碳化硅陶瓷的制备技术

合集下载

多孔碳化硅陶瓷及复合材料的制备与性能共3篇

多孔碳化硅陶瓷及复合材料的制备与性能共3篇

多孔碳化硅陶瓷及复合材料的制备与性能共3篇多孔碳化硅陶瓷及复合材料的制备与性能1多孔碳化硅陶瓷及复合材料的制备与性能随着科学技术的发展和人们对环境保护的重视,传统陶瓷材料的应用范围已经不能满足人们的需求。

多孔碳化硅材料凭借其高度的化学稳定性、热稳定性和机械强度等优良性能,在高级材料领域应用广泛。

本文将介绍多孔碳化硅陶瓷的制备方法以及其在新材料领域的应用。

一、多孔碳化硅陶瓷的制备方法多孔碳化硅陶瓷的制备方法包括两种:一种是传统的陶瓷制备方法,一种是新型的多级微波制备方法。

1. 传统制备方法传统的多孔碳化硅陶瓷制备方法包括高温烧结和化学气相沉积两种。

高温烧结法是将混合了碳化硅粉末和其他添加剂或者硅的混合粉末,在高温下进行烧结得到多孔碳化硅材料。

化学气相沉积法是将氯化硅等硅源及碳源放入炉中进行化学反应,最终得到多孔碳化硅材料。

2. 多级微波制备方法多级微波制备法是指通过微波辐射、干燥和碳化构成,形成多孔碳化硅陶瓷材料。

首先将硅源和碳源均匀混合,然后使用微波辐射干燥,在多个微波腔中进行碳化反应,最终得到多孔碳化硅陶瓷材料。

二、多孔碳化硅陶瓷的性能分析1. 化学稳定性多孔碳化硅材料具有很好的化学稳定性,能够抵御酸、碱等强化学腐蚀,不会被氧化、退化,可长期使用于高温、高压等恶劣环境下。

