析式为y=3

m

-x+m , 当y=0时,x=3, ∴点B (3,0); ∴OB=3;

∵四边形ABCD 是正方形, ∴AD=AB ,∠DAF+∠FAB=90°, 且∠OAB+∠FAB =90°, ∴∠DAF=∠OAB , 在△ADF 和△ABO 中,

DAF OAB AFD AOB AD AB ∠=∠??

∠=∠??=?

, ∴△ADF ≌△ABO (AAS ),

∴AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3, ∴点D 的坐标为:(m ,m+3); ②由①同理可得:C (m+3,3),

∵二次函数的图象与正方形ABCD 的边CD 有公共点,

∴当x =m 时,3y m ≤+,可得3

2

2363

m m

m m -+≤+,化简得:32418m m -≤.

∵0m >,∴2

184m m m -≤

,∴2

18(2)4m m

--≤, 显然:m =1,2,3,4是上述不等式的解,

当5m ≥时,2

(2)45m --≥,18 3.6m ≤,此时,218(2)4m m

-->, ∴符合条件的正整数m =1,2,3,4;

当x = m +3时,y ≥3,可得2

(3)2(3)

363

m m m m m ++-+≥,

∵0m >,∴2

1823m m m ++≥

,即2

18(1)2m m

++≥, 显然:m =1不是上述不等式的解,

当2m ≥时,2

(1)211m ++≥,189m ≤,此时,218(1)2m m

++>恒成立, ∴符合条件的正整数m =2,3,4;

综上:符合条件的整数m 的值为2,3,4. 【点睛】

本题考查二次函数与几何问题的综合运用,熟练掌握二次函数的图象和性质、一次函数的图象和性质、正方形的性质是解题的关键.

6.如图,抛物线2

y x bx c =-++的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点.点A 坐标的为

3,0,点C 的坐标为()0,3.

(Ⅰ)求抛物线的解析式;

(Ⅱ)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作i 轴的垂线,与直线

AC 交于点E ,与抛物线交于点P ,过点P 作//PQ AB 交抛物线于点Q ,过点Q 作

QN x ⊥轴于点N .若点P 在点Q 左边,当矩形PMNQ 的周长最大时,求AEM △的面

积;

(Ⅲ)在(Ⅱ)的条件下,当矩形PMNQ 的周长最大时,连接DQ ,过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若=22FG DQ ,求点F 的坐标.

【答案】(Ⅰ)2

23y x x =--+;(Ⅱ)1

2

;(Ⅲ)()4,5F --或()1,0 【解析】 【分析】

(Ⅰ)将点A ,点C 坐标代入解析式可求解;

(Ⅱ)设M (x ,0),P (x ,-x 2-2x+3),利用对称性可求点Q (-2-x ,-x 2-2x+3),可求MP=-x 2-2x+3,PQ=-2-x-x=-2-2x ,则可用x 表示矩形PMNQ 的周长,由二次函数的性质可求当矩形PMNQ 的周长最大时,点P 的坐标,即可求点E ,点M 的坐标,由三角形面积公式可求解;

(Ⅲ)先求出点D 坐标,即可求2FG=4,设F (m ,-m 2-2m+3),则G (m ,m+3),用含有m 的式子表示FG 的长度即可求解. 【详解】

解:(Ⅰ)依题意()()2

330

{3

b c c --+?-+==

解得2

{

3

b c =-= 所以2

23y x x =--+

(Ⅱ)2223(1)4y

x x x

抛物线的对称轴是直线1x =-

(,0)M x ,()2,23P x x x --+,其中31x -<<-

∵P 、Q 关于直线1x =-对称 设Q 的横坐标为a 则()11a x --=-- ∴2a x =--

∴(

)

2

2,23Q x x x ----+

∴223MP x x =--+,222PQ x x x =---=--

∴周长(

)

2

22

222232822(2)10d x x x x x x =----+=--+=-++ 当2x =-时,d 取最大值,此时,(2,0)M - ∴2(3)1AM =---= 设直线AC 的解析式为y kx b =+

则303k b b -+=??=?,解得13k b =??=?

