二极管并联电阻的作用

二极管并联电阻的作用
二极管并联电阻的作用

一:电阻与二极管并联的作用是什么?这两个并联后,再与一个电容

串联,起到什么作用呢?

作用

一般是降低二极管等效电阻,并上电阻后二极管两端压降没有减小,但是通过去的电流小了,被并联

的电阻分流了,这也是保护二极管的一种办法。

但你这里后面接了电容就有别的作用了,因为二极管是正向电阻小,反向电阻很大,电容放电就不可能走二极管这里走,除非二极管的漏电流很大。加个电阻就可以提供电容放电的途径,当然这样你这个电阻就要比较大,正向通路,二极管电阻小,电流大都走二极管过去,反向时候二极管电阻大,电

流走电阻回来。

看具体使用的场合

这样可以使电容的充电时间和放电时间不同,就是快速充电缓慢放电或缓慢充电快速放电,具体作用就要看使用的场合了,比如MCU的复位电路,上电时电容通过电阻充电,获得一个一定宽度的复位脉

冲,掉电的时候电容通过二极管快速放电.

改变充放电时间

这样可以让电容的充电和放电时间不一样,锯齿波发生器中就这样做的,正向充电时电流通过二极管走快速给电容充电形成一个跳变,翻转之后电流通过电阻放电比较慢,这样波形缓慢变化

二极管主要有下列应用

1、整流二极管

利用二极管单向导电性,可以把方向交替变化的交流电变换成单一方向的脉动直流电。

2、开关元件

二极管在正向电压作用下电阻很小,处于导通状态,相当于一只接通的开关;在反向电压作用下,电阻很大,处于截止状态,如同一只断开的开关。利用二极管的开关特性,可以组成各种逻辑电路。

3、限幅元件

二极管正向导通后,它的正向压降基本保持不变(硅管为0.7V,锗管为0.3V)。利用这一特性,在电路中作为限幅元件,可以把信号幅度限制在一定范围内。

4、继流二极管

在开关电源的电感中和继电器等感性负载中起继流作用。

5、检波二极管

在收音机中起检波作用。

6、变容二极管

使用于电视机的高频头中。

你说的应该是稳压或续流二极管,由于没有电路图,无法详细回答.

晶闸管(可控硅)两端并联电阻和电容的作用

晶闸管(可控硅)两端并联电阻和电容的作用

晶闸管(可控硅)两端为什么并联电阻和电容 一、晶闸管(可控硅)两端为什么并联电阻和电容在实际晶闸管(可控硅)电路中,常在其两端并联RC 串联网络,该网络常称为RC 阻容吸收电路。 我们知道,晶闸管(可控硅)有一个重要特性参数-断态电压临界上升率dlv/dlt。它表明晶闸管(可控硅)在额定结温和门极断路条件下,使晶闸管(可控硅)从断态转入通态的最低电压上升率。若电压上升率过大,超过了晶闸管(可控硅)的电压上升率的值,则会在无门极信号的情况下开通。即使此时加于晶闸管(可控硅)的正向电压低于其阳极峰值电压,也可能发生这种情况。因为晶闸管(可控硅)可以看作是由三个PN 结组成。 在晶闸管(可控硅)处于阻断状态下,因各层相距很近,其J2结结面相当于一个电容 C0。当晶闸管(可控硅)阳极电压变化时,便会有充电电流流过电容C0,并通过J3结,这个电流起了门极触发电流作用。如果晶闸管(可控硅)在关断时,阳极电压上升速度太快,则C0的充电电流越大,就有可能造成门极在没有触发信号的情况下,晶闸管(可控硅)误导通现象,即常说的硬开通,这是不允许的。因此,对加到晶闸管(可控硅)上的阳极电压上升率应有一定的限制。 为了限制电路电压上升率过大,确保晶闸管(可控硅)安全运行,常在晶闸管(可控硅) 两端并联RC 阻容吸收网络,利用电容两端电压不能突变的特性来限制电压上升率。因为电路总是存在电感的(变压器漏感或负载电感),所以与电容C 串联电阻R 可起阻尼作用,它可以防止R、L、C 电路在过渡过程中,因振荡在电容器两端出现的过电压损坏晶闸管(可控硅)。同时,避免电容器通过晶闸管(可控硅)放电电流过大,造成过电流而损坏晶闸管(可控硅)。 由于晶闸管(可控硅)过流过压能力很差,如果不采取可靠的保护措施是不能正常工作的。RC 阻容吸收网络就是常用的保护方法之一。 二、整流晶闸管(可控硅)阻容吸收元件的选择 电容的选择: C=(2.5-5)×10的负8次方×If If=0.367Id Id-直流电流值 如果整流侧采用500A 的晶闸管(可控硅) 可以计算C=(2.5-5)×10的负8次方×500=1.25-2.5mF 选用2.5mF,1kv 的电容器 电阻的选择: R=((2-4) ×535)/If=2.14-8.56 选择10欧 PR=(1.5×(pfv×2πfc)的平方×10的负12次方×R)/2 Pfv=2u(1.5-2.0) u=三相电压的有效值 阻容吸收回路在实际应用中,RC 的时间常数一般情况下取1~10毫秒。 小功率负载通常取2毫秒左右,R=220欧姆/1W,C=0.01微法/400~630V/。 大功率负载通常取10毫秒,R=10欧姆/10W,C=1微法/630~1000V。 R 的选取:小功率选金属膜或RX21线绕或水泥电阻;大功率选RX21线绕或水泥电阻。 C 的选取:CBB 系列相应耐压的无极性电容器。

