【浙教版】八年级数学上第1章《 三角形的初步知识》期末复习(含答案)
浙教版八年级上册数学第1章 三角形的初步知识含答案

浙教版八年级上册数学第1章三角形的初步知识含答案一、单选题(共15题,共计45分)1、如图所示,矩形ABCD中,AE平分交BC于E,,则下面的结论:①是等边三角形;②;③;④,其中正确结论有()A.1个B.2个C.3个D.4个2、如图,CD是△ABC的角平分线,DE∥BC.若∠A=60°,∠B=80°,则∠CDE 的度数是( )A.20°B.30°C.35°D.40°3、如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为()A.40°B.30°C.50°D.60°4、如图,点D,E分别在AB、AC上,BE,CD相交于点F,设S四边形EADF =S1, S△BDF =S2, S△BCF=S3, S△CEF=S4,则S1S3与S2S4的大小关系是( )A.不能确定B.S1S3<S2S4C.S1S3=S2S4D.S1S3>S2S45、如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是()A.54°B.60°C.66°D.76°6、小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带()去.A.第1块B.第2块C.第3块D.第4块7、如图,在中,,,若将沿CD折叠,使B 点落在AC 边上的E处,则的度数是A.30 0B.40 0C.50 0D.55 08、含30°角的直角三角板与直线l1、l2的位置关系如图所示,已知l1∥l2,∠ACD=∠A,则∠1=()A.70°B.60°C.40°D.30°9、如图,已知△ABC中,AD=BD,AC=4,H是高AD和BE的交点,则线段BH的长度为()A. B.4 C.2 D.510、如图是李老师在黑板上演示的尺规作图及其步骤,已知钝角,尺规作图及步骤如下:步骤一:以点为圆心,为半径画弧;步骤二:以点为圆心,为半径画弧,两弧交于点;步骤三:连接,交延长线于点.下面是四位同学对其做出的判断:小明说:;小华说:;小强说:;小方说:.则下列说法正确的是()A.只有小明说得对B.小华和小强说的都对C.小强和小方说的都不对D.小明和小方说的都对11、如图,OC是∠AOB的平分线,OD是∠AOC的平分线,且∠COD=25°,则∠AOB等于()A.50°B.75°C.100°D.120°12、如图,△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=8,DE=3,则△BCE的面积等于()A.11B.8C.12D.313、在△ABC中,∠A:∠B:∠C=1:2:6,则此三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.无法判断14、如图,在△ABC中,∠A=α,点D,E,F分别在BC,AB,AC上,且∠1+∠2=120°,则∠EDF的度数为()A.120°+αB.120°-αC.240°-αD.α-60°15、如图,△ABC中,∠C=90°,∠BAC的角平分线交BC于点D,DE⊥AB于点E.若CD=2,AB=7,则△ABD的面积为()A.3.5B.7C.14D.28二、填空题(共10题,共计30分)16、如图,点O是△ABC的两条角平分线的交点,若∠BOC=110°,则∠A=________°.17、如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=5,则点P到AB的距离是________.18、如图,点O是△ABC的外心,∠A=50°,则∠OBC=________°.19、如图所示,已知△ABC≌△DFE,AB=4cm,BC=6cm,AC=5cm,CF=2cm,∠A=70°,∠B=65°,则∠D=________°,∠F=________°,DE=________,BE=________.20、如图,若△OAD≌△OBC,且∠O=75o,∠C=10o,则∠OAD=________°.21、如图,已知直线与x轴、y轴分别交于两点,点P是以为圆心,2为半径的圆上一动点,连接,,则的面积最大值是________.22、如图,将△ABC绕点C顺时针旋转,使得点B落在AB边上的点D处,此时点A的对应点E恰好落在BC边的延长线上,若∠B=50°,则∠A的度数为________.23、如图,已知△OAB≌△OCD,∠A=30°,∠AOB=105°,则∠D=________°.24、如图,点A,B,C在上,点D在内,则________.(填“>”,“=”或“<”)25、如图,AB∥CD,∠A=56°,∠C=27°,则∠E的度数为________.三、解答题(共5题,共计25分)26、已知:a、b、c是△ABC的三边长,化简.27、甲、乙、丙、丁、戊五个人在运动会上分获百米、二百米、跳高、跳远和铅球冠军,有四个人猜测比赛结果:A说:乙获铅球冠军,丁获跳高冠军.B说:甲获百米冠军,戊获跳远冠军.C说:丙获跳远冠军,丁获二百米冠军.D说:乙获跳高冠军,戊获铅球冠军.其中每个人都只说对一句,说错一句.求五人各获哪项冠军.28、已知:如图,∠1+∠2=180°,∠3=100°,OK平分∠DOH,求∠KOH的度数.29、如图,AB=AC,AD=AE,∠BAC=∠DAE.求证:BE=CD.30、如图所示,有两个长度相等的滑梯(即BC=EF)左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,求∠ABC+∠DFE的度数。
【期末复习提升卷】浙教版2022-2023学年八上数学第1章 三角形的初步知识 测试卷1

【期末复习提升卷】浙教版2022-2023学年八上数学第1章三角形的初步知识测试卷1考试时间:120分钟满分:120分一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.如图,DE是△ABC的边BC的垂直平分线,分别交边AB,BC于点D,E,且AB=9,AC=6,则△ACD的周长是()A.10.5B.15C.12D.18(第1题)(第3题)(第4题)(第5题)(第6题)2.如图,M,A,N是直线l上的三点,AM=3 ,AN=5,P是直线l外一点,且∠PAN=60°,AP=1,若动点Q从点M出发,向点N移动,移动到点N停止,在△APQ形状的变化过程中,依次出现的特殊三角形是()A.直角三角形—等边三角形—直角三角形—等腰三角形B.直角三角形—等腰三角形—直角三角形—等边三角形C.等腰三角形—直角三角形—等腰三角形—直角三角形D.等腰三角形—直角三角形—等边三角形—直角三角形3.如图所示,一个60o角的三角形纸片,剪去这个60°角后,得到一个四边形,那么∠1+∠2的度数为()A.120O B.180O.C.240O D.30004.如图,在△ABC中,∠B=∠C,BF=CD,BD=CE,∠A=50°,则∠FDE的度数为()A.75°B.70°C.65°D.60°5.如图是正五边形ABCDE,DG平分正五边形的外角∠EDF,连接AD,则∠ADG= ()A.54°B.60°C.72°D.88°6.如图,在△ABC中,AB=6,AC=8,AD是边BC上的中线,则AD长的取值范围是()A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤77.如图1,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30∘,∠C=100∘,如图2.则下列说法正确的是()A.点在上B.点在的中点处C.点在上,且距点较近,距点较远D.点在上,且距点较近,距点较远(第7题)(第8题)8.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为60和35,则△EDF的面积为()A.25B.5.5C.7.5D.12.59.如图,在长方形纸片ABCD中,△EDC沿着折痕EC对折,点D的落点为F,再将△AGE沿着折痕GE对折,得到△GHE,H、F、E在同一直线上;作PH⊥AD于P,若ED=AG=3,CD=4,则PH 的长为()A.52B.5C.7225D.962510.如图,AD是ΔABC的中线,E是AD上一点,连接BE并延长交AC于点F,若EF=AF,BE=7.5,CF=6,则EF=().A.2.5B.2C.1.5D.1二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.如图,已知△ABD≌△ACE,且∠1=45°,∠ADB=95°,则∠AEC= ,∠C=. 12.如图,在△ABC中,D,E分别是边AB,AC上的点,过点C作平行于AB的直线交DE的延长线于点F.若DE=FE,AB=5,CF=3,则BD的长是.13.如图所示,直线BC经过原点O,点A在x轴上,AD⊥BC于点D.若B(m,3),C(n,−5),A(4,0),则AD⋅BC=.(第13题)(第14题)(第15题)(第16题)14.如图△ABC中,AD⊥BC于点D,AE平分∠CAD交BC于E,若∠C=60°,则∠DEA=.15.如图,四边形ABDC中,对角线AD平分∠BAC,∠ACD=136°,∠BCD=44°,则∠ADB的度数为16.如图,D、E分别是△ABC边AB,BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△FCE 的面积为S2,若S△ABC=24,则S1﹣S2的值为.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.如图所示,在△ABC中,AB=AC,AD和BE是高,它们相交于点H,且AE=BE.(1)求证:△BCE≌△AHE.(2)求证:AH=2CD.18.在ΔABC中,AC<AB<BC,∠B=36°.(1)如图1,已知线段AB的垂直平分线与BC边交于点P,连接AP,求∠APC的度数.(2)如图2,若点Q是BC上一点,且BA=BQ,连接AQ.求证:∠AQC=3∠B.19.如图,在△ABC中,AE为∠BAC的角平分线,点D为BC的中点,DE⊥BC交AE于点E,EG⊥AC 于点G.(1)求证:AB+AC=2AG.(2)若BC=8cm,AG=5cm,求△ABC的周长.20.如图,一次函数y=(m+1)x+ 32的图象与x轴的负半轴相交于点A,与y轴相交于点B,且△OAB的面积为3 4.(1)求m的值及点A的坐标;(2)过点B作直线BP与x轴的正半轴相交于点P,且OP=3OA,求直线BP的解析式.21.如图,在ΔABC中,∠ABC=45°,D为BC上一点,CD=2BD,∠ADC=600,AE⊥BC 于点E,CF⊥AD于点F,AE,CF相交于点G.(1)求证:ΔAFG≅ΔCFD;(2)若BC=3,AF=√3,求EG的长.22.如图,在△ABC中,D、E为BC上的点,AD平分∠BAE,CA=CD.(1)求证:∠CAE=∠B;(2)若∠B=50°,∠C=3∠DAB,求∠C的大小.23.如图,在△ABC中,AE,CD分别是∠BAC,∠ACB的平分线,且AE,CD相交于点F.(1)若∠BAC=80°,∠ACB=40°,求∠AFC的度数;(2)若∠B=80°,求∠AFC的度数;(3)若∠B=x°,用含x的代数式表示∠AFC的度数.24.如图1,张老师在黑板上画出了一个ΔABC,其中AB=AC,让同学们进行探究.(1)探究一:如图2,小明以BC为边在ΔABC内部作等边ΔBDC,连接AD,请直接写出∠ADB的度数;(2)探究二:如图3,小彬在(1)的条件下,又以AB为边作等边ΔABE,连接CE.判断CE与AD的数量关系;并说明理由;(3)探究三:如图3,小聪在(2)的条件下,连接DE,若∠DEC=60∘,DE=2,求AE的长.。
浙教版八年级上第一章三角形的初步知识复习同步练习含答案

第4题第一章 三角形的初步知识的复习 (巩固练习)姓名 班级第一部分1、下列各组长度的线段能构成三角形的是( )A 、1.5cm 3.9cm 2.3cmB 、3.5cm 7.1cm 3.6cmC 、6cm 1cm 6cmD 、4cm 10cm 4cm2.如图,PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E ,且P A 平分∠BAC ,则△APD 与△APE 全等的理由不是( )A 、SASB 、AASC 、SSSD 、ASA3.如图,∠BAC =90°,AD ⊥BC ,则图中互余的角有( ) A.2对 B.3对 C.4对 D.5对4如图,在△ABC 中,AD 是角平分线,AE 是高,已知∠BAC =2∠B ,∠B =2∠DAE ,那么 ∠ACB 为( )A. 80°B. 72°C. 48°D. 36° 5. 如图,∠1=∠2,∠C =∠B ,下列结论中不正确的是( ) A. △DAB ≌△DAC ; B. △DEA ≌△DF A; C. CD =DE D. ∠AED =∠AFD6.一个三角形的两边长分别是2cm 和9cm ,第三边的长是一个奇数,则第三边长为( ) A 、5cm B 、7cm C 、9cm D 、11cm7、一个三角形的两个内角分别为55°和65°,这个三角形的外角不可能是( ) A 、115° B 、120° C 、125° D 、130° 8.在△ABC 和△DEF 中,条件:①AB =DE ;②BC =EF ;③AC =DF ;④∠A =∠D ;⑤∠B =∠E ;⑥∠C =∠F ;则下列各组给出的条件不第3题AE BCDP第2题FE D CA第10能保证△ABC ≌△DEF 的是( )A. ①②③B. ①②⑤C.①③⑤D.②⑤⑥9.在⊿ABC 中,三边长分别为a 、b 、c ,且a >b >c ,若b =8,c =3,则a 的取值范围是( )A.3<a <8B.5<a <11C.6<a <10D.8<a <11 10.如图,在△ABC 中,AB =AC ,AD 是BC 边上的高,点E 、F 是AD 上的 点,若△ABC 的面积为242cm ,则图中阴影部分的面积为( ) A 、4cm ² B 、8cm² C 、12cm² D 、16cm²第二部分11、如图,CD 是线段AB 的垂直平分线,则∠CAD =∠CBD .请说明理由:解:∵ CD 是线段AB 的垂直平分线( ),∴AC = , =BD ( ). 在 和 中,=BC ,AD = ,CD = ( ),∴≌ ( ).∴ ∠CAD =∠CBD ().12、如图,在△ABC 中,∠B =42o ,∠C =72 o ,AD 是△ABC 的角平分线, ①∠BAC 等于多少度?简要说明理由. ②∠ADC 等于多少度?简要说明理由.13、如图,在△ABC中,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连结DE,已知DE=2 cm,BD=3 cm,求线段BC的长.14、如图,△ABC的两条高AD、BE相交于点H,且AD=BD,试说明下列结论成立的理由。