∴设直线AC 的解析式为3y x

将2x =-代入3y x

,得1y =

∴(2,1)E -, ∴1EM

=

∴111

11222

AEM S AM ME ?=?=??=

(Ⅲ)由(Ⅱ)知,当矩形PMNQ 的周长最大时,2x =-此时点()0,3Q ,与点C 重合, ∴3OQ = ∵2223(1)4y

x x x

∴()1,4D -

过D 作DK y ⊥轴于K ,

则1DK =,4OK = ∴431OK OK OQ =-=-= ∴DKQ 是等腰直角三角形,2DQ =

∴224FG DQ ==

设(

)

2

,23F m m m --+,则(,3)G m m +

()223233FG m m m m m =+---+=+

∴234m m +=,解得14m =-,21m = 当4m =-时,2235m m --+=- 当1m =时,2230m m --+=. ∴()4,5F --或()1,0

【点睛】

本题是二次函数综合题,考查了二次函数的性质,矩形的性质,等腰直角三角形的性质等,利用参数表示线段的长度是本题的关键.

7.在平面直角坐标系xOy 中(如图),已知二次函数2

y ax bx c =++(其中a 、b 、c 是常数,且a ≠0)的图像经过点A (0,-3)、B (1,0)、C (3,0),联结AB 、AC . (1)求这个二次函数的解析式;

(2)点D 是线段AC 上的一点,联结BD ,如果:3:2ABD BCD S S ??=,求tan ∠DBC 的值; (3)如果点E 在该二次函数图像的对称轴上,当AC 平分∠BAE 时,求点E 的坐标.

【答案】(1

)2

43y x x =-+-;(2)32;(3)E (2,73

-) 【解析】 【分析】

(1)直接利用待定系数法,把A 、B 、C 三点代入解析式,即可得到答案; (2)过点D 作DH ⊥BC 于H ,在△ABC 中,设AC 边上的高为h ,利用面积的比得到

3

2

AD DC =,然后求出DH 和BH ,即可得到答案; (3)延长AE 至x 轴,与x 轴交于点F ,先证明△OAB ∽△OFA ,求出点F 的坐标,然后求出直线AF 的方程,即可求出点E 的坐标. 【详解】

解:(1)将A (0,-3)、B (1,0)、C (3,0)代入2

0y ax bx c a =++≠()得,

03,

0934,300a b a b c =+-??

=+-??-=++?

解得143a b c =-??

=??=-?

∴此抛物线的表达式是:2

43y x x =-+-. (2)过点D 作DH ⊥BC 于H ,

在△ABC 中,设AC 边上的高为h ,则

11

:():():3:222

ABD BCD S S AD h DC h AD DC ??=??==,

又∵DH//y 轴, ∴

2

5

CH DC DH OC AC OA ===. ∵OA=OC=3,则∠ACO=45°, ∴△CDH 为等腰直角三角形,

∴26

355

CH DH ==

?=. ∴64

255

BH BC CH =-=-=. ∴tan ∠DBC=

3

2

DH BH =. (3)延长AE 至x 轴,与x 轴交于点F ,

∵OA=OC=3,

∴∠OAC=∠OCA=45°,

∵∠OAB=∠OAC -∠BAC=45°-∠BAC ,∠OFA=∠OCA -∠FAC=45°-∠FAC , ∵∠BAC=∠FAC , ∴∠OAB=∠OFA . ∴△OAB ∽△OFA , ∴

1

3

OB OA OA OF ==. ∴OF=9,即F (9,0);

设直线AF 的解析式为y=kx+b (k≠0),

可得093k b b =+??-=? ,解得133

k b ?

=

???=-?,

∴直线AF 的解析式为:1

33

y x =

-, 将x=2代入直线AF 的解析式得:7

3

y =-,

∴E (2,73

-). 【点睛】

本题考查了相似三角形的判定和性质,二次函数的性质,求二次函数的解析式,等腰直角三角形的判定和性质,求一次函数的解析式,解题的关键是掌握二次函数的图像和性质,以及正确作出辅助线构造相似三角形.

相关主题
相关文档
最新文档