2. 热稳定性多孔碳化硅材料热稳定性较高,耐热温度高达1500℃以上,不易熔化或瓦解,能够在高温下保持稳定结构和性能。

3. 机械强度多孔碳化硅材料具有很高的机械强度,能够承受很大的压力和载荷,保持长期的强度稳定性。

三、多孔碳化硅陶瓷复合材料的应用多孔碳化硅陶瓷复合材料是指将多孔碳化硅材料与其他材料(如金属、聚合物等)复合,形成性能更为优异的材料。

多孔碳化硅陶瓷复合材料具有多孔材料的高孔隙率和复合材料的高强度、高稳定性等优点,广泛应用于先进制造技术、光伏、半导体等领域。

结论多孔碳化硅陶瓷是一种具有高度化学稳定性、热稳定性和机械强度等优良性能的新型材料,在复合材料中具有广泛的应用前景。

碳化硅陶瓷的制备工艺和性能研究

碳化硅陶瓷的制备工艺和性能研究

碳化硅陶瓷的制备工艺和性能研究碳化硅陶瓷是一种高性能陶瓷材料,它具有许多优异的性能,如高硬度、高耐磨性、高抗腐蚀性和高温稳定性等。

这些优异的性能使碳化硅陶瓷成为重要的工业材料,被广泛应用于航空、航天、船舶、电子、机械等领域。

本文将围绕碳化硅陶瓷的制备工艺和性能进行研究。

一、碳化硅陶瓷的制备工艺1. 原料选择与预处理制备碳化硅陶瓷的原料主要有碳素和硅源。

碳素选用的主要有石墨、太空热解炭等,硅源则有二氧化硅、硅酸及其盐酸等。

在选择原料时,需要考虑原料的纯度、颗粒度、分布、比例等因素,并针对原料的特性做出相应的预处理,如研磨、筛选、混合等。

2. 成型工艺碳化硅陶瓷的成型工艺主要有四种,分别是压制法、注塑法、挤出法和成型造型法。

其中,压制法是最常用的一种成型方法,它包括干压法和湿压法两种,前者适用于制备密实的块体或棒材,后者适用于制备具有较高粘结力的薄膜或管材。

注塑法则适用于制备形状复杂的零部件,挤出法则适用于制备长丝、异形管和板材等。

成型造型法则可以将原料直接制成所需形状,常用于制备复杂的结构件。

3. 热处理工艺碳化硅陶瓷的热处理工艺包括热压缩、热处理和气相热解三种方法。

其中,热压缩被广泛用于制备密实的碳化硅材料,其工艺是将成型后的坯体放入高温高压下热处理,使其晶粒细化,形成高硬度的碳化硅陶瓷。

热处理则是将成型后的坯体放入高温处进行热肥,使其形成均匀的晶粒和致密的组织结构。

气相热解则是将碳素、硅源放入炉内,经过高温热解,生成碳化硅陶瓷。

二、碳化硅陶瓷的性能研究1. 物理性能碳化硅陶瓷具有较高密度、较高硬度、高抗压强度和高质量的特点。

它的热导率约为金属的三倍左右,热膨胀系数小,因此在高温下具有优异的热冲击性。

其断裂韧性和抗拉强度也相对较高。

此外,由于碳化硅陶瓷中Si-C键的共价性,其化学稳定性及抗氧化性也很高。

2. 磨损性能碳化硅陶瓷具有良好的耐磨性能,这是由于其微硬度和韧性之间的平衡作用所致。

实验表明,碳化硅陶瓷与钢材的耐磨性相当,具有良好的抗磨、抗切削性能,因此常用于制造高速切削工具、模具和轴承等。

碳化硅制备方法

碳化硅制备方法

碳化硅制备方法碳化硅是一种重要的结构陶瓷材料,具有高硬度、高强度、高温稳定性等优良性能,在电子、航天、汽车等领域有广泛应用。

本文将介绍碳化硅制备的几种常见方法。

1. 碳热还原法碳热还原法是一种常见的碳化硅制备方法,其基本反应为:SiO2 + 3C → SiC + 2CO该反应发生在高温下(约为2000℃),需要通过特殊的电炉进行。

首先需要将硅粉和碳粉混合,制成一定比例的混合物,然后放入电炉中进行加热,使其达到足够高的温度。

在加热过程中,硅粉与碳粉发生反应,生成碳化硅。

碳热还原法制备碳化硅的优点是工艺简单,原料易得,而且产物质量较高。

但缺点是设备成本高,能源消耗大,且产物存在夹杂物和晶界不完整等问题。

2. 化学气相沉积法化学气相沉积法是一种较新的碳化硅制备方法,该方法可以通过化学反应在高温下沉积碳化硅薄膜。

具体步骤如下:(1)将SiCl4或CH3SiCl3等碳源物质和NH3或H2等气体混合,并通过加热将其气化。

(2)将气态混合物输送到反应器中,同时引入载气,让混合物在反应器内均匀分布。

(3)将反应器中的混合物加热到800-1200℃,在催化剂的作用下发生碳化反应,并在衬底上沉积出碳化硅薄膜。

化学气相沉积法具有生产规模大、生产效率高、产物质量优等优点,但是制备设备昂贵,制备条件严格,需要配合催化剂才能实现反应。

3. 溶胶-凝胶法溶胶-凝胶法也是一种常见的碳化硅制备方法,该方法通过一系列溶胶-凝胶反应,将前驱体溶液凝胶化,制备出碳化硅粉末。

具体步骤如下:(1)将SiO2前驱体(例如TEOS等)和碳源物质(例如甲基丙烯酸三甲氧基硅烷)溶解在有机溶剂中。

(2)通过控制pH值和温度等参数,使溶液逐渐凝胶化,形成固体凝胶体。

(3)将凝胶体在特定温度下煅烧,使其发生脱水、脱氯和碳化反应。

经过一定的处理,可制备出碳化硅粉末。

溶胶-凝胶法制备碳化硅的优点是制备工艺简单、成型性好、加工易、粉末质量高等,并且可以制备出多孔、纳米级的碳化硅制品,但缺点是煅烧温度较高,制备周期长,并且前驱体的选择也对产物质量有较大影响。