浙教版八年级上册数学第1章 三角形的初步知识含答案(附解析)

浙教版八年级上册数学第1章三角形的初步知识含答案一、单选题(共15题,共计45分)1、用A,B,C分别表示学校、小明家、小红家,已知学校在小明家的南偏东25°,小红家在小明家正东,小红家在学校北偏东35°,则∠ACB等于()A.35°B.55°C.60°D.65°2、如图,∠MON=90°,点B在射线ON上且OB=2,点A在射线OM上,以AB为边在∠MON内部作正方形ABCD,其对角线AC、BD交于点P.在点A从O点出发,沿射线OM的运动过程中,下列说法正确的是()A.点P始终在∠MON的平分线上,且线段OP的长有最小值等于B.点P始终在∠MON的平分线上,且线段OP的长有最大值等于C.点P不一定在∠MON的平分线上,但线段OP的长有最小值等于D.点P运动路径无法确定3、图中是形状、大小都相同的两个长方形,第一个长方形的阴影面积为m,第二个长方形的阴影面积为n,则m与n关系为()A.m>nB.m=nC.m<nD.不确定4、如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O,BD与HC相交于点P.若GO=GP,则的值是()A. B. C. D.5、如图,点A,B,C在一次函数y=﹣2x+m的图象上,它们的横坐标依次为﹣1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是()A.1B.3C.3(m﹣1)D.6、已知三角形的两边长分别为1和4,则第三边长可能是()A.3B.4C.5D.67、如图,正方形ABCD边长为6,E是BC的中点,连接AE,以AE为边在正方形内部作∠EAF=45°,边交于点,连接,则下列说法中:① ;② ;③tan∠AFE=3;④ 正确的有( )A.①②③B.②④C.①④D.②③④8、如图,在四边形ABCD中,点E在BC上,AB∥DE,∠B=78º,∠C=60º,则∠EDC的度数为()A.78ºB.60ºC.42ºD.80º9、如图,中,是角平分线,是中的中线,若的面积是,,,则的面积是()A.15B.12C.7.5D.610、如图,使△ABC≌△ADC成立的条件是()A.AB=AD,∠B=∠DB.AB=AD,∠ACB=∠ACDC.BC=DC,∠BAC=∠DAC D.AB=AD,∠BAC=∠DAC11、如图,,是的直径,,是的弦,且,与交于点,连接,若,则的度数是()A.20°B.30°C.40°D.50°12、如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2B.3C.5D.2.513、平行四边形的两条对角线分别为6和10,则其中一条边x的取值范围为()A.4<x<6B.2<x<8C.0<x<10D.0<x<614、已知等腰三角形的底边长为a,底边上的高为h,用直尺和圆规作这个等腰三角形时,甲同学的作法是:先作底边BC=a,再作BC的垂直平分线MN 交BC于点D,并在DM上截取DA=h,最后连结AB、AC,则△ABC即为所求作的等腰三角形;乙同学的作法是:先作高AD=h,再过点D作AD的垂线MN,并在MN上截取BC=a,最后连结AB、AC,则△ABC即为所求作的等腰三角形.对于甲乙两同学的作法,下列判断正确是()A.甲正确,乙错误B.甲错误,乙正确C.甲、乙均正确D.甲、乙均错误15、对于任意三角形的高,下列说法错误的是()A.锐角三角形有三条高B.直角三角形只有一条高C.任意三角形都有三条高D.钝角三角形有两条高在三角形的外部二、填空题(共10题,共计30分)16、如图, AB = 4cm ,AC = BD = 3cm . ∠CAB = ∠DBA ,点 P 在线段 AB 上以1cm / s 的速度由点 A 向点 B 运动,同时,点Q 在线段 BD 上由点 B 向点 D 运动.设运动时间为t(s) ,则当点Q 的运动速度为________cm / s 时, DACP 与DBPQ 全等.17、已知:如图,AB=AC,∠A=36°,AB的垂直平分线交AC于D,则下列结论:①∠C=72°;②BD是∠ABC的平分线;③△ABD是等腰三角形;④△BCD是等腰三角形,其中正确的有________18、如图,在中,为B上一点,AD=DC=BC,且∠A=30°,AD=5,则B=________.19、如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠ADE=________°.20、如图,矩形ABCD中,直线MN垂直平分AC,与CD,AB分别交于点M,N.若DM=2,CM=3,则矩形的对角线AC的长为________.21、如图,△ABC是等边三角形,AE=CD,AD、BE相交于点P,BQ⊥DA于Q,PQ=3,EP=1,则DA的长是________.22、如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=________°.23、如图,一副三角尺△ABC与△ADE的两条斜边在一条直线上,直尺的一边GF∥AC,则∠DFG的度数为________.24、如图,在△ABC中,AB=AC,AD是△ABC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F.则下面结论中①DA平分∠EDF;②AE=AF,DE=DF;③AD上的点到B、C两点距离相等;④图中共有3对全等三角形,正确的有:________ .25、在△ABC中,∠A=30°,∠B=60°,则与∠C相邻的外角为________°.三、解答题(共5题,共计25分)26、如图:△ABC中,BO、CO平分∠ABC和∠ACB,若∠A=50°,求∠BOC的度数.27、若一个三角形的两边分别为2和8,而第三边长为奇数,求此三角形的周长.28、如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=22°,∠2=28°,求∠3的度数.29、如图,在和中,已知,求证:AD是的平分线.30、如图,点P在线段AB的垂直平分线上,PC⊥PA,PD⊥PB,AC=BD.求证:点P在线段CD的垂直平分线上.以下为证明过程,请在括号内填写出理论依据.∵点P在线段AB的垂直平分线上,∴PB=PA,()∵PC⊥PA,PD⊥PB,∴∠DPB=∠CPA=90°.在R△DPB和Rt△CPA中,∴Rt△DPB≌Rt△CPA()∴PD=PC()∴点P在线段CD的垂直平分线.()参考答案一、单选题(共15题,共计45分)1、B2、A3、B4、B5、B6、B7、D8、C9、C10、D12、B13、B14、A15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。
浙教版数学八年级上册第一章《三角形的初步知识》复习

A B C O B AC D E 三角形的初步知识一、选择题(每题3分,共30分)1、在△ABC 中,三个内角满足以下关系:C B A ∠=∠=∠3121,那么这个三角形是( )A 、直角三角形B 、锐角三角形C 、钝角三角形D 、任意三角形2、在下列长度的四根木棒中,能与4 cm, 9 cm 长的两根木棒钉成一个三角形的是( )A 、 4 cmB 、 5 cmC 、 9 cmD 、 13 cm3、如图,PD ⊥AB, PE ⊥AC, 垂足分别为D , E ,且AP 平分∠BAC ,则△APD 与△APE 全等的理由是( )A 、SASB 、ASAC 、SSSD 、AAS4、下列说法错误的是( ) A 、有一个外角是锐角的三角形是钝角三角形;B 、有两个角互余的三角形是直角三角形;C 、直角三角形只有一条高;D 、任何一个三角形中,最大角不小于60度.5、在下列条件中,不能说明△ABC ≌△A’B’C’的是( )A 、∠A=∠A ’, ∠B=∠B ’, AC =A ’C ’; B 、∠A=∠A ’, AB=A ’B ’, BC =B ’C ’C 、∠B=∠B ’, BC=B ’C ’, AB =A ’B ’;D 、AB=A ’B ’, BC=B ’C ’, AC =A ’C ’6、如图,AD, BE 都是△ABC 的高,则与∠CBE ) A. ∠ABE B. ∠BAD C. ∠DAC D. 以上都不是7、下列图中,正确画出AC 边上的高的是( ) A B C D8、如图,在△A BC 中,AB=AC ,AB 的中垂线DE 交AC于点D ,交AB 于E 点,如果BC=10,△BDC 的周长为22,那么△ABC 的周长是( ) A 、24 B 、30 C 、32 D 、349、如图,在△ABC 中,∠ABC 与∠ACB 的角平分线交于点O ,且∠A =α,则∠BOC 的度数是( ) A. 11802α︒- B. 1902α︒+ C. 1902α︒- D. 12α 10、如图,=∠+∠+∠+∠+∠+∠F E D C B A ……( )A 、1800B 、2700C 、3600D 、4500二、填空题(每空3分,共24分) 11、如图(1)∠A =80º,∠2=130º,则∠1=_______º;B C A P D E B A A B E A B B E F A CB D12、如图(2)已知AC = BD,要使△A BC≌DCB,只需增加的一个条件是___________;13、三角形的两边长分别为2cm, 5cm,第三边长x cm也是整数,则当三角形的周长取最大值时 x 的值为__________;14、如图(5)△ABC的高AD和CE相交于点H,若∠B=40º,则∠AHC=_______º;15、如下图,在△ABC中,AD是高,E是AB上一点,AD与CE相交于点P,已知∠APE=50º,∠AEP=80º, 则∠B=________º16、在Rt△ABC中,∠C=90º,CE是△ABC的中线,若AC=2.4cm, BC = 1.5cm, 则△AEC的面积为________.17、如下图,△ABC的面积为20㎝2,D、E、F分别为中点,则S△DFE= ㎝2。
【浙教版】八年级数学上册习题:第1章 三角形的初步知识(79页 含答案)

第1章三角形的初步知识1.1 认识三角形第1课时三角形的有关概念及三边关系01基础题知识点1三角形及相关概念1.(1)如图,点D在△ABC内,写出图中所有除△ABC外的三角形:△ABD,△ACD,△BCD;(2)在△ACD中,∠ACD所对的边是AD;在△ABD中,边AD所对的角是∠ABD.知识点2三角形内角和定理2.(温州校级期中)在△ABC中,∠A=50°,∠B=70°,则∠C的度数是( B )A.40°B.60°C.80°D.100°3.如图,一个长方形纸片,剪去部分后得到一个三角形,则图中∠1+∠2的度数是( C )A.30°B.60°C.90°D.120°第3题图第4题图4.(南三县期末)一副三角板如图叠放在一起,则图中∠α的度数为( A ) A.75°B.60°C.65°D.55°知识点3三角形按角的大小分类5.(诸暨期末)在△ABC中,若∠A=35°,∠B=55°,则△ABC为 ( C ) A.锐角三角形B.钝角三角形C.直角三角形D.任意三角形6.如图,图中有6个三角形,其中,△ABC,△ACD是锐角三角形,△ACE,△ABE,△ADE是直角三角形,△ABD是钝角三角形.知识点4三角形的三边关系7.(萧山区四校联考)在下列长度的四根木棒中,能与4 cm、9 cm长的两根木棒钉成一个三角形的是( C )A.4 cm B.5 cm C.9 cm D.13 cm8.(盐城中考)若a,b,c为△ABC的三边长,且满足|a-4|+b-2=0,则c的值可以为( A )A.5 B.6C.7 D.89.如图,从点A到点D有三条路线:A—B—D,A—C—D,A—D,其中最短的路线是A-D.10.(1)在△ABC中,AB=3,AC=4,那么BC边的长度应满足什么条件?(2)如果一个三角形的两边长分别为5 cm,7 cm,第三边的长为x cm,且x 是一个奇数,求三角形的周长;(3)如果三角形的三边为连续整数,且周长为24 cm,求它的最短边长.解:(1)1<BC<7.(2)三角形的周长为15 cm或17 cm或19 cm或21 cm或23 cm.(3)它的最短边长为7 cm.02中档题11.若a,b,c是三角形的三边长,则化简:|a-b-c|+|a+c-b|-|c-a-b|=( B )A.3a-b-c B.-a-b+3cC.a+b+c D.a-3b+c12.(盐城中考)一个等腰直角三角板与一把直尺如图放置,若∠1=60°,则∠2的度数为( B )A.85°B.75°C.60°D.45°13.(义乌模拟)如图,用四个螺丝将四条不可弯曲的木条围成一个木框(形状不限),不计螺丝大小,其中相邻两螺丝的距离依次为3、4、5、7,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任意两个螺丝间的距离的最大值为( D )A .6B .7C .8D .9第13题图 第14题图14.(温州八中期中)如图,△ABC 中,∠DBC =13∠ABC,∠DCB =13∠ACB,∠A=45°,则∠BDC =135°.15.在农村电网改造中,四个自然村分别位于如图所示的A,B,C,D 处,现计划安装一台变压器,使到四个自然村的输电线路的总长最短,那么这个变压器安装在AC,BD 的交点E 处,你知道为什么吗?解:另任取一点E′(异于点E),分别连结AE′,BE ′,CE ′,DE ′, 在△BDE′中,DE ′+BE′>DB. 在△ACE′中,AE ′+CE′>AC. ∴AE ′+BE′+CE′+DE′>AC+BD, 即AE +BE +CE +DE 最短.16.(杭州期中改编)若三角形的周长为18,且三边都是整数,则满足条件的三角形有多少个?分别写出三角形的三边长.解:满足条件的三角形共有7个.三边长分别是8,8,2;8,7,3;8,6,4;8,5,5;7,7,4;7,6,5;6,6,6.03综合题17.观察并探求下列各问题:(1)如图1,在△ABC中,点P为边BC上一点,则BP+PC<AB+AC(填“>”“<”或“=”);(2)将(1)中的点P移到△ABC内,得图2,试观察比较△BPC的周长与△ABC 的周长的大小,并说明理由;(3)将(2)中的点P变为两个点P1,P2,得图3,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.解:(2)△BPC的周长<△ABC的周长.理由如下:延长BP交AC于点M.在△ABM中,BP+PM<AB+AM,在△PMC中,PC<PM+MC,两式相加,得BP+PC<AB+AC,∴BP+PC+BC<AB+AC+BC,即△BPC的周长<△ABC的周长.(3)四边形BP1P2C的周长<△ABC的周长,理由如下:分别延长BP1,CP2交于点M.由(2)知,BM+CM<AB+AC.又∵P1P2<P1M+P2M,∴BP1+P1P2+P2C<BM+CM<AB+AC.∴BP1+P1P2+P2C+BC<AB+AC+BC, 即四边形BP1P2C的周长<△ABC的周长.第2课时三角形的重要线段01基础题知识点1三角形的角平分线1.在△ABC中,∠B=60°,AD是△ABC的角平分线,∠DAC=31°,则∠C 的度数为( D )A.62°B.60°C.92°D.58°2.如图,已知∠1=∠2,∠3=∠4,则下列结论正确的个数为( B )①AD平分∠BAF;②AF平分∠DAC;③AE平分∠DAF;④AE平分∠BAC.A.1 B.2 C.3 D.4第2题图第3题图3.(邵阳中考)如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是( C )A.45°B.54°C.40°D.50°知识点2三角形的中线4.如图所示,点D,E分别是△ABC的边AC,BC的中点,则下列说法不正确的是( C )A.DE是△BCD的中线B.BD是△ABC的中线C.AD=DC,BD=ECD.在△CDE中,∠C的对边是DE5.如图,在△ABC中,AD是BC边上的中线.(1)若BC=6 cm,则CD=3cm;(2)若CD=a cm,则BC=2a cm;(3)若S△ABD=8 cm2,则S△ACD=8cm2.第5题图第6题图6.如图,在△ABC中,AD是BC边上的中线,已知AB=7 cm,AC=5 cm,则△ABD和△ACD的周长差为2cm.知识点3三角形的高线7.(杭州上城区期中)下列各图中,正确画出AC边上的高的是( D )8.如图,△ABC中,∠C=90°,CD⊥AB,图中线段可以作为△ABC的高的有( B )A.2条B.3条C.4条D.5条第8题图第9题图9.(嘉兴桐乡实验中学期中)如图,在△ABC中,∠B=30°,∠ACB=110°,AD是BC边上高线,AE平分∠BAC,则∠DAE的度数为40°.10.(温州新城学校初中部月考)如图,在△ABC中,高BD,CE相交于点H,若∠BHC=110°,则∠A等于70°.02中档题11.如图所示,在△ABC中,∠ACB=90°,把△ABC沿直线AC翻折180°,使点B 落在点B′的位置,则线段AC具有性质( D )A.是∠BAB′的平分线B.是边BB′上的高C.是边BB′上的中线D.以上三种线重合第11题图第12题图12.如图,AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE =40°,则∠ADB的度数为( D )A .40°B .60°C .80°D .100°13.(绵阳中考)如图,在△ABC 中,∠B 、∠C 的平分线BE 、CD 相交于点F,∠ABC =42°,∠A =60°,则∠BFC =(C )A .118°B .119°C .120°D .121°第13题图 第14题图14.(温州永嘉县岩头中学期中)如图,在△ABC 中,点D 、E 、F 分别为BC 、AD 、CE 的中点,且S △ABC =8 cm 2,则阴影部分△AEF 的面积为1cm 2. 15.如图,在△ABC 中,AB =AC,AC 边上的中线BD 将△ABC 的周长分成为12 cm 和15 cm 两部分,求三角形的底边BC 的长.解:①当AB +AD =15 cm 时, ∵D 是AC 的中点, ∴AD =12AC =12AB .∴AB +AD =AB +12AB =15,解得AB =10 cm.∴AC =10 cm.∴BC =15+12-10×2=7(cm).此时能构成三角形,且底边长为7 cm ; ②当AB +AD =12 cm 时,∴AB +AD =AB +12AB =12,解得AB =8 cm.∴AC =8 cm.∴BC =15+12-8×2=11(cm). 此时能构成三角形,且底边长为11 cm. 综上,底边BC 的长为7 cm 或11 cm.16.如图,在△ABC 中,AB =AC,点P 是BC 边上任意一点,PF ⊥AB 于点F,PE ⊥AC 于点E,BD 为△ABC 的高线,BD =8,求PF +PE 的值.解:连结PA. ∵S △ABC =S △APB +S △APC ,∴12AC·BD=12AB·PF+12AC·PE. ∵AB =AC, ∴BD =PF +PE. ∴PF +PE =8. 03 综合题17.(嵊州校级期中)如图,在△ABC 中,AD ⊥BC,AE 平分∠BAC. (1)若∠BAC =80°,∠C =30°,求∠DAE 的度数; (2)若∠B =80°,∠C =40°,求∠DAE 的度数;(3)探究:小明认为如果只知道∠B -∠C =40°,也能得出∠DAE 的度数?你认为可以吗?若能,请你写出求解过程;若不能,请说明理由.解:(1)∵∠BAC =80°,∠C =30°, ∴∠B =70°. ∵AD ⊥BC, ∴∠BAD =20°. ∵AE 平分∠BAC, ∴∠BAE =12∠BAC =40°.∴∠DAE =∠BAE -∠BAD =40°-20°=20°. (2)∵∠B =80°,AD ⊥BC, ∴∠BAD =10°. ∵AE 平分∠BAC,∴∠BAE =12∠BAC =12(180°-∠B -∠C)=12×60°=30°.∴∠DAE =∠BAE -∠BAD =30°-10°=20°. (3)能求得∠DAE =12(∠B -∠C)=20°.理由:∵AD ⊥BC, ∴∠BAD =90°-∠B. ∵AE 平分∠BAC,∴∠BAE =12∠BAC =12(180°-∠B -∠C).∴∠DAE =∠BAE -∠BAD =12(180°-∠B -∠C)-(90°-∠B)=12(∠B -∠C)=20°.1.2 定义与命题第1课时定义与命题01基础题知识点1定义1.下列语句中,属于定义的是( C )A.两点之间线段最短B.三人行,必有我师焉C.在同一平面内,不相交的两条直线叫做平行线D.两条直线相交,只有一个交点2.下列语句中,属于定义的是( D )A.两点确定一条直线B.同角或等角的余角相等C.两直线平行,内错角相等D.点到直线的距离是该点到这条直线的垂线段的长度3.下列语句中,属于定义的有( B )①含有未知数的等式称为方程;②三角形内角和等于180°;③等式(a+b)2=a2+2ab+b2称为两数和的完全平方公式;④如果a,b为实数,那么(a-b)2=a2-2ab+b2.A.1个B.2个C.3个D.4个知识点2命题4.(杭州萧山区期中)下列语句是命题的是( C )A.作直线AB的垂线B.在线段AB上取点CC.同旁内角互补D.垂线段最短吗?5.下列语句中,不是命题的是( A )A.延长线段ABB.自然数也是整数C.两个锐角的和一定是直角D.同角的余角相等6.下列语句中,是命题的是( C )①钝角大于90°;②两点之间,线段最短;③明天可能要下雪;④同旁内角不互补,两直线不平行;⑤作∠ACB的角平分线.A.①②③B.①②⑤C.①②③④D.①②④7.下列语句中,哪些是命题,哪些不是命题?(1)若a<b,则-b<-a;(2)三角形的三条高交于一点;(3)在△ABC中,若AB>AC,则∠C>∠B吗?(4)两点之间线段最短;(5)解方程x2-2x-3=0;(6)1+2≠3.解:(1)(2)(4)(6)是命题,(3)(5)不是命题.知识点3命题的条件和结论8.命题“垂直于同一条直线的两条直线互相平行”的条件是( D ) A.垂直B.两条直线C.同一条直线D.两条直线垂直于同一条直线9.写出下列命题的条件和结论.(1)如果a2=b2,那么a=b;(2)同角或等角的补角相等;(3)同旁内角互补,两直线平行.解:(1)条件:a2=b2;结论:a=b.(2)条件:两个角是同角或等角的补角;结论:这两个角相等.(3)条件:同旁内角互补;结论:两直线平行.10.把下列命题改写成“如果……那么……”的形式.(1)在同一平面内,垂直于同一条直线的两条直线平行;(2)绝对值相等的两个数一定相等;(3)每一个有理数都对应数轴上的一个点.解:(1)在同一平面内,如果两条直线都和第三条直线垂直,那么这两条直线互相平行.(2)如果两个数的绝对值相等,那么这两个数一定也相等.(3)如果一个数是有理数,那么这个数一定对应着数轴上的一个点.02中档题11.下列语句中,是命题的是( A )①若∠1=60°,∠2=60°,则∠1=∠2;②对顶角相等吗?③画线段AB =CD;④如果a>b,b>c,那么a>c;⑤直角都相等.A.①④⑤B.①②④C.①②⑤D.②③④12.“所谓按行排序就是根据一行或几行中的数据值对数据清单进行排序,排序时Excel将按指定行的值和指定的‘升序’或‘降序’排列次序重新设定行.”这段话是对名称按行排列进行定义.13.指出下列命题的条件和结论,并改写成“如果……那么……”的形式:(1)对顶角相等;(2)同角的余角相等;(3)三角形的内角和等于180°;(4)角平分线上的点到角的两边距离相等.解:(1)条件是“两个角是对顶角”,结论是“这两个角相等”.可以改写成“如果两个角是对顶角,那么这两个角相等”.(2)条件是“两个角是同一个角的余角”,结论是“这两个角相等”.可以改写成“如果两个角是同一个角的余角,那么这两个角相等”.(3)条件是“三个角是一个三角形的三个内角”,结论是“这三个角的和等于180°”.可以改写成“如果三个角是一个三角形的三个内角,那么这三个角的和等于180°”.(4)条件是“一个点在一个角的平分线上”,初中数学精品资料结论是“这个点到这个角的两边距离相等”.可以改写成“如果一个点在一个角的平分线上,那么这个点到这个角的两边距离相等”.14.用语言叙述这个命题:如图,AB∥CD,EF交AB于点G,交CD于点H,GM 平分∠BGH,HM平分∠GHD,则GM⊥HM.解:两条平行线间的同旁内角的角平分线互相垂直.15.观察下列给出的方程,找出它们的共同特征,试给出名称,并作出定义.x3+x2-3x+4=0;x3+x-1=0;x3-2x2+3=x;y3+2y2-5y-1=0.解:共同特征:都是整式方程,均含有一个未知数,未知数的最高次数均为3;名称:一元三次方程;定义:含有一个未知数,且未知数的最高次数为3的整式方程是一元三次方程.第2课时真假命题及定理01基础题知识点1真命题和假命题1.下列命题中的真命题是 ( C )A.锐角大于它的余角B.锐角大于它的补角C.钝角大于它的补角D.锐角与钝角之和等于平角2.在同一平面内,下列命题中,属于假命题的是( A ) A.若a⊥b,b⊥c,则a⊥cB.若a∥b,b∥c,则a∥cC.若a⊥c,b⊥c,则a∥bD.若a⊥c,b∥a,则b⊥c3.下面给出的四个命题中,假命题是( D )A.如果a=3,那么|a|=3B.如果x2=4,那么x=±2C.如果(a-1)(a+2)=0,那么a-1=0或a+2=0 D.如果(a-1)2+(b+2)2=0,那么a=1或b=-2 4.已知四个命题:①若一个数的相反数等于它本身,则这个数是0;②若一个数的倒数等于它本身,则这个数是1;③若一个数的算术平方根等于它本身,则这个数是1;④若一个数的绝对值等于它本身,则这个数是正数.其中真命题有( A )A.1个B.2个C.3个D.4个5.请在横线上填上适当的词,使所得到的命题是假命题:相等的角是答案不唯一,如:对顶角(或直角或平角等).知识点2举反例6.(嵊州期末)对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是( C )A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°7.(杭州萧山区戴村期中)已知命题A:任何偶数都是8的整数倍.在下列选项中,可以作为“命题A是假命题”的反例的是( D ) A.2k B.15C.24 D.428.(温州新城学校初中部月考)可以用来证明命题“如果a,b是有理数,那么|a+b|=|a|+|b|”是假命题的反例可以是a=-1,b=3(答案不唯一).知识点3基本事实和定理9.下列不是基本事实的是( C )A.两点确定一条直线B.两点之间线段最短C.两条平行线被第三条直线所截,内错角相等D.经过直线外一点,有且只有一条直线与这条直线平行10.下列说法中,正确的是( B )A.定理是假命题B.基本事实不需要证明C.定理不一定都要证明D.所有的命题都是定理11.“定义、定理、基本事实、命题、真命题、假命题”它们之间的关系恰好可以用下图表示,请指出A,B,C,D,E,F分别与它们中的哪一个对应.解:A表示命题,B表示假命题,C表示真命题,D,E,F分别表示定义、定理、基本事实中任意一个.02中档题12.下列命题中,是假命题的是( C )A.在同一平面内,垂直于同一条直线的两直线平行B.对顶角相等C.互补的角是邻补角D.邻补角是互补的角13.对于同一平面内的三条直线a,b,c,给出下列五个论断:①a∥b;②b∥c;③a⊥c;④a∥c;⑤b⊥c,以其中的两个论断为条件,一个论断为结论,写出一个真命题.解:答案不唯一,如:如果a∥b,b∥c,那么a∥c.14.(杭州萧山区四校联考期中)请判断下列命题的真假性,若是假命题,请举反例说明.(1)若a>b,则a2>b2;(2)两个无理数的和仍是无理数;(3)若三条线段a,b,c满足a+b>c,则这三条线段a,b,c能够组成三角形.解:(1)是假命题,例如:0>-1,但02<(-1)2.(2)是假命题,例如:-2和2是无理数,但-2+2=0,和是有理数.(3)是假命题,例如:三条线段a=3,b=2,c=1满足a+b>c,但这三条线段不能够组成三角形.15.如图,已知∠ACE=∠AEC,CE平分∠ACD,则AB∥CD,用推理的方法说明它是一个真命题.解:∵CE平分∠ACD,∴∠ACE=∠ECD.∵∠ACE=∠AEC,∴∠ECD=∠AEC.∴AB∥CD.∴它是一个真命题.16.如图,∠ABC的两边分别平行于∠DEF的两条边,且∠ABC=45°.图1 图2(1)图1中∠DEF=45°,图2中∠DEF=135°;(2)请观察图1、图2中∠DEF分别与∠ABC有怎样的关系,请你归纳出一个命题.解:图1中∠DEF=∠ABC,图2中∠DEF+∠ABC=180°.命题:如果两个角的两边互相平行,那么这两个角相等或互补.1.3 证明第1课时证明的含义及表述格式01基础题知识点1证明的定义1.下列能作为证明依据的是( D )A.已知条件B.定义和基本事实C.定理和推论D.以上三项都可以2.通过观察你能肯定的是 ( C )A.图形中线段是否相等B.图形中线段是否平行C.图形中线段是否相交D.图形中线段是否垂直知识点2证明过程的书写3.如图,直线a∥b,直线c与a,b都相交,∠1=55°,则∠2=( A ) A.55°B.35°C.125°D.65°第3题图第4题图4.如图,下面推理正确的是( B )A.∵∠1=∠2,∴AB∥CDB.∵∠1+∠2=180°,∴AB∥CDC.∵∠3=∠4,∴AB∥CDD.∵∠1+∠4=180°,∴AB∥CD5.如图,AB∥CD,AD和BC相交于点O,∠A=20°,∠COD=100°,则∠C 的度数是( C )A.80°B.70°C.60°D.50°第5题图第6题图6.(海宁新仓中学期中)如图,FE∥ON,OE平分∠MON,∠FEO=28°,则∠MFE=56度.7.