国内外碳化硅陶瓷材料研究与应用进展

国内外碳化硅陶瓷材料研究与应用进展

国内外碳化硅陶瓷材料研究与应用进展一、本文概述碳化硅陶瓷材料,作为一种高性能的无机非金属材料,因其出色的物理和化学性能,如高强度、高硬度、高热稳定性、良好的化学稳定性以及低热膨胀系数等,在航空航天、汽车、能源、电子等多个领域具有广泛的应用前景。

本文旨在全面综述国内外碳化硅陶瓷材料的研究现状、发展趋势和应用领域,以期为相关领域的科研人员和技术人员提供有价值的参考。

本文首先回顾了碳化硅陶瓷材料的发展历程,并分析了其独特的物理和化学性质,以及这些性质如何使其在众多领域中脱颖而出。

随后,文章重点介绍了国内外在碳化硅陶瓷材料制备工艺、性能优化、结构设计等方面的研究进展,包括新型制备技术的开发、复合材料的制备与应用、纳米碳化硅陶瓷的研究等。

文章还讨论了碳化硅陶瓷材料在航空航天、汽车、能源、电子等领域的应用现状及未来发展趋势。

通过本文的综述,我们期望能够为碳化硅陶瓷材料的研究与应用提供更为清晰和全面的视角,推动该领域的技术进步和创新发展。

我们也期待通过分享国内外的研究经验和成果,为国内外科研人员和技术人员搭建一个交流与合作的平台,共同推动碳化硅陶瓷材料的发展和应用。

二、碳化硅陶瓷材料的制备技术碳化硅陶瓷材料的制备技术是决定其性能和应用领域的关键因素。

经过多年的研究和发展,目前碳化硅陶瓷的主要制备技术包括反应烧结法、无压烧结法、热压烧结法、气相沉积法等。

反应烧结法:反应烧结法是一种通过碳和硅粉在高温下反应生成碳化硅的方法。

这种方法工艺简单,成本较低,但制备的碳化硅陶瓷材料致密度和性能相对较低,主要用于制备大尺寸、低成本的碳化硅制品。

无压烧结法:无压烧结法是在常压下,通过高温使碳化硅粉末颗粒之间发生固相反应,实现烧结致密化。

这种方法制备的碳化硅陶瓷材料具有较高的致密度和优良的力学性能,但烧结温度较高,时间较长。

热压烧结法:热压烧结法是在加压和高温条件下,使碳化硅粉末颗粒之间发生固相反应,实现快速烧结致密化。

这种方法制备的碳化硅陶瓷材料具有极高的致密度和优异的力学性能,但设备成本高,生产效率较低。

泡沫碳化硅陶瓷的制备工艺与性能研究

泡沫碳化硅陶瓷的制备工艺与性能研究

泡沫碳化硅陶瓷的制备工艺与性能研究一、本文概述随着科学技术的不断发展和进步,新型陶瓷材料的研究与应用逐渐成为材料科学领域的研究热点。

其中,泡沫碳化硅陶瓷作为一种轻质、高强、耐高温的新型陶瓷材料,凭借其独特的物理和化学性能,在航空航天、能源、环保等领域展现出广阔的应用前景。

本文旨在深入探讨泡沫碳化硅陶瓷的制备工艺,研究其性能特点,为进一步优化制备工艺、提升材料性能以及推动其在实际应用中的广泛使用提供理论支撑和实践指导。

本文首先概述了泡沫碳化硅陶瓷的基本性质和研究背景,阐述了其在不同领域中的应用价值。

随后,详细介绍了泡沫碳化硅陶瓷的制备工艺,包括原料选择、配方设计、成型方法、烧结工艺等关键步骤,并分析了各工艺参数对材料性能的影响。

在此基础上,本文重点研究了泡沫碳化硅陶瓷的物理性能、化学性能以及力学性能,如密度、孔隙率、热稳定性、抗腐蚀性等,并通过实验数据分析了其性能特点与制备工艺之间的关联。

本文总结了泡沫碳化硅陶瓷的制备工艺与性能研究成果,指出了当前研究中存在的问题和不足,并对未来的研究方向和应用前景进行了展望。

通过本文的研究,旨在推动泡沫碳化硅陶瓷制备工艺的进一步优化,提升材料性能,拓展其应用领域,为新型陶瓷材料的发展做出积极贡献。

二、泡沫碳化硅陶瓷的制备工艺泡沫碳化硅陶瓷的制备工艺主要包括原料选择、配方设计、泡沫前驱体的制备、碳化硅化过程以及后处理几个关键步骤。

原料选择是制备泡沫碳化硅陶瓷的第一步,其主要原料包括硅源、碳源、造孔剂以及可能的添加剂。

硅源一般选择硅粉、硅溶胶或硅烷等,碳源则可以选择石墨、炭黑、有机聚合物等。

造孔剂的选择对于泡沫结构的形成至关重要,常用的有无机盐类、高分子聚合物等。

根据需求,还可以添加一些助剂,如分散剂、催化剂等。

配方设计则需要根据所需的碳化硅陶瓷性能,合理搭配各原料的比例。

通过调整硅碳比、造孔剂含量等参数,可以控制泡沫碳化硅陶瓷的密度、孔径、孔结构以及机械性能等。

泡沫前驱体的制备是制备泡沫碳化硅陶瓷的关键步骤。

化学气相沉积碳化硅陶瓷工艺_解释说明

化学气相沉积碳化硅陶瓷工艺_解释说明

化学气相沉积碳化硅陶瓷工艺解释说明1. 引言1.1 概述化学气相沉积碳化硅陶瓷工艺是一种重要的材料制备技术,在多个领域具有广泛应用。

碳化硅陶瓷具有优异的高温稳定性、耐磨性以及化学稳定性,因此受到了广泛关注和研究。

本文将重点介绍化学气相沉积碳化硅陶瓷的工艺原理、材料选择与准备方法以及反应参数的控制。

1.2 文章结构本文将分为五个主要部分来进行讨论。

首先是引言部分,概述了文章整体内容和背景;接着是对化学气相沉积碳化硅陶瓷工艺进行详细介绍;然后是实验方法与结果分析,展示了本文中所采用的实验设备和条件,以及样品制备与处理情况;接下来是对碳化硅陶瓷性能评估的讨论,包括结构与形貌表征、机械性能测试以及热稳定性检测;最后是总结和展望部分,总结了主要研究发现,并提出对未来研究的建议。

1.3 目的本文旨在全面介绍化学气相沉积碳化硅陶瓷工艺,并通过实验方法与结果分析以及性能评估,对其进行深入探讨。

通过本文的研究,旨在为相关领域的科研人员和工程师提供参考,推动碳化硅陶瓷工艺的进一步发展和应用。

2. 化学气相沉积碳化硅陶瓷工艺:2.1 工艺原理:化学气相沉积碳化硅陶瓷(Chemical Vapor Deposition, CVD)是一种常用的制备碳化硅陶瓷材料的方法。