如图所示,已知∠1=∠2=∠3=60°,则∠4=120°.第7题图第8题图8.如图所示,点B,C,D在同一条直线上,CE∥AB,∠ACB=90°,如果∠ECD =36°,那么∠A=54°.9.已知:如图,AD⊥BC于点D,EF⊥BC于点F,交AB于点G,交CA延长线于点E,∠1=∠2.求证:AD平分∠BAC.填写分析和证明中的空白.分析:要证明AD平分∠BAC,只要证明∠BAD=∠CAD,而已知∠1=∠2,所以应联想这两个角分别和∠1、∠2的关系,由已知BC的两条垂线可推出AD∥EF,这时再观察这两对角的关系已不难得到结论.证明:∵AD⊥BC,EF⊥BC(已知),∴AD∥EF(在同一平面内,垂直于同一条直线的两条直线互相平行).∴∠BAD=∠1(两直线平行,内错角相等),∠CAD=∠2(两直线平行,同位角相等).∵∠1=∠2(已知),∴∠BAD=∠CAD,即AD平分∠BAC(角平分线的定义).10.如图,已知AB∥CD,∠B=40°,∠D=40°,求证:BC∥DE.证明:∵AB∥CD,∴∠C=∠B=40°.∵∠D=40°,∴∠C=∠D.∴BC∥DE.02中档题11.如图所示,已知直线a∥b,∠1=40°,∠2=60°,则∠3等于( A ) A.100°B.60°C.40°D.20°第11题图第12题图12.将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,那么AC∥DE;③如果∠2=30°,那么BC∥AD;④如果∠2=30°,那么∠4=∠C.其中正确的有( B )A.①②③B.①②④C.③④D.①②③④13.已知,如图,∠1=∠ACB,∠2=∠3,求证:∠BDC+∠DGF=180°.证明:∵∠1=∠ACB(已知),∴DE∥BC(同位角相等,两直线平行).∴∠2=∠DCF(两直线平行,内错角相等).∵∠2=∠3(已知),∴∠3=∠DCF(等量代换).∴CD∥FG(同位角相等,两直线平行).∴∠BDC+∠DGF=180°(两直线平行,同旁内角互补).14.如图,已知BE∥CF,BE,CF分别平分∠ABC,∠BCD.求证:AB∥CD.证明:∵BE,CF分别平分∠ABC,∠BCD(已知),∴∠1=12∠ABC, ∠2=12∠BCD(角平分线的定义). ∵BE ∥CF(已知),∴∠1=∠2(两直线平行,内错角相等).∴12∠ABC =12∠BCD, 即∠ABC =∠BCD.∴AB ∥CD(内错角相等,两直线平行).03 综合题15.阅读:如图1,∵CE ∥AB,∴∠1=∠A,∠2=∠B.∴∠ACD =∠1+∠2=∠A +∠B.这是一个有用的事实,请用这个事实,在图2中的四边形ABCD 内引一条和边平行的直线,求出∠A +∠B +∠C +∠D 的度数.解:过点D 作DE ∥AB 交BC 于点E.则∠DEB =∠C +∠EDC.∵DE ∥AB,∴∠A +∠ADE =180°,∠B +∠DEB =180°.∴∠A +∠B +∠C +∠ADC =∠A +∠B +∠C +∠EDC +∠ADE =∠A +∠ADE +∠B +∠DEB =360°.第2课时三角形内角和定理的推论01基础题知识点1几何命题的证明1.证明命题“在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条”是真命题.解:已知:如图,AB∥CD,EF⊥AB于M,交CD于点N.求证:EF⊥CD.证明:∵AB∥CD,∴∠AMN+∠CNM=180°.∵EF⊥AB,∴∠AMN=90°.∴∠CNM=90°.∴EF⊥CD.2.证明命题“两条平行线被第三条直线所截,得到的一组同旁内角的角平分线互相垂直”是真命题 .解:已知:如图,AB∥CD,EF交AB于点G,交CD于点H,GM平分∠BGH,HM 平分∠DHG.求证:GM⊥HM.证明:∵AB ∥CD,∴∠BGH +∠DHG =180°.∵GM 平分∠BGH,HM 平分∠DHG,∴∠MGH =12∠BGH,∠GHM =12∠DHG. ∴∠MGH +∠GHM =12(∠BGH +∠DHG)=12×180°=90°. ∴∠M =180°-∠MGH -∠GHM =180°-90°=90°.∴GM ⊥HM.知识点2 三角形内角和定理的推论3.(甘孜中考)如图,在△ABC 中,∠B =40°,∠C =30°,延长BA 至点D,则∠CAD 的大小为( C )A .110°B .80°C .70°D .60°第3题图 第4题图 4.(金华六校联考)如图,AD 是∠CAE 的平分线,∠B =30°,∠DAE =65°,那么∠ACD 等于( B )A .60°B .80°C .65°或80°D .100°5.(嵊州校级期中)如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C =90°,∠B =45°,∠E =30°,则∠BFD 的度数是( A )A.15°B.25°C.30°D.10°第5题图第6题图6.(嘉兴桐乡实验中学期中)如图所示,∠A,∠1,∠2的大小关系是( B ) A.∠A>∠1>∠2 B.∠2>∠1>∠AC.∠A>∠2>∠1 D.∠2>∠A>∠17.(丽水中考)如图,在△ABC中,∠A=63°,直线MN∥BC,且分别与AB,AC 相交于点D,E,若∠AEN=133°,则∠B的度数为70°.8.(嵊州期末)如图,在△ABC中,E点是AB上的一点,DE⊥AB交AC的延长线于D点,已知∠B=28°,∠D=46°,求∠BCD的度数.解:∵DE⊥AB,∴∠AED=90°.∵∠D=46°,∴∠A=44°.∴∠BCD=∠A+∠B=44°+28°=72°.9.如图所示,在△ABC中,∠ABC=∠C,BD是∠ABC的平分线,∠BDC=87°,求∠A的度数.解:∵BD是∠ABC的平分线,∴∠ABC=2∠CBD=2∠ABD.∵∠CBD+∠C+∠BDC=180°,∠ABC=∠C,∴3∠ABD+87°=180°.∴∠ABD=31°.∵∠CDB=∠A+∠ABD,∴∠A=87°-31°=56°.02中档题10.(恩施中考)如图,已知AB∥DE,∠ABC=70°,∠CDE=140°,则∠BCD 的值为( B )A.20°B.30°C.40°D.70°第10题图第11题图11.如图,∠1、∠2、∠3分别是△ABC的3个外角,则∠1+∠2+∠3=360°.12.如图所示,△ABC中,点D,E分别是AC,BD上的点,且∠A=65°,∠ABD =∠DCE=30°,则∠BEC的度数是125°.第12题图 第13题图13.如图所示,已知∠BDC =142°,∠B =34°,∠C =28°,则∠A =80°.14.(温州校级期中)如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是2∠A =∠1+∠2.15.如图,在△ABC 中,∠ADB =100°,∠C =80°,∠BAD =12∠DAC,BE 平分∠ABC,求∠BED 的度数.解:∵∠ADB =100°,∠C =80°,∴∠DAC =∠ADB -∠C =100°-80°=20°.∵∠BAD =12∠DAC, ∴∠BAD =12×20°=10°. 在△ABD 中,∠ABC =180°-∠ADB -∠BAD =180°-100°-10°=70°,∵BE 平分∠ABC,∴∠ABE =12∠ABC =12×70°=35°. ∴∠BED =∠BAD +∠ABE =10°+35°=45°.16.(温州新城学校初中部月考)如图,在△ABC 中,∠C =90°,BE 平分∠ABC,AF 平分外角∠BAD,BE 与FA 交于点E,求∠E 的度数.解:设∠ABC =x °,∵∠BAD 是△ABC 的外角,∠C =90°,∴∠BAD =∠ABC +∠C =90°+x °.∵AF 平分外角∠BAD,∴∠BAF =12∠BAD =12(90°+x °). ∵BE 平分∠ABC,∴∠ABE =12∠ABC =12x °. ∴∠E =∠BAF -∠ABE =12(90°+x °)-12x°=45°. 03 综合题17.图中的两个图形是五角星和它的变形.(1)如图1是一个五角星,求证:∠A+∠B+∠C+∠D+∠E=180°;(2)图1中的点A向下移到BE上时(如图2),五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有无变化?证明你的结论.解:(1)证明:∵∠1=∠C+∠E,∠2=∠B+∠D,∠1+∠2+∠A=180°,∴∠C+∠E+∠B+∠D+∠A=180°.(2)无变化.∵∠1=∠C+∠E,∠2=∠B+∠D,∠1+∠3+∠2=180°,∴∠C+∠E+∠B+∠D+∠CAD=180°.1.4 全等三角形01基础题知识点1全等图形及全等三角形1.在下列各组图形中,是全等的图形是( C )2.如图,把△ACB沿着AB翻转,点C与点D重合,请用符号表示图中所有的全等三角形.解:△ACE≌△ADE;△BCE≌△BDE;△ABC≌△ABD.知识点2全等三角形的对应元素3.如图所示,图中的两个三角形能完全重合,下列写法正确的是( B )A.△ABE≌△AFBB.△ABE≌△ABFC.△ABE≌△FBAD.△ABE≌△FAB4.已知:如图,△ABD与△CDB全等,∠ABD=∠CDB,写出其余的对应角和各对对应边.解:∠A与∠C,∠ADB与∠CBD是对应角;BD与DB,AD与CB,AB与CD是对应边.知识点3全等三角形的性质5.如图所示,△ABC≌△CDA,并且AB=CD,那么下列结论错误的是( D )A.∠1=∠2B.CA=ACC.∠D=∠BD.AB=BC6.已知△ABC≌△A′B′C′,若∠A=50°,∠B′=80°,则∠C的度数是( C )A.30°B.40°C.50°D.607.如图,△ABC≌△DEF,请根据图中提供的信息,写出x=20.8.如图,已知△AOC≌△BOD.求证:AC∥BD.证明:∵△AOC≌△BOD,∴∠A=∠B.∴AC∥BD.9.如图,△ABD≌△EBC,AB=3 cm,BC=4.5 cm,点A,B,C在一条直线上.(1)求DE的长;(2)判断AC与BD的位置关系,并说明理由.解:(1)∵△ABD≌△EBC,∴AB=EB,BD=BC.∴DE=BD-BE=4.5-3=1.5(cm).(2)AC⊥BD.理由:∵△ABD≌△EBC,∴∠ABD=∠EBC.又∵∠ABD+∠EBC=180°,∴∠EBC=90°.∴AC⊥BD.02中档题10.如图,△ABC≌△AED,那么图中相等的角有( C )A.3对B.4对C.5对D.6对第10题图第11题图11.如图,已知△ABC≌△DEF,DF∥BC,且∠B=60°,∠F=40°,点A在DE 上,则∠BAD的度数为( B )A.15°B.20°C.25°D.30°12.如图,已知△ACF≌△DBE,∠A=∠D,∠E=∠F,AD=11 cm,BC=7 cm,则AB的长为2cm.第12题图第13题图13.如图,在△ABC中,∠B=25°,现将△ABC绕其顶点C顺时针旋转30°后,得△EDC,则∠BFD的度数为55°.14.如图,将长方形纸片ABCD(AD>AB)沿AM折叠,使点D落在BC上(与点N重合),如果AD=18.4 cm,∠DAM=40°,求AN的长和∠NAB的度数.解:∵沿AM折叠后,点D与点N重合,∴△ADM≌△ANM.∴AN=AD=18.4 cm,∠MAN=∠MAD=40°.∵四边形ABCD是长方形,∴∠DAB=90°.∴∠NAB=∠BAD-∠MAN-∠MAD=10°.15.(温州新城学校初中部月考)如图,△ABC≌△ADE,且∠CAD=35°,∠B =∠D=20°,∠EAB=105°,求∠BFD和∠BED的度数.解:∵△ABC≌△ADE,∴∠CAB=∠EAD.又∵∠CAD=35°,∠EAB=105°,∠EAD+∠DAC+∠CAB=∠EAB=105°,∴∠EAD=∠DAC=∠CAB=35°.∴∠DFB=∠DAB+∠B=70°+20°=90°,∠BED=∠BFD-∠D=90°-20°=70°.03综合题16.已知,如图,A,D,E三点在同一直线上,且△BAD≌△ACE.(1)试说明BD=DE+CE;(2)△ABD满足什么条件时,BD∥CE?解:(1)∵△BAD≌△ACE,∴BD=AE,AD=CE.∵AE=AD+DE,∴AE=CE+DE.∴BD=CE+DE.(2)△ABD满足∠ADB=90°时,BD∥CE,理由如下:∵∠ADB=90°,∴∠BDE=180°-90°=90°.又∵△BAD≌△ACE,∴∠CEA=∠ADB=90°.∴∠CEA=∠BDE.∴BD∥CE.1.5 三角形全等的判定第1课时三角形全等的判定(SSS)01基础题知识点1利用“SSS”证明三角形全等1.如图,下列三角形中,与△ABC全等的是 ( C )A.①B.②C.③D.④2.如图所示,在△ABC中,AB=AC,BE=CE,则由“SSS”可以判定 ( C ) A.△ABD≌△ACD B.△BDE≌△CDEC.△ABE≌△ACE D.以上都不对第2题图 第3题图3.如图,小敏做了一个角平分仪ABCD,其中AB =AD,BC =DC.将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD,使它们分别落在角的两边上,过点A,C 画一条射线AE,AE 就是∠PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC,则说明这两个三角形全等的依据是SSS .4.如图,点C 是AB 的中点,AD =CE,CD =BE.求证:△ACD ≌△CBE.证明:∵点C 是AB 的中点, ∴AC =CB.在△ACD 和△CBE 中, ⎩⎪⎨⎪⎧AD =CE ,CD =BE ,AC =CB ,∴△ACD ≌△CBE(SSS ).知识点2 “SSS ”与全等三角形性质的综合运用5.如图所示,在△ABC 中,AD =ED,AB =EB,∠A =80°,则∠BED =80°.6.(海宁新仓中学期中)如图,AF =DB,BC =EF,AC =ED,求证:CB ∥EF.证明:∵AF =DB, ∴AF +FB =DB +FB, 即AB =DF.在△ACB 和△DEF 中, ⎩⎪⎨⎪⎧AB =DF ,AC =DE ,BC =FE ,∴△ACB ≌△DEF(SSS ). ∴∠ABC =∠DFE. ∴CB ∥EF.知识点3 三角形的稳定性7.如图所示,不具有稳定性的是( B )8.下列生产和生活:①用人字架来建筑房屋;②用窗钩来固定窗扇;③在栅栏门上斜钉着一根木条;④商店的推拉活动防盗门等.其中,用到三角形的稳定性的有( C )A .1种B .2种C .3种D .4种知识点4用尺规作已知角的平分线9.已知∠α(如图),用直尺和圆规作∠α的平分线.解:如图所示.02中档题10.如图,AB=AC,AD=AE,BE=CD,∠2=110°,∠BAE=60°,下列结论错误的是( C )A.△ABE≌△ACD B.△ABD≌△ACEC.∠ACE=30°D.∠1=70°第10题图第11题图11.(临海期末)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?