其工艺原理基于在高温条件下,将合适的预体物质通过气态反应在衬底或样品表面上进行沉积,最终形成致密、均匀的碳化硅陶瓷薄膜或块状材料。

2.2 材料选择与准备:在化学气相沉积碳化硅陶瓷工艺中,需要选择适合的前驱物和衬底材料。

常用的前驱物包括有机硅类、无机盐类等,在反应过程中可以释放出所需的C和Si元素。

而对于衬底材料,则要具有较好的耐高温性能和平整度,通常选用石英、SiC 等材料。

在进行材料准备时,首先需要对前驱物进行预处理,如根据具体工艺要求进行溶解、过滤或稀释等操作。

对于衬底材料,则需要进行清洗、干燥等处理,以确保表面无杂质和水分。

2.3 反应参数控制:在化学气相沉积碳化硅陶瓷工艺中,合理控制反应参数对于最终产品的性能至关重要。

碳化硅材料的制备与应用

碳化硅材料的制备与应用

碳化硅材料的制备与应用碳化硅(SiC)作为一种高性能陶瓷材料,在工业和军事领域中具有广泛应用。

它的制备和应用已经引起了人们的广泛关注和研究。

一、制备1. 前驱体法前驱体法是一种重要的制备碳化硅的方法。

通过化学反应合成SiC前驱体,再将前驱体高温热解制备成SiC材料。

前驱体一般分为有机前驱体和无机前驱体两类。

有机前驱体主要指由含硅有机化合物和碳源化合物通过化学反应制备SiC前驱体的方法。

无机前驱体指的是由含硅无机化合物和化学还原剂合成的含硅混合物,然后通过高温处理得到SiC材料。

前驱体法制备的SiC材料具有高度纯度和卓越的性能。

2. 真空热解法真空热解法也是一种常见的制备SiC材料的方法。

在高温(约2000℃)下,将Si和C材料置于真空环境中,通过热解反应制备出碳化硅材料。

该方法制备出的SiC材料晶体结构完整、热稳定性强、机械性能高、导热性好。

二、应用碳化硅材料在工业和军事领域中广泛应用。

以下是一些典型的应用示例:1. 模具材料碳化硅材料因其高温强度和耐腐蚀性能优异,被广泛应用于模具材料的制备中。

例如,用SiC材料制作的玻璃模具,可以在高温环境下保持形状稳定性,使得玻璃制品具有优良的表面光洁度和精度。

2. 焊接材料碳化硅材料可用于高温下的托盘、炉辊和焊接工段等应用。

例如,用碳化硅陶瓷制成的托盘具有优良的机械性能和耐腐蚀性能,在高温烘干和烧结过程中能够保持长期稳定。

3. 功能陶瓷材料碳化硅材料在电子器件和实验仪器等领域中有广泛的应用。

例如,用SiC材料制作的红外吸收陶瓷,具有良好的热稳定性和强大的红外吸收能力,用于红外探测器、红外传感器等的制备。

4. 涂层材料碳化硅材料因其高硬度、高耐磨性和高温稳定性等物理性质优异,被广泛应用于涂层材料的制备中。

例如,用碳化硅薄膜涂层制作的机械零部件,具有优秀的摩擦学和生物相容性,可以用于人工心脏、骨骼等医学器械的制备。

总之,碳化硅材料的制备和应用已经得到了广泛的研究和应用。

碳化硅陶瓷的制备及烧结温度对其密度影响的研究

碳化硅陶瓷的制备及烧结温度对其密度影响的研究

一、引言碳化硅陶瓷是一种非常重要的陶瓷材料,具有高温强度、抗腐蚀和高热导率等优良性能,因此在航空航天、电子、光学等领域有着广泛的应用。

碳化硅陶瓷的制备及性能研究一直备受关注,而其密度是衡量其质量的重要指标之一。

烧结温度是影响碳化硅陶瓷密度的一个重要因素,因此研究烧结温度对碳化硅陶瓷密度的影响具有重要意义。

二、碳化硅陶瓷的制备方法1. 原料准备:通常采用碳化硅粉末和适量的添加剂作为原料,碳化硅粉末的粒度、纯度及其添加剂的种类和用量都会对制备后的陶瓷密度产生影响。

2. 混合:将碳化硅粉末和添加剂进行充分混合,以确保添加剂均匀分散在碳化硅粉末中。

3. 成型:将混合后的原料进行成型,常用的成型方法包括压制、注塑、浇铸等。

4. 烧结:将成型后的陶瓷坯体放入烧结炉中进行烧结,烧结温度、时间和气氛对陶瓷的性能有重要影响。

三、烧结温度对碳化硅陶瓷密度的影响1. 烧结温度过低会造成碳化硅陶瓷未充分烧结,导致陶瓷密度较低。

2. 烧结温度过高可能会导致碳化硅陶瓷晶粒长大过快,使得陶瓷内部产生较大的孔隙,从而影响陶瓷密度。

3. 烧结温度的选择需综合考虑碳化硅陶瓷的成分、添加剂、烧结环境等因素来确定。

四、研究方法1. 实验材料:选取工业级碳化硅粉末和添加剂作为原料。

2. 实验设计:分别对不同烧结温度下制备的碳化硅陶瓷进行密度测试,对比分析烧结温度对碳化硅陶瓷密度的影响。

3. 实验步骤:包括原料制备、混合、成型、烧结、密度测试等步骤。

4. 实验仪器:密度测试常采用排水法、气体置换法等方法,可选用密度计进行测试。

五、实验结果与分析1. 进行实验后得出不同烧结温度下制备的碳化硅陶瓷密度随着烧结温度的增加呈现出先升高后降低的趋势。

2. 烧结温度较低时,陶瓷密度较低,可能是由于未充分烧结导致的。

3. 随着烧结温度的升高,碳化硅陶瓷的密度也随之增加,但当烧结温度过高时,密度反而下降,可能是因为晶粒长大导致陶瓷内部产生大的孔隙所致。

4. 综合分析得出最佳烧结温度范围,以获得较高密度的碳化硅陶瓷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

喷嘴:作喷嘴的陶瓷材料有多种,常用
的是氧化铝、碳化硅和碳化硼陶瓷等。 氧化铝陶瓷喷嘴的价格低,但由于硬度 低,其耐磨性较差,多用于喷砂工作量 不大的场合。碳化硅陶瓷的使用寿命是 氧化铝陶瓷的3-5倍【】,与硬质合金 相当,多用于硬质合金的替代品,特别 是在手持喷枪的工况中使用。
磁力泵泵件:随着工业化的发展,特别
碳化硅陶瓷的制备技术及应用
一、碳化硅的前沿
二、SiC粉末的合成 三、SiC的烧结方法
四、反应烧结碳化硅的成型工艺
五、碳化硅陶瓷的应用
碳化硅陶瓷的制备技术及应用
1、前沿:
碳化硅陶瓷材料具有高温强度大, 高温抗氧化性 强、耐磨损性能好 ,热稳定性佳 ,热膨胀系数小, 热导率大, 硬度高 ,抗热震和耐化学腐蚀等优良特 性. 在汽车、机械化工、环境保护、 空间技术、 信 息电子 、能源等领域有着日益广泛的应用,已经成为 一种在很多工业领域性能优异的其他材料不可替代的 结构陶瓷。
以下是对四种烧结方法的一些概括: 实验表明,采用无压烧结、热压烧结、热 等静压烧结和反应烧结的SiC陶瓷具有各异的 性能特点。假如就烧结密度和抗弯强度来说, 热压烧结和热等静压烧结SiC陶瓷相对较高, 反应烧结SiC相对较低。另一方面,SiC陶瓷的 力学性能还随烧结添加剂的不同而不同。无压 烧结、热压烧结和反应烧结SiC陶瓷对强酸、 强碱具有良好的抵抗力,但反应烧结SiC陶瓷 对HF等超强酸的抗蚀性较差。就耐高温性能比 较来看,当温度低于900℃时,几乎所有SiC陶 瓷强度均有所提高;当温度超过1400℃时,反 应烧结SiC陶瓷抗弯强度急剧下降。(这是由 于烧结体中含有一定量的游离Si,当超过一定 温度抗弯强度急剧下降所致)对于无压烧结和 热等静压烧结的SiC陶瓷,其耐高温性能主要 受添加剂种类的影响
பைடு நூலகம்
有研究在2050℃和 SiC+1%B4C+ 3%C体 系热压保温45分钟工艺条件下,密度达到理论 致密度的98.75% 。由于热压工艺自身的缺点 而无法应用在商业化生产中,因此无压烧结成 了高性能碳化硅陶瓷工业化首选的制备方法。
3、碳化硅烧结反应工艺流程图
1、无压烧结 1974年美国GE公司通过在高纯度β -SiC细粉中同时加入少量的B和C,采 用无压烧结工艺,于2020℃成功地获得 高密度SiC陶瓷。目前,该工艺已成为制 备SiC陶瓷的主要方法。 最近,有研究者在亚微米SiC粉料中加入 Al2O3和Y2O3,在1850℃~2000℃温度下 实现SiC的致密烧结。由于烧结温度低而 具有明显细化的微观结构,因而,其强 度和韧性大大改善。
是ISO14000国际标准的贯彻执行,对不 利于环境保护液体【】的输运提出了更高 的要求。磁力泵由于采用静密封代替机 械密封、填料密封等动密封,因而泄漏 更小、可靠性更高、使用寿命更长。
高温耐蚀部件:碳化硅陶瓷最重要的特
性之一是它的高温强度,即在1600oC时 强度基本不降低,且抗氧化性能非常好, 因而可在高温结构件中使用。如高温炉 的顶板、支架【】,以及高温实验用的卡 具等。
4、反应烧结: SiC的反应烧结法最早在美国研究成功。反
应烧结的工艺过程为:先将α-SiC粉和石墨粉 按比例混匀,经干压、挤压或注浆等方法制成 多孔坯体。在高温下与液态Si接触,坯体中的 C与渗入的Si反应,生成β-SiC,并与α-SiC 相结合,过量的Si填充于气孔,从而得到无孔 致密的反应烧结体。反应烧结SiC通常含有8% 的游离Si。因此,为保证渗Si的完全,素坯应 具有足够的孔隙度。一般通过调整最初混合料 中α-SiC和C的含量,α-SiC的粒度级配,C的 形状和粒度以及成型压力等手段来获得适当的 素坯密度。
5.1.2等静压成型(Isostatic Pressing)
等静压成型是将待压试样置于高压容器中, 利用液体、气体、橡胶等介质不可压缩的性质 和均匀传递压力的性质从各个方向对试样进行 均匀加压,当液体介质通过压力泵注入压力容 器时,根据流体力学原理,其压强大小不变且 均匀地传递到各个方向。此时高压容器中的粉 料在各个方向上受到的压力是均匀的和大小一 致的。通过上述方法使瘠性粉料成型致密坯体 的方法称为等静压法。优点是粉料与模具壁的 摩擦力小,坯体受力均匀,密度分布均一。
总结: SiC陶瓷在许多工业领域中的应用显示了 优良的性能,因而引起了人们的普遍重视。在 无机非金属材料领域中SiC陶瓷是一个很大的 家族,其触角几乎伸遍了所有的工业领域。但 是由于SiC陶瓷的难烧结性,因而它的制作工 艺和生产都较昂贵,降低SiC陶瓷的烧成温度 和寻找新的廉价的生产工艺仍是材料工作者的 研究重点。同时挖掘和开发SiC陶瓷(粉末) 的所有优点造福于人类也是我们工作的重点 【】。SiC陶瓷有它广阔的发展和应用前景。
3、热等静压烧结: 近年来,为进一步提高SiC陶瓷的力 学性能,研究人员进行了SiC陶瓷的热等 静压工艺的研究工作。研究人员以B和C 为添加剂,采用热等静压烧结工艺,在 1900℃便获得高密度SiC烧结体。更进一 步,通过该工艺,在2000℃和138MPa压 力下,成功实现无添加剂SiC陶瓷的致密 烧结。 研究表明:当SiC粉末的粒径小 于0.6μm时,即使不引入任何添加剂, 通过热等静压烧结,在1950℃即可使其 致密化。
5.1.1模压成型(Stamping Process)
将一定量的粉料填充模具内,在一定载荷下压制 成型。该成型由于载荷为单向的,也称为单向压制成 型。在成型过程中,由于模具填充的不均匀和压制过 程本身造成坯体内密度存在变化。由于干压成形的坯 料水分少,压力大,坯体比较致密,因此能获得收缩 小,形状准确,无需大力干燥的生坯。干压成形过程 简单,生产量大,缺陷少,便于机械化,因此对于成 型形状简单、小型的坯体颇为合适。但对于形状复杂、 大型的制品采用一般的干压成形就有困难。在此基础 上,有人提出了双向加压、振动压制和磁场压制 。
2、 SiC粉末的合成:
SiC在地球上几乎不存在,仅在陨石 中有所发现。因此,工业上应用的SiC粉 末都为人工合成。目前,合成SiC粉末的 主要方法有:
1、Acheson法: 这是工业上采用最多的
合成方法,即用电将石英砂和焦炭的混合物加 热至2500℃左右高温反应制得。因石英砂和焦 炭中通常含有Al和Fe等杂质,在制成的SiC中 都固溶有少量杂质。其中,杂质少的呈绿色, 杂质多的呈黑色。
2、热压烧结 50年代中期,美国Norton公司就开始 研究B、Ni、Cr、Fe、Al等金属添加物对 SiC热压烧结的影响。实验表明:Al和Fe 是促进SiC热压致密化的最有效的添加剂。 有研究者以Al2O3为添加剂,通过热压烧 结工艺,也实现了SiC的致密化,并认为 其机理是液相烧结。此外,还有研究者 分别以B4C、B或B与C,Al2O3和C、 Al2O3和Y2O3、Be、B4C与C作添加剂, 采用热压烧结,也都获得了致密SiC陶瓷。
5.1.3注浆成型(Slip Casting) SiC工艺利用石膏模具的吸水性,将制得
的陶瓷浆料注入多孔质模具,由模具的气孔把 浆料中的液体吸出,而在模具中留下坯体。注 浆成型工艺成本低,过程简单,易于操作和控 制,但成型形状粗糙,注浆时间较长,坯体密 度、强度也不高。人们在传统注浆成型的基础 上,相继发展产生了新的压滤成型(Pressure Filtration)和离心注浆成型(Centrifugal Casting), 借助于外加压力和离心力的作用,来提高素坯 的密度和强度,避免了注射成型中复杂的脱脂 过程,但由于坯体均匀性差,因而不能满足制 备高性能高可靠性陶瓷材料的要求。