( B )A.0根B.1根C.2根D.3根12.如图所示,△ABC是不等边三角形,DE=BC,以D、E为两个顶点作位置不同的三角形,使所作三角形与△ABC全等,这样的三角形最多可以画出( B )A.2个B.4个C.6个D.8个13.在学习了利用尺规作一个角的平分线后,爱钻研的小燕子发现,只用一把刻度尺也可以作出一个角的平分线.她是这样作的(如图): (1)分别在∠AOB 的两边OA,OB 上各取一点C,D,使得OC =OD ;(2)连结CD,并量出CD 的长度,取CD 的中点E ;(3)过O,E 两点作射线.则OE 就是∠AOB 的平分线.请你说出小燕子这样作的理由.解:在△OCE 和△ODE 中, ∵OC =OD,CE =DE,OE =OE, ∴△OCE ≌△ODE(SSS ).∴∠COE =∠DOE(全等三角形的对应角相等). ∴OE 就是∠AOB 的平分线. 故小燕子这样作是正确的.14.如图,已知AB =AC,AD =AE,BD =CE,求证:∠3=∠1+∠ 2.证明:在△ABD 和△ACE 中, ⎩⎪⎨⎪⎧AB =AC ,AD =AE ,BD =CE ,∴△ABD ≌△ACE(SSS ). ∴∠BAD =∠1,∠ABD =∠2.∵∠3=∠BAD+∠ABD,∴∠3=∠1+∠2.15.如图,C,F是线段BE上的两点,△ABF≌△DEC,且AC=DF.(1)你在图中还能找到几对全等的三角形?并说明理由;(2)∠ACE=∠BFD吗?试说明你的理由.解:(1)还能找到2对全等三角形,分别是△ACF≌△DFC,△ABC≌△DEF.理由如下:∵△ABF≌△DEC,∴AB=DE,BF=EC,AF=DC(全等三角形的对应边相等).∴BF+FC=EC+FC,即BC=EF.在△ACF和△DFC中,∵AC=DF,AF=DC,FC=CF(公共边),∴△ACF≌△DFC(SSS).在△ABC和△DEF中,∵AB=DE,AC=DF,BC=EF,∴△ABC≌△DEF(SSS).(2)∠ACE=∠BFD.理由如下:∵△ABC≌△DEF,∴∠ACB=∠DFE(全等三角形的对应角相等).∵∠ACB+∠ACE=180°,∠DFE+∠BFD=180°,∴∠ACE=∠BFD(等角的补角相等).03综合题16.如图,已知AD=BC,AC=BD.求证:∠DAO=∠CBO.证明:连结AB,在△ABD和△BAC中,∵AD=BC,BD=AC,AB=BA,∴△ABD≌△BAC(SSS).∴∠ABD=∠BAC,∠BAD=∠ABC.∴∠BAD-∠BAC=∠ABC-∠ABD,即∠DAO=∠CBO.第2课时三角形全等的判定(SAS) 01基础题知识点1利用“SAS”证明三角形全等1.下图中的两个三角形全等的是( C )A.③④B.②③C.①②D.①④2.(温州八中期中)如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则需补充的条件是( D )A.∠A=∠DB.∠E=∠CC.∠A=∠CD.∠1=∠2知识点2“SAS”与全等三角形性质的综合运用3.如图所示,在△ABC中,∠B=∠C=50°,BD=CF,BE=CD,则∠EDF的度数是( A )A.50°B.80°C.40°D.30°4.(嵊州期末)如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF ⊥EF 于点F,AC =DF.求证:(1)△ABC ≌△DEF ; (2)AB ∥DE.证明:(1)∵AC ⊥BC 于点C,DF ⊥EF 于点F, ∴∠ACB =∠DFE =90°. 在△ABC 和△DEF 中, ⎩⎪⎨⎪⎧BC =EF ,∠ACB =∠DFE ,AC =DF ,∴△ABC ≌△DEF(SAS ). (2)∵△ABC ≌△DEF, ∴∠B =∠DEF. ∴AB ∥DE.知识点3 线段垂直平分线的性质定理5.如图,直线CD 是线段AB 的垂直平分线,P 为直线CD 上的一点,已知线段PA =5,则线段PB 的长度为 ( B )A .6B .5C .4D . 3第5题图 第6题图6.如图,在△ABC 中,边AB,AC 的垂直平分线相交于点P,则PB 与PC 的关系是( B )A .PB>PCB .PB =PC C .PB<PCD .PB ≠PC知识点4 利用“SAS ”判定三角形全等解决实际问题7.(金华四中期末)如图,为了测量一池塘的宽AB,在岸边找到一点C,连结AC,在AC 的延长线上找一点D,使得DC =AC,连结BC,在BC 的延长线上找一点E,使得EC =BC,测出DE =60米,试问池塘的宽AB 为多少?请说明理由.解:AB =60米.理由如下: 在△ABC 和△DEC 中, ⎩⎪⎨⎪⎧AC =DC ,∠ACB =∠DCE ,BC =EC ,∴△ABC ≌△DEC(SAS ). ∴AB =DE =60米. 则池塘的宽AB 为60米. 02 中档题8.如图,在四边形ABCD 中,AB =AD,CB =CD,连结AC,BD 交于点O,则图中的全等三角形共有( C )A .1对B .2对。
浙教八上数学期末复习一 三角形的初步知识
期末复习一三角形的初步知识一、必备知识1.三角形两边之和大于第三边,两边之差小于.2.三角形的内角和为,外角和为;三角形的外角等于的两个内角之和.3.角平分线上的点到的距离相等;线段垂直平分线上的点到的距离相等.4 .两三角形全等的判定:SSS,SAS,ASA,.直角三角形特有的判定:.二、防范点1.三角形外角注意“不相邻”;2.全等注意“SAS”中,A为夹角;3.尺规作图时注意三角形的角平分线、中线、高线均为线段;钝角三角形高线不要画错.例题精析知识点一三角形边、角之间的关系例1 (1)下列各线段中,能组成三角形的是()A.a=6.3,b=6.3,c=12.6B.a=1,b=2,c=3C.a=2.3,b=3,c=5D.a=6,b=8,c=16(2)在△ABC中,AB=3,BC=7,则AC的长x的取值范围是.(3)三角形两边长为3cm,7cm,且第三边为奇数,则三角形的最大周长是.(4)三角形的三边长分别为5,1+2x,8,则x的取值范围是.(5)已知a,b,c是三角形的三边长,化简:a-b+c-a-b-c= .【反思】解题的关键是能正确运用三角形两边之和大于第三边,三角形的两边之差小于第三边.例2 (1)在△ABC中,∠A∶∠B∶∠C=2∶3∶4,则∠A的度数为.(2)将一副三角尺按如图所示的方式叠放(两条直角边重合),则∠α的度数是.(3)如左下图,∠BDC=98°,∠C=38°,∠A=37°,∠B的度数是.(4)如右上图,D 、E 、F 分别是△ABC 三边延长线上的点,则∠D+∠E+∠F+∠1+∠2+∠3= 度.【反思】掌握三角形内角和等于180°,一个外角等于和它不相邻的两个内角的和是解题的关键.知识点二 三角形的角平分线、中线、高线的综合应用例3 (1)如图,已知△ABC 中,∠ACB=90°,CH 、CM 分别是斜边AB 上的高和中线,则下列结论正确的是( )A .CM=BCB .CB=21AB C .∠ACM=30°D .CH ·AB=AC ·BC(2)AE 是△ABC 的角平分线,AD ⊥BC 于点D ,若∠BAC=130°,∠C=30°,则∠DAE 的度数是 .(3)已知AD 是△ABC 的中线,且△ABD 比△ACD 的周长大3cm ,则AB 与AC 的差为 .(4)如图,△ABC 中,点D 在BC 上且BD=2DC ,点E 是AC 中点,已知△CDE 面积为1,那么△ABC 的面积为 .【反思】角平分线、中线、高线是三角形中重要的线段,计算过程中往往要用到它们的性质. 角平分线可知两个角相等,角平分线上的点到角两边的距离相等;中线平分对边,也平分三角形的面积;高线往往可得角度为90°,并有时可用面积法解决问题.知识点三 定义与命题相关概念例4 (1)下列语句不是命题的是( )A .对顶角相等B .连结AB ,并延长至点CC .内错角相等D .同角的余角相等(2)将下列命题写成“如果……那么……”的形式.①一个锐角的补角大于这个角的余角;②异号两数相加得零.(3)判断下列命题是真命题还是假命题.①如果ab =0,那么a =0;②若a 是有理数,则a2+1>0;③1是质数;④两条直线相交,只有一个交点;⑤同位角相等.【反思】命题是由条件和结论两部分组成,判断是否是命题不是看语句是否正确,而是看语句是否有判断. 说明一个命题是真命题要用证明的方法,而说明一个命题是假命题只要举一个反例即可.知识点四 三角形全等及全等的综合运用例5 在数学课上,林老师在黑板上画出如图所示的图形(其中点B ,F ,C ,E 在同一直线上),并写出四个条件:①AB =DE ,②BF =EC ,③∠B =∠E ,④∠1=∠2.请你从这四个条件中选出三个作为已知条件,另一个作为结论,组成一个真命题,并给予证明.已知条件: .结论: (均填写序号).证明:【反思】证明三角形全等要用到SSS ,SAS ,ASA ,AAS ,HL 这些方法,在运用这些方法证明的过程中要注意条件的合理性,不要乱用条件.例6 (重庆中考)在△ABC 中,AB =AC ,∠A =60°,点D 是线段BC 的中点,∠EDF =120°,DE 与线段AB 相交于点E ,DF 与线段AC (或AC 的延长线)相交于点F.(1)如图1,若DF ⊥AC ,垂足为F ,AB =4,求BE 的长;(2)如图2,将(1)中的∠EDF 绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于点F. 求证:BE +CF =21AB ; (3)如图3,将(2)中的∠EDF 继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交于点F ,作DN ⊥AC 于点N ,若DN =FN ,求证:BE +CF =3(BE -CF ).【反思】从特殊到一般,第(2)小题以第(1)小题为启发,构造两三角形全等.旋转类题不变的是三角形全等.例7 如图,一次函数y =-32x +2的图象分别与x 轴、y 轴交于点A 、B ,以线段AB 为边在第一象限内作等腰Rt △ABC ,∠BAC =90°.(1)求C 点坐标;(2)求过B 、C 两点直线的解析式;(3)在坐标平面内求一点D ,使△ABD 与△ABC 全等. 直接写出所有点D 的坐标;(4)在y 轴上求一点P ,使△APB 的面积与△ABC 的面积相等. 直接写出所有点P 的坐标.【反思】第(4)小题可以BP 为底,OA 为高,也可过C 作CP ∥AB ,求出CP 的解析式y =-32x +319,从而得P (0,319),再寻求另一点P (0,-37). 校内练习1.若三角形三个内角的度数之比为2∶3∶5,则这个三角形一定是 三角形.2.如图,△ABC 中,点D 在BA 的延长线上,DE ∥BC ,如果∠BAC=65°,∠C=30°,那么∠BDE 的度数是 .3. 如图,直线l 1∥l 2,且分别与△ABC 的两边AB 、AC 相交,若∠A=40°,∠1=45°,则∠2的度数为 .4.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连结BD.(1)求证:△BAD≌△CAE;(2)请判断BD、CE有何大小、位置关系,并证明.5.在梯形ABCD中,AD∥BC,连结AC,且AC=BC,在对角线AC上取点E,使CE=AD,连结BE.(1)求证:△DAC≌△ECB;(2)若CA平分∠BCD,且AD=3,求BE的长.6.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连结AE、BE,BE⊥AE,延长AE交BC的延长线于点F. 求证:(1)FC=AD;(2)AB=BC+AD.7.平面直角坐标系中,如图1,直线AB交x轴于点B,交y轴于点A(0,2),∠ABO=30°,直线AC与直线AB关于y轴对称.(1)分别求出直线AB、直线AC的解析式;(2)点E、F分别在线段AB、AC上,若∠EOF=60°,计算BE+CF的值;(3)若点E、F分别在射线BA、射线AC上,∠EOF=60°,直接写出线段BE、CF、BC 三者的数量关系式.答案期末复习一 三角形的初步知识【必备知识与防范点】1. 第三边2. 180° 360° 与它不相邻3. 角两边 线段两端4. AAS HL【例题精析】例1 (1)C (2)4<x <10 (3)19cm (4)1<x <6 (5)2a-2b例2 (1)40° (2)75° (3)23° (4)180例3 (1)D (2)5° (3)3cm (4)6例4 (1)B (2)①如果一个角是锐角,那么这个角的补角大于这个角的余角. ②如果两个数异号,那么这两个数相加得零.(3)②④为真命题,①③⑤为假命题.例5 答案不唯一,如:已知条件:①,②,③结论:④证明:∵BF =CE ,∴BF +CF =EC +CF ,即BC =EF ,在△ABC 和△DEF 中,AB =DE ,∠B =∠E ,BC =EF ,∴△ABC ≌△DEF (SAS ),∴∠1=∠2.例6 (1)1; (2)过D 作DG ⊥AB 于G ,DN ⊥AC 于N ,易证:∴△DEG ≌△DFN ,故EG =FN ,∴BE +CF =BG +GE +CN -NF =2BG =BD =21AB ; (3)过D 作DG ⊥AB 于G ,易证:∴△DEG ≌△DFN ,故EG =FN ,∴BE +CF =BG +GE +NF -CN =2EG ,BE -CF =BG +GE -NF +CN =2BG ,又∵DN =FN ,∴EG =DG =3BG ,即BE +CF =3(BE -CF ).例7 (1)C (5,3); (2)y =51x +2; (3)D (2,5)或D (-2,-1)或D (1,-3);(4)P (0,319)或(0,-37). 【校内练习】1. 直角2. 95°3. 95°4.(1)∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠EAD+∠CAD ,∴∠BAD=∠CAE ,在△BAD 和△CAE 中,AB=AC ,∠BAD=∠CAE ,AD=AE ,∴△BAD ≌△CAE (SAS ).(2)BD=CE ,BD ⊥CE ,理由如下:由(1)知,△BAD ≌△CAE ,∴BD=CE ;∵△BAD ≌△CAE ,∴∠ABD=∠ACE ,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD ⊥CE .5.(1)∵AD ∥BC ,∴∠DAC=∠ECB ,在△DAC 和△ECB 中,AD=CE ,∠DAC=∠ECB ,AC=BC ,∴△DAC ≌△ECB (SAS );(2)∵CA 平分∠BCD ,∴∠ECB=∠DCA ,且由(1)可知∠DAC=∠ECB ,∴∠DAC=∠DCA ,∴CD=DA=3,又∵由(1)可得△DAC ≌△ECB ,∴BE=CD=3.6.(1)证△AED ≌△FEC (AAS ),∴FC =AD ;(2)证△ABE ≌△FBE (SAS )得AB =BF =BC +CF =BC +AD.7. (1)由A (0,2),∠ABO =30°,得BO =23,B (-23,0),直线AB :y =33x +2. 由对称性得C (23,0),直线AC :y =-33x +2.(2)过O 作OM ⊥AB ,ON ⊥AC ,由对称性可得OA 是∠BAC 的平分线,∴∠BAO =∠OAC =60°,OM =ON ,∴∠MON =60°,∵∠EOF =60°,∴∠EOM =∠FON ,而∠OME =∠ONF =90°,∴△OME ≌△ONF ,∴EM =NF ,∴BE +CF =BM +CN ,∵∠ABO =30°,BO =23,∴BM =3,同理CN =3,∴BE +CF =6.(3)当F 在线段AC 上时,BE +CF =6=23BC ,故BE +CF =23BC ,当F 在线段AC 延长线上时,如图2,∵∠EOF =60°,容易证得△OME ≌△ONF ,∴BE =BM +ME =BM +NF =BM +CN +CF =3+3+CF ,∴BE -CF =6=23BC ,故BE -CF =23BC.。
【浙教版】八年级数学上第1章《 三角形的初步知识》期末复习(含答案)
期末复习(一) 三角形的初步知识01 知识结构三角形的初步知识⎩⎪⎪⎪⎨⎪⎪⎪⎧三角形的概念⎩⎪⎨⎪⎧三边关系内角和定理及其推论三角形的中线、高线、角平分线定义与命题⎩⎪⎨⎪⎧命题的组成命题的分类全等图形→全等三角形⎩⎪⎨⎪⎧全等三角形的性质全等三角形的判定角平分线的性质定理线段垂直平分线的性质定理尺规作图02 重难点突破重难点1 三角形的三边关系【例1】 (萧山区期中)已知等腰三角形两条边的长分别是3和6,则它的周长是( B ) A.12 B.15 C.12或15 D.15或18 【方法归纳】 判断给定的三条线段能否组成三角形,只需判断两条较短线段的和是否大于最长线段.在已知等腰三角形的两边长求其周长时,需注意:(1)一定要利用分类讨论思想列举出三角形的三边长;(2)一定要利用三角形的三边关系检验列举出的三边长是否能围成三角形.1.(海宁新仓中学期中)两根木棒的长分别是5 cm 和7 cm ,要选择第三根木棒,将它们首尾相接钉成一个三角形,则第三根木棒长的取值可以是( B )A.2 cmB.4 cmC.12 cmD.13 cm重难点2 三角形形内角和定理及其推论 【例2】 如图,在△ABC 中,AB =AC ,∠A =30°,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,则∠D 等于( A)A.15°B.17.5°C.20°D.22.5°【方法归纳】在计算与三角形有关的角度时,首先应判断出要求角与所在三角形中已知角之间的关系,再合理选用三角形的内角和定理或外角的性质求角度,同时在解题时要注意角平分线的定义.平行线的性质等知识的运用.2.如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为( C )A.28°B.38°C.48°D.88°重难点3三角形的三条重要线段【例3】如图,AD是△ABC的中线,点E为AD的中点,点F为BE的中点,S△ABC=41,则S△BFC=41 4.【思路点拨】根据三角形面积公式得S△BFC=S△EFC,S△AEC=S△DEC,S△AEB=S△DEB,S△ABD=S△ADC,从而S△BFC=14S△ABC.3.在△ABC中,AC=5 cm,AD是△ABC中线,若△ABD的周长比△ADC的周长大2 cm,则BA=7_cm.4.(1)如图所示,在△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于点D,DF⊥CE于点F,求∠CDF的度数;(2)在(1)中,若∠A=α,∠B=β(α≠β),其他条件不变,求∠CDF的度数.(用含α和β的代数式表示)解:(1)根据题意,在△ABC中,∠A=40°,∠B=72°,所以∠ACB=68°.因为CE平分∠ACB,所以∠ACE=34°.所以∠CED=∠A+∠ACE=74°.因为CD⊥AB,DF⊥CE,且∠ECD为公共角,所以∠CDF=∠CED=74°.(2)由(1)可知,∠CDF =∠CED =∠A +∠ACE ,∠ACE =180°-α-β2.所以∠CDF =180°+α-β2.重难点4 线段垂直平分线与角平分线的性质【例4】 如图,在△ABC 中,∠ACB =90°,BE 平分∠ABC ,交AC 于点E ,DE 垂直平分AB 于点D ,求证:BE +DE =AC .证明:∵∠ACB =90°, ∴AC ⊥BC .∵ED ⊥AB ,BE 平分 ∠ABC , ∴CE =DE ,∵DE 垂直平分AB , ∴AE =BE .∵AC =AE +CE ,∴BE +DE =AC . 【方法归纳】 在利用线段垂直平分线的性质求线段长度时,通常是根据线段垂直平分线的性质得到线段相等,再根据相等线段之间的转换,得到所求线段的长.5.如图,在△ABC 中,∠BAC >90°,AB 的垂直平分线MP 交BC 于点P ,AC 的垂直平分线NQ 交BC 于点Q ,连结AP ,AQ ,若△APQ 的周长为20 cm ,则BC 为20cm .第5题图 第6题图6.如图,△ABC 的三条角平分线交于O 点,已知△ABC 的周长为20,OD ⊥AB ,OD =5,则△ABC 的面积为50.重难点5 全等三角形的性质与判定【例5】 已知△ABN 和△ACM 的位置如图所示,AB =AC ,AD =AE ,∠1=∠2.(1)求证:BD =CE ; (2)求证:∠M =∠N .【思路点拨】 (1)要证BD =CE ,可通过转化证△ABD ≌△ACE ,根据“SAS ”得证;(2)要证∠M =∠N ,可通过转化证△ACM ≌△ABN ,由(1)可知∠C =∠B .因为∠2=∠1,所以∠CAM =∠BAN .再结合AB =AC ,即可根据“ASA ”得证.证明:(1)在△ABD 和△ACE 中,⎩⎨⎧AB =AC ,∠1=∠2,AD =AE ,∴△ABD ≌△ACE (SAS ). ∴BD =CE .(2)∵∠1=∠2,∴∠1+∠DAE =∠2+∠DAE , 即∠BAN =∠CAM .由(1),得△ABD ≌△ACE , ∴∠B =∠C .在△ACM 和△ABN 中,⎩⎨⎧∠C =∠B ,AC =AB ,∠CAM =∠BAM ,∴△ACM ≌△ABN (ASA ). ∴∠M =∠N .【方法归纳】 三角形全等的证明思路:已知两边⎩⎪⎨⎪⎧找夹角→SAS找另一边→SSS已知一边和一角 ⎩⎪⎨⎪⎧边为角的对边→找任一角→AAS 边为角的邻边⎩⎪⎨⎪⎧找夹角的另一边→SAS找夹边的另一角→ASA找边的对角→AAS已知两角⎩⎪⎨⎪⎧找夹边→ASA找任一角的对边→AAS7.(成都中考)如图,△ABC ≌△A ′B ′C ′,其中∠A =36°,∠C =24°,则∠B =120°.第7题图第8题图8.(杭州大江东区期中)如图,已知AD是△ABC的角平分线,在不添加任何辅助线的前提下,要使△AED≌△AFD,需添加一个条件是:AE=AF或∠EDA=∠FDA或∠AED=∠AF D.03备考集训一.选择题(每小题3分,共30分)1.下列长度的三条线段,能组成三角形的是( C )A.1,2,4B.4,5,9C.4,6,8D.5,5,112.(嵊州校级期中)下列语句不是命题的是( B )A.两直线平行,同位角相等B.作直线AB垂直于直线CDC.若|a|=|b|,则a2=b2D.同角的补角相等3.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是( D )A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE第3题图第4题图4.(杭州大江东区期中)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是( C )A.BC=EC,∠B=∠EB.BC=EC,AC=DCC.BC=EC,∠A=∠DD.∠B=∠E,∠A=∠D5.如图,将两根钢条AA′.BB′的中点O连在一起,使AA′.BB′可以绕着点O自由转动,就做成了一个测量工件,由三角形全等得出A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是( A )A.边角边B.角边角C.边边边D.角角边第5题图第6题图6.如图,在△ABC中,AB=AC,DE是AB边的垂直平分线,分别交A B.AC于点D.E,△BEC 的周长是14 cm,BC=5 cm,则AB的长是( B )A.14 cmB.9 cmC.19 cmD.12 cm7.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是( A )A.3B.4C.6D.5第7题图第8题图8.如图所示,在△ABC中,∠BAC∶∠ABC∶∠BCA=3∶4∶5,BD,CE分别是边AC,AB 上的高,BD,CE相交于点H,则∠BHC的度数为( B )A.120°B.135°C.125°D.130°9.(嵊州期末)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( C )A.1个B.2个C.3个D.4个第9题图第10题图10.(杭州大江东区期中)如图,四边形ABCD是正方形,直线a,b,c分别通过A.D.C三点,且a∥b∥c.若a与b之间的距离是5,b与c之间的距离是7,则正方形ABCD的面积是( B )A.70B.74C.144D.148二.填空题(每小题4分,共24分)11.如图,在△ABC中,∠A=58°,∠B=63°,则外角∠ACD=121度.第11题图第12题图12.如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为3.13.如图,已知△ABC的周长为27 cm,AC=9 cm,BC边上中线AD=6 cm,△ABD周长为19 cm,AB=8_cm.14.(杭州萧山区月考)已知三角形的两条边长分别是3 cm和4 cm,一个内角为40°,那么满足这一条件且彼此不全等的三角形共有4个.15.当三角形中一个内角是另一个内角的3倍时,我们称此三角形为“梦想三角形”.如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为18°或36°.16.如图,在四边形ABCD中,给出了下列三个论断:①对角线AC平分∠BAD;②CD=BC;③∠D+∠B=180°.在上述三个论断中,若以其中两个论断作为条件,另外一个论断作为结论,则可以得出3个正确的命题.三.解答题(共46分)17.(10分)如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE =40°,求∠ADB的度数.解:∵AD是△ABC的角平分线,∠BAC=60°,∴∠DAC=∠BAD=30°.∵CE是△ABC的高,∠BCE=40°,∴∠B=50°,∴∠ADB=180°-∠B-∠BAD=180°-50°-30°=100°.18.(12分)如图,AD是△ABC的边BC上的中线,AB=BC,且AD把△ABC的周长分成3和4的两部分,求AC边的长.解:设AB=BC=2x,∵AD是△ABC的边BC上的中线,∴BD=CD=x.若△ABD的周长是3+AD,则2x+x=3,解得x =1.∴AC =4-1=3.若△ABD 的周长是4+AD ,则2x +x =4, 解得x =43.∴AC =3-43=53.综上,AC 边的长为3或53.19.(12分)如图,在△ABC 中,AB =CB ,∠ABC =90°,点D 为AB 延长线上一点,点E 在BC 边上,且BE =BD ,连结AE .DE .DC .(1)求证:△ABE ≌△CBD ;(2)若∠CAE =30°,求∠BDC 的度数.解:(1)证明:在△ABE 和△CBD 中,⎩⎨⎧AB =CB ,∠ABE =∠CBD =90°,BE =BD ,∴△ABE ≌△CBD (SAS ).(2)∵在△ABC 中,AB =CB ,∠ABC =90°, ∴∠BAC =∠ACB =45°. ∵△ABE ≌△CBD , ∴∠AEB =∠BDC .∵∠AEB 为△AEC 的外角,∴∠AEB =∠ACB +∠CAE =45°+30°=75°. ∴∠BDC =75°.20.(12分)(杭州青春中学期末)如图1,AB =4 cm ,AC ⊥AB ,BD ⊥AB ,AC =BD =3 cm .点P 在线段AB 上以1 cm /s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.它们运动的时间为t (s ).(1)若点Q 的运动速度与点P 的运动速度相等,当t =1时,△ACP 与△BPQ 是否全等,请说明理由,并判断此时线段PC 和线段PQ 的位置关系;(2)如图2,将图1中的“AC ⊥AB ,BD ⊥AB ”改为“∠CAB =∠DBA =60°”,其他条件不变.设点Q 的运动速度为x cm /s ,是否存在实数x ,使得△ACP 与△BPQ 全等?若存在,求出相应的x .t 的值;若不存在,请说明理由.解:(1)当t =1时,AP =BQ =1,BP =AC =3,在△ACP 和△BPQ 中,⎩⎨⎧AP =BQ ,∠A =∠B =90°,AC =BP ,∴△ACP ≌△BPQ (SAS ). ∴∠ACP =∠BPQ .∴∠APC +∠BPQ =∠APC +∠ACP =90°. ∴∠CPQ =90°, 即线段PC 与线段PQ 垂直. (2)①若△ACP ≌△BPQ , 则AC =BP ,AP =BQ ,⎩⎨⎧3=4-t ,t =xt ,解得⎩⎪⎨⎪⎧t =1,x =1. ②若△ACP ≌△BQP ,则AC =BQ ,AP =BP , ⎩⎨⎧3=xt ,t =4-t ,解得⎩⎪⎨⎪⎧t =2,x =32.综上所述,存在⎩⎪⎨⎪⎧t =1,x =1或⎩⎪⎨⎪⎧t =2,x =32,使得△ACP 与△BPQ 全等.。
浙教版数学八年级上册第1章三角形初步认识复习-2023年学习资料
二、线段中垂线与角平分线的性质-1、线段垂直平分线的性质:-线段的垂直平分线上的点到线段两端点的距离相等。 几何表述:-B-.I是线段AB的中垂线,点C在I上-.'CA=CB
基础训练-5、如图,△ABC中,DE垂直平分AC,AE=3cm,-△ABD的周长是9cm,则△ABC的周长 15cm
专题4角平分线和线段垂直平分线-变:如图,在△ABC中,AB=AC=10,BC=6,-线段AB的垂直平分线 AB于点F,交AC于点E,-连结BE,则△BCE的周长等于-A26-16-C20-D10-反思:线段垂直平 线上的点到-线段两端点的距离相等
2、角平分线的性质:-角平分线上点到角两边距离相等-几何表述:-'点P是∠BAC的平分线上的-一点且PB⊥ B,PC⊥AC,-..PB=PC.