粉料成型技术的目的是为了得到内部均匀和高密 度的坯体,提高成型技术是提高陶瓷产品可靠性的关 键步骤。成型是陶瓷生产过程的一个重要步骤。 成型过程就是将分散体系(粉料、塑性物料、浆料) 转变为具有一定几何形状和强度的块体,也称素坯。 成型的方法很多,且各有优缺点,主要可分为干法成 型和湿法成型,其中干法成型包括模压成型和等静压 成型,湿法成型包括注浆成型、流延成型、直接凝固 注模成型、挤出成型、注射成型等成型方法。 下面主要介绍模压成型、等静压成型、注浆成型、 直接凝固注模成型、挤压成型和注射成型这几种主要 的陶瓷成型工艺的成型原理、基本工艺及特点。
2、化合法: 在一定的温度下,使高 纯的硅与碳黑直接发生反应。由此可合 成高纯度的β-SiC粉末。
3、热分解法:使聚碳硅烷或三氯甲基 硅等有机硅聚合物在1200~1500℃的温 度范围内发生分解反应,由此制得亚微 米级的β-SiC粉末。
4、气相反相法: 使SiCl4和SiH4等含 硅的气体以及CH4、C3H8、等含碳的气 体在高温下发生反应,由此制备纳米级 的β-SiC超细粉。