基础训练-6.在△ABC中,∠C=90,BD平分∠ABC,交AC于-点D,若DC=3,BC=6,则点D到A 的距离是A-A、3-B、4-C、2-D、6
变-如图,在△ABC中,∠C=90°,AD平分∠BAC,-AB=5,CD=2,则△ABD的面积是-E-反思 -角平分线上的点到-角两边的距离相等
变式训练-2.根据下列所给的条件,确定三角形的形状-1∠A+∠B=900,-29-3∠A:∠B:∠C=2: :8
专题3三角形外角的性质-例3△ABC中,∠B=60·,∠C=80°,将-△ABC沿DE折叠,求∠1+∠2的 -三角形的一个外角等于和它不相邻的两个-内角的和
变式训练-1.已知△ABC中,∠BAC=90°,AD⊥BC,试说-明∠BED>∠C-三角形的一个外角大于和 不相邻的任意一-个内角
例2.如图,已知AB=AD,AC=AE,∠1=∠2,-请说明BC=DE的理由。-请同学们注-意书写格式-哦
【期末复习提升卷】浙教版2022-2023学年八上数学第1章 三角形的初步知识 测试卷2(解析版)
【期末复习提升卷】浙教版2022-2023学年八上数学第1章三角形的初步知识测试卷2(解析版)一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.下列各组图形中,表示AD是△ABC中BC边的高的图形为()A.B.C.D.【答案】B【解析】A、AD不是△ABC的高,故A不符合题意;B、AD是△ABC的BC边上的高,故B符合题意;C、AD不是△ABC的高,故C不符合题意;D、AD不是△ABC的高,故D不符合题意;故答案为:B2.在△ABC中,∠B=60°,AD是△ABC的角平分线,∠DAC=31°,则∠C的度数为() A.62°B.60°C.92°D.58°【答案】D【解析】如图,∵AD是△ABC的角平分线,∴∠CAB=2∠DAC=2×31°=62°,∴∠C=180°-∠CAB-∠B=180°-62°-60°=58°.故答案为:D3.如图,在Rt△ABC中,∠ACB=90°,若△ACD的周长为50,DE为AB的垂直平分线,则AC+BC =()A.25cm B.45cm C.50cm D.55cm【答案】C【解析】∵DE为AB的垂直平分线,∴AD=BD,∴AC+CD+AD=AC+CD+BD=AC+BC=50.故答案为:C.4.△ABC的三条边分别为a,b,c,下列条件不能判断△ABC是直角三角形的是()A.b2=(a+c)(a−c)B.∠A=∠B+∠CC.∠A:∠B:∠C=3:4:5D.a=6,b=8,c=10【答案】C【解析】A.∵b2=(a+c)(a−c),∴b2=a2−c2,∴c2+b2=a2,∴此三角形是直角三角形,故本选项不符合题意;B.∵∠A+∠B+∠C=180°,∠A=∠B+∠C,∴∠A=90°,∴此三角形是直角三角形,故本选项不符合题意;C.设∠A=3x,则∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴3x+4x+5x=180°,解得x=15°,∴∠C=5×15°=75°,∴此三角形不是直角三角形,故本选项符合题意;D.∵62+82=102,∴此三角形是直角三角形,故本选项不符合题意;故答案为:C.5.如图,点A,C,D,E在Rt△MON的边上,∠MON=90°,AE⊥AB且AE=AB,BC⊥CD且BC=CD,BH⊥ON于点H,DF⊥ON于点F,OM=12,OE=6,BH=3,DF=4,FN=8,图中阴影部分的面积为()A.30B.50C.66D.80【答案】B【解析】∵∠EAO+∠BAH=90°,∠EAO+∠AEO=90°,∴∠BAH=∠AEO,∵在△AEO和△BAH中,{∠AEO=∠BAH∠O=∠BHA=90°AE=AB,∴△AEO≌△BAH(AAS),同理△BCH≌△CDF(AAS),∴AO=BG=3,AH=EO=6,CH=DF=4,BH=CF=3,∵梯形DEOF的面积= 12(EF+DH)•FH=80,S△AEO=S△ABH= 12AF•AE=9,S△BCH=S△CDF= 12CH•DH=6,∴图中实线所围成的图形的面积S=80-2×9-2×6=50,故答案为:B.6.如图,AD是△ABC的外角平分线,下列一定结论正确的是()A.AD+BC=AB+CD,B.AB+AC=DB+DC,C.AD+BC<AB+CD,D.AB+AC<DB+DC 【答案】D【解析】在BA的延长线上取点E,使AE=AC,连接ED,∵AD 是△ABC 的外角平分线, ∴∠EAD=∠CAD ,在△ACD 和△AED 中,{AD =AD∠EAD =∠CAD AC =AE∴△ACD ≌△AED(SAS) ∴DE=DC ,在△EBD 中,BE <BD+DE , ∴AB+AC <DB+DC 故答案为:D.7.如图,已知△ABC 的周长是16,MB 和MC 分别平分∠ABC 和∠ACB ,过点M 作BC 的垂线交BC 于点D ,且MD =4,则△ABC 的面积是( )A .42B .32C .48D .64【答案】B【解析】连接AM ,过M 作ME ⊥AB 于E ,MF ⊥AC 于F ,∵MB 和MC 分别平分∠ABC 和∠ACB ,MD ⊥BC ,MD =4, ∴ME =MD =4,MF =MD =4, ∵△ABC 的周长是16, ∴AB +BC +AC =16,∴△ABC 的面积S =S ΔAMC +S ΔBCM +S ΔABMS =12×AC ×MF +12×BC ×DM +12×AB ×ME S =12×AC ×4+12×BC ×4+12×AB ×4S =2(AC +BC +AB)S =2×16=32.故答案为:B.8.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,过点O 作EF ∥BC 交AB 于E ,交AC于F ,过点O 作OD ⊥AC 于D .下列四个结论:①∠BOC =90°+12∠A ,②∠EBO =12∠AEF ,③∠DOC+∠OCB =90°,④设OD =m ,AE+AF =n ,则S △AEF =mn2.其中正确的结论有( )A .1个B .2个C .3个D .4个 【答案】D【解析】∵∠ABC 和∠ACB 的平分线相交于点O ,∴∠ABC=2∠OBC ,∠ACB=2∠OCB ,∠OBC=∠EBO ,∠DCO=∠OCB ,∵2∠OBC+2∠OCB=180°-∠A , ∴∠OBC+∠OCB=90°-12∠A ; ∵∠BOC=180°-(∠OBC+∠OCB )=180°-90°+12∠A=90°+12∠A ,故①正确; ∵EF ∥BC ,∴∠EOB=∠OBC=∠EBO ,∵∠AEF=∠EOB+∠EBO=2∠EBO∴∠EBO=12∠AEF ,故②正确;∵OD ⊥AC , ∴∠ODC=90°,∴∠DOC+∠DCO=90°, ∴∠DOC+∠OCB=90°,故③正确; 连接OA ,过点O 作OG ⊥AB 于点G ,∵OB ,OC 是△ABC 的角平分线, ∴OA 平分∠BAC , ∴OG=OD=m∴S S △AEF =S △AEO +S △AOF =12AE ·OG +12AF ·OD =12OD (AE +AF )=12mn ,故④正确;∴正确结论有4个. 故答案为:D. 9.如图,在△ABC 中,BD 、BE 分别是高和角平分线,点F 在CA 的延长线上,FH ⊥BE 交BD 于G ,交BC 于H ,下列结论:①∠DBE=∠F ;②2∠BEF=∠BAF+∠C ;③∠F= 12(∠BAC ﹣∠C );④∠BGH=∠ABE+∠C.其中正确的是( )A .①②③B .①③④C .①②④D .①②③④ 【答案】D【解析】①∵∠ADG=∠BGF=90°,∠AGD=∠BGH ,∴ ∠DBE=∠F ,符合题意;②∵∠BEF=∠C+∠EBC ,∠BAF=∠BEF+∠ABE ,∴∠BEF+∠BEF+∠ABE=∠C+∠EBC+∠BAF ,即2∠BEF+∠ABE=∠C+∠EBC+∠BAF ,∵∠ABE=∠CBE ,∴ 2∠BEF=∠BAF+∠C ,符合题意; ③ ∠ABD=90∘−∠BAC , ∠DBE=∠ABE−∠ABD=∠ABE−90∘+∠BAC=∠CBD−∠DBE−90∘+∠BAC , ∵∠CBD=90∘−∠C , ∴∠DBE=∠BAC−∠C−∠DBE , 由①得,∠DBE=∠F ,∴∠F=∠BAC−∠C−∠DBE , ∴∠F=12(∠BAC−∠C),符合题意;④∵∠AEB=∠EBC+∠C , ∵∠ABE=∠CBE , ∴∠AEB=∠ABE+∠C , ∵BD ⊥FC ,FH ⊥BE , ∴∠FGD=∠FEB , ∴∠BGH=∠ABE+∠C , 符合题意. 故答案为:D.10.如图,在△ABC 中,AD 是BC 边上的高,且∠ACB =∠BAD ,AE 平分∠CAD ,交BC 于点E ,过点E 作EF ∥AC ,分别交AB 、AD 于点F 、G 则下列结论:①∠BAC =90°;②∠AEF =∠BEF ;③∠BAE =∠BEA ;④∠B =2∠AEF ,其中正确的有( )A .①③④B .①②③C .①③D .①②③④ 【答案】A【解析】∵AD ⊥BC , ∴∠ADC=90°, ∴∠C+∠CAD=90°, ∵∠BAD=∠C ,∴∠BAD+∠CAD=90°, ∴∠CAB=90°,故①正确,∵∠BAE=∠BAD+∠DAE ,∠DAE=∠CAE ,∠BAD=∠C , ∴∠BAE=∠C+∠CAE=∠BEA ,故③正确, ∵EF ∥AC ,∴∠AEF=∠CAE , ∵∠CAD=2∠CAE , ∴∠CAD=2∠AEF , ∵∠CAD+∠BAD=90°,∠BAD+∠B=90°, ∴∠B=∠CAD=2∠AEF ,故④正确, 无法判定EA=EC ,故②错误. 故答案为:A.二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.直线l 1、l 2、l 3表示三条两两相互交叉的公路,现在拟建一个货物中转站,要求它到三条公路的距离都相等,则可供选择的地址有 处.【答案】4【解析】∵中转站要到三条公路的距离都相等,∴货物中转站必须是三条相交直线所组成的三角形的内角或外角平分线的交点, 而外角平分线有3个交点,内角平分线有一个交点, ∴货物中转站可以供选择的地址有4个. 故答案为:4.12.△ABC 为等腰直角三角形,若A (−4,0),C (0,2),则点B 的坐标为 .【答案】(2,−2)【解析】如图中,过点B 作BT ⊥y 轴于点T .∵A (−4,0),C (0,2), ∴OA=4,OC=2,∵∠AOC=∠ACB=∠CTB=90°, ∴∠ACO+∠BCT=90°,∠BCT+∠CBT=90°, ∴∠ACO=∠CBT ,在△AOC 和△CTB 中, {∠AOC =∠CTB ∠ACO =∠CBT AC =CB,∴△AOC ≅△CTB (AAS ), ∴AO=CT=4,BT=CO=2, ∴OT=CT −CO=2, ∴B (2,−2). 故答案为:(2,−2).13.如图,∠DAB=∠EAC=65°,AB=AD,AC=AE,BE 和CD 相交于点O,AB 和CD 相交于P,AC 和BE 相交于F,则∠DOE 的度数是 .【答案】115°【解析】∵∠DAB=∠EAC=65°, ∴∠DAB+∠BAC=∠BAC+∠EAC , ∴∠DAC=∠EAB ,在△ADC 和△AEB 中,{AD =AB∠DAC =∠EAB AC =AE,∴△ADC ≌△AEB(SAS), ∴∠E=∠ACD ,又∵∠AFE=∠OFC , ∴∠EAF=∠COF=65°,∴∠DOE=115°. 故答案为:115°. 14.如图,△ABC 的三边AB 、BC 、CA 的长分别为30、40、15,点P 是三条角平分线的交点,将△ABC 分成三个三角形,则 S ΔAPB ︰ S ΔBPC ︰ S ΔCPA 等于【答案】6:8:3【解析】过点P 作PE ⊥AB 于点E ,PF ⊥BC 于点F ,PG ⊥AC 于点G ,∵ 点P 是三条角平分线的交点, ∴PE=PG=PF ;S △APB =12AB ·PE ,S △BPC =12BC ·PF ,S △CPA =12AC ·PG ∴S △APB :S △BPC :S △CPA =AB :BC :AC=30:40:15=6:8:3. 故答案为:6:8:3.15.如图,△ABC 的面积为18,BD=2DC ,AE=2EC ,那么阴影部分的面积是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末复习(一) 三角形的初步知识01 知识结构三角形的初步知识⎩⎪⎪⎪⎨⎪⎪⎪⎧三角形的概念⎩⎪⎨⎪⎧三边关系内角和定理及其推论三角形的中线、高线、角平分线定义与命题⎩⎪⎨⎪⎧命题的组成命题的分类全等图形→全等三角形⎩⎪⎨⎪⎧全等三角形的性质全等三角形的判定角平分线的性质定理线段垂直平分线的性质定理尺规作图02 重难点突破重难点1 三角形的三边关系【例1】 (萧山区期中)已知等腰三角形两条边的长分别是3和6,则它的周长是( B ) A.12 B.15 C.12或15 D.15或18 【方法归纳】 判断给定的三条线段能否组成三角形,只需判断两条较短线段的和是否大于最长线段.在已知等腰三角形的两边长求其周长时,需注意:(1)一定要利用分类讨论思想列举出三角形的三边长;(2)一定要利用三角形的三边关系检验列举出的三边长是否能围成三角形.1.(海宁新仓中学期中)两根木棒的长分别是5 cm 和7 cm ,要选择第三根木棒,将它们首尾相接钉成一个三角形,则第三根木棒长的取值可以是( B )A.2 cmB.4 cmC.12 cmD.13 cm重难点2 三角形形内角和定理及其推论 【例2】 如图,在△ABC 中,AB =AC ,∠A =30°,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,则∠D 等于( A)A.15°B.17.5°C.20°D.22.5°【方法归纳】在计算与三角形有关的角度时,首先应判断出要求角与所在三角形中已知角之间的关系,再合理选用三角形的内角和定理或外角的性质求角度,同时在解题时要注意角平分线的定义.平行线的性质等知识的运用.2.如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为( C )A.28°B.38°C.48°D.88°重难点3三角形的三条重要线段【例3】如图,AD是△ABC的中线,点E为AD的中点,点F为BE的中点,S△ABC=41,则S△BFC=41 4.【思路点拨】根据三角形面积公式得S△BFC=S△EFC,S△AEC=S△DEC,S△AEB=S△DEB,S△ABD=S△ADC,从而S△BFC=14S△ABC.3.在△ABC中,AC=5 cm,AD是△ABC中线,若△ABD的周长比△ADC的周长大2 cm,则BA=7_cm.4.(1)如图所示,在△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于点D,DF⊥CE于点F,求∠CDF的度数;(2)在(1)中,若∠A=α,∠B=β(α≠β),其他条件不变,求∠CDF的度数.(用含α和β的代数式表示)解:(1)根据题意,在△ABC中,∠A=40°,∠B=72°,所以∠ACB=68°.因为CE平分∠ACB,所以∠ACE=34°.所以∠CED=∠A+∠ACE=74°.因为CD⊥AB,DF⊥CE,且∠ECD为公共角,所以∠CDF=∠CED=74°.(2)由(1)可知,∠CDF =∠CED =∠A +∠ACE ,∠ACE =180°-α-β2.所以∠CDF =180°+α-β2.重难点4 线段垂直平分线与角平分线的性质【例4】 如图,在△ABC 中,∠ACB =90°,BE 平分∠ABC ,交AC 于点E ,DE 垂直平分AB 于点D ,求证:BE +DE =AC .证明:∵∠ACB =90°, ∴AC ⊥BC .∵ED ⊥AB ,BE 平分 ∠ABC , ∴CE =DE ,∵DE 垂直平分AB , ∴AE =BE .∵AC =AE +CE ,∴BE +DE =AC . 【方法归纳】 在利用线段垂直平分线的性质求线段长度时,通常是根据线段垂直平分线的性质得到线段相等,再根据相等线段之间的转换,得到所求线段的长.5.如图,在△ABC 中,∠BAC >90°,AB 的垂直平分线MP 交BC 于点P ,AC 的垂直平分线NQ 交BC 于点Q ,连结AP ,AQ ,若△APQ 的周长为20 cm ,则BC 为20cm .第5题图 第6题图6.如图,△ABC 的三条角平分线交于O 点,已知△ABC 的周长为20,OD ⊥AB ,OD =5,则△ABC 的面积为50.重难点5 全等三角形的性质与判定【例5】 已知△ABN 和△ACM 的位置如图所示,AB =AC ,AD =AE ,∠1=∠2.(1)求证:BD =CE ; (2)求证:∠M =∠N .【思路点拨】 (1)要证BD =CE ,可通过转化证△ABD ≌△ACE ,根据“SAS ”得证;(2)要证∠M =∠N ,可通过转化证△ACM ≌△ABN ,由(1)可知∠C =∠B .因为∠2=∠1,所以∠CAM =∠BAN .再结合AB =AC ,即可根据“ASA ”得证.证明:(1)在△ABD 和△ACE 中,⎩⎨⎧AB =AC ,∠1=∠2,AD =AE ,∴△ABD ≌△ACE (SAS ). ∴BD =CE .(2)∵∠1=∠2,∴∠1+∠DAE =∠2+∠DAE , 即∠BAN =∠CAM .由(1),得△ABD ≌△ACE , ∴∠B =∠C .在△ACM 和△ABN 中,⎩⎨⎧∠C =∠B ,AC =AB ,∠CAM =∠BAM ,∴△ACM ≌△ABN (ASA ). ∴∠M =∠N .【方法归纳】 三角形全等的证明思路:已知两边⎩⎪⎨⎪⎧找夹角→SAS找另一边→SSS已知一边和一角 ⎩⎪⎨⎪⎧边为角的对边→找任一角→AAS 边为角的邻边⎩⎪⎨⎪⎧找夹角的另一边→SAS找夹边的另一角→ASA找边的对角→AAS已知两角⎩⎪⎨⎪⎧找夹边→ASA找任一角的对边→AAS7.(成都中考)如图,△ABC ≌△A ′B ′C ′,其中∠A =36°,∠C =24°,则∠B =120°.第7题图第8题图8.(杭州大江东区期中)如图,已知AD是△ABC的角平分线,在不添加任何辅助线的前提下,要使△AED≌△AFD,需添加一个条件是:AE=AF或∠EDA=∠FDA或∠AED=∠AF D.03备考集训一.选择题(每小题3分,共30分)1.下列长度的三条线段,能组成三角形的是( C )A.1,2,4B.4,5,9C.4,6,8D.5,5,112.(嵊州校级期中)下列语句不是命题的是( B )A.两直线平行,同位角相等B.作直线AB垂直于直线CDC.若|a|=|b|,则a2=b2D.同角的补角相等3.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是( D )A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE第3题图第4题图4.(杭州大江东区期中)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是( C )A.BC=EC,∠B=∠EB.BC=EC,AC=DCC.BC=EC,∠A=∠DD.∠B=∠E,∠A=∠D5.如图,将两根钢条AA′.BB′的中点O连在一起,使AA′.BB′可以绕着点O自由转动,就做成了一个测量工件,由三角形全等得出A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是( A )A.边角边B.角边角C.边边边D.角角边第5题图第6题图6.如图,在△ABC中,AB=AC,DE是AB边的垂直平分线,分别交A B.AC于点D.E,△BEC 的周长是14 cm,BC=5 cm,则AB的长是( B )A.14 cmB.9 cmC.19 cmD.12 cm7.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是( A )A.3B.4C.6D.5第7题图第8题图8.如图所示,在△ABC中,∠BAC∶∠ABC∶∠BCA=3∶4∶5,BD,CE分别是边AC,AB 上的高,BD,CE相交于点H,则∠BHC的度数为( B )A.120°B.135°C.125°D.130°9.(嵊州期末)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( C )A.1个B.2个C.3个D.4个第9题图第10题图10.(杭州大江东区期中)如图,四边形ABCD是正方形,直线a,b,c分别通过A.D.C三点,且a∥b∥c.若a与b之间的距离是5,b与c之间的距离是7,则正方形ABCD的面积是( B )A.70B.74C.144D.148二.填空题(每小题4分,共24分)11.如图,在△ABC中,∠A=58°,∠B=63°,则外角∠ACD=121度.第11题图第12题图12.如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为3.13.如图,已知△ABC的周长为27 cm,AC=9 cm,BC边上中线AD=6 cm,△ABD周长为19 cm,AB=8_cm.14.(杭州萧山区月考)已知三角形的两条边长分别是3 cm和4 cm,一个内角为40°,那么满足这一条件且彼此不全等的三角形共有4个.15.当三角形中一个内角是另一个内角的3倍时,我们称此三角形为“梦想三角形”.如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为18°或36°.16.如图,在四边形ABCD中,给出了下列三个论断:①对角线AC平分∠BAD;②CD=BC;③∠D+∠B=180°.在上述三个论断中,若以其中两个论断作为条件,另外一个论断作为结论,则可以得出3个正确的命题.三.解答题(共46分)17.(10分)如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE =40°,求∠ADB的度数.解:∵AD是△ABC的角平分线,∠BAC=60°,∴∠DAC=∠BAD=30°.∵CE是△ABC的高,∠BCE=40°,∴∠B=50°,∴∠ADB=180°-∠B-∠BAD=180°-50°-30°=100°.18.(12分)如图,AD是△ABC的边BC上的中线,AB=BC,且AD把△ABC的周长分成3和4的两部分,求AC边的长.解:设AB=BC=2x,∵AD是△ABC的边BC上的中线,∴BD=CD=x.若△ABD的周长是3+AD,则2x+x=3,解得x =1.∴AC =4-1=3.若△ABD 的周长是4+AD ,则2x +x =4, 解得x =43.∴AC =3-43=53.综上,AC 边的长为3或53.19.(12分)如图,在△ABC 中,AB =CB ,∠ABC =90°,点D 为AB 延长线上一点,点E 在BC 边上,且BE =BD ,连结AE .DE .DC .(1)求证:△ABE ≌△CBD ;(2)若∠CAE =30°,求∠BDC 的度数.解:(1)证明:在△ABE 和△CBD 中,⎩⎨⎧AB =CB ,∠ABE =∠CBD =90°,BE =BD ,∴△ABE ≌△CBD (SAS ).(2)∵在△ABC 中,AB =CB ,∠ABC =90°, ∴∠BAC =∠ACB =45°. ∵△ABE ≌△CBD , ∴∠AEB =∠BDC .∵∠AEB 为△AEC 的外角,∴∠AEB =∠ACB +∠CAE =45°+30°=75°. ∴∠BDC =75°.20.(12分)(杭州青春中学期末)如图1,AB =4 cm ,AC ⊥AB ,BD ⊥AB ,AC =BD =3 cm .点P 在线段AB 上以1 cm /s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.它们运动的时间为t (s ).(1)若点Q 的运动速度与点P 的运动速度相等,当t =1时,△ACP 与△BPQ 是否全等,请说明理由,并判断此时线段PC 和线段PQ 的位置关系;(2)如图2,将图1中的“AC ⊥AB ,BD ⊥AB ”改为“∠CAB =∠DBA =60°”,其他条件不变.设点Q 的运动速度为x cm /s ,是否存在实数x ,使得△ACP 与△BPQ 全等?若存在,求出相应的x .t 的值;若不存在,请说明理由.解:(1)当t =1时,AP =BQ =1,BP =AC =3,在△ACP 和△BPQ 中,⎩⎨⎧AP =BQ ,∠A =∠B =90°,AC =BP ,∴△ACP ≌△BPQ (SAS ). ∴∠ACP =∠BPQ .∴∠APC +∠BPQ =∠APC +∠ACP =90°. ∴∠CPQ =90°, 即线段PC 与线段PQ 垂直. (2)①若△ACP ≌△BPQ , 则AC =BP ,AP =BQ ,⎩⎨⎧3=4-t ,t =xt ,解得⎩⎪⎨⎪⎧t =1,x =1. ②若△ACP ≌△BQP ,则AC =BQ ,AP =BP , ⎩⎨⎧3=xt ,t =4-t ,解得⎩⎪⎨⎪⎧t =2,x =32.综上所述,存在⎩⎪⎨⎪⎧t =1,x =1或⎩⎪⎨⎪⎧t =2,x =32,使得△ACP 与△BPQ 全等.。