研磨介质:碳化硅陶瓷由于其高硬度的
特点而广泛用于耐磨机械零件中,特别 是球磨机中的研磨介质(磨介)。球磨 机中所用的磨介对研磨效率有着重要的 影响,其基本要求是硬度高、韧性好, 以保证研磨效率高、掺杂少的要求。
防弹板:碳化硅陶瓷由于硬度高、比重
小、弹道性能较好、价格较低,而广泛 用于防弹装甲中,如车辆、舰船的防护 以及民用保险柜、运钞车的防护中。碳 化硅陶瓷的弹道性能优于氧化铝陶瓷, 约为碳化硼陶瓷的70-80%,但由于价格 较低,特别适合用于用量大,且防护装 甲不能过厚、过重的场合。
五、碳化硅陶瓷的应用
由于碳化硅陶瓷所具有的高硬度、高耐
腐蚀性以及较高的高温强度,使得碳化 硅陶瓷得到了广泛的应用。主要有以下 几个方面: 密封环:碳化硅陶瓷的耐化学腐蚀性好、 强度高、硬度高,耐磨性能好、摩擦系 数小,且耐高温,因而是制造密封环的 理想材料。它与石墨材料组合配对时, 其摩擦系数比氧化铝陶瓷和硬质合金小, 因而可用于高PV值,特别是输送强酸、 强碱的工况中使用。
5.1.4挤压成型(Extrusion)
将粉料、粘结剂、润滑剂等与水均匀混合, 然后将塑性物料挤压出刚性模具即可得到管状、 柱状、板状以及多孔柱状成型体。其缺点主要 是物料强度低,容易变形,并可能产生表面凹 坑和起泡、开裂以及内部裂纹等缺陷。挤压成 型用的物料以粘结剂和水做塑性载体,尤其需 用粘土以提高物料相容性,故其广泛应用于传 统耐火材料如炉管、护套管以及一些电子材料 的成型生产。
相关文档
最新文档