晶振串联电阻与晶振并联电阻的作用_HOSONIC晶振

晶振串联电阻与晶振并联电阻的作用 一份电路在其输出端串接了一个22K的电阻,在其输出端和输入端之间接了一个10M的电阻,这是由于连接晶振的芯片端内部是一个线性运算放大器,将输入进行反向180度输出,晶振处的负载电容电阻组成的网络提供另外180度的相移,整个环路的相移360度,满足振荡的相位条件,同时还要求闭环增益大于等于1,晶体才正常工作。晶振输入输出连接的电阻作用是产生负反馈,保证放大器工作在高增益的线性区,一般在M欧级,输出端的电阻与负载电容组成网络,提供180度相移,同时起到限流的作用,防止反向器输出对晶振过驱动,损坏晶振。 和晶振串联的电阻常用来预防晶振被过分驱动。晶振过分驱动的后果是将逐渐损耗减少晶振的接触电镀,这将引起频率的上升,并导致晶振的早期失效,又可以讲drive level调整用。用来调整drive level和发振余裕度。晶振输入输出连接的电阻作用是产生负反馈,保证放大器工作在高增益的线性区,一般在M欧级,输出端的电阻与负载电容组成网络,提供180度相移,同时起到限流的作用,防止反向器输出对晶振过驱动,损坏晶振。 电阻的作用是将电路内部的反向器加一个反馈回路,形成放大器,当晶体并在其中会使反馈回路的交流等效按照晶体频率谐振,由于晶体的Q值非常高,因此电阻在很大的范围变化都不会影响输出频率。过去,曾经试验此电路的稳定性时,试过从100K~20M都可以正常启振,但会影响脉宽比的。 Xin和Xout的内部一般是一个施密特反相器,反相器是不能驱动晶体震荡的.因此,在反相器的两端并联一个电阻,由电阻完成将输出的信号反向?180度反馈到输入端形成负反馈,构成负反馈放大电路.晶体并在电阻上,电阻与晶体的等效阻抗是并联关系,自己想一下是电阻大还是电阻小对晶体的阻抗影响小大? 下图所示的一个晶振电路中, 电路在其输出端串接了一个2M欧姆的电阻,在其输出端和输入端之间接了一个10M欧姆的电阻,这是由于连接晶振的芯片端内部是一个线性运算放大器,将输入进行反向180度输出,晶振处的负载电容电阻组成的网络提供另外180度的相移,整个环路的相移360度,满足振荡的相位条件,同时还要求闭环增益大于等于1,晶体才正常工作。

在继电器线圈两端并联电阻和反向并联二极管各起什么作用

并联二极管是用来消耗这个反向电动势的,通常叫做消耗二极管和消耗电阻;直流继电器一般采用二极管,并联电阻的比较少见,具体有什么不同我也说不清楚。 光用电阻不好,线圈通电的时候电阻会消耗电能。 反并联二极管就不会。关断的时候线圈通过二极管泄放储存的磁场能,不会对其他元器件造成影响。 继电器断开(相当于电感断开)时,产生一个感生电动势.并联的二极管会在这个电动势的作用下沿着电感与二极管形成的回路继续向电感(线圈)供电.因此会引时延.(断电时产生的感生电动势往往比电源提供的电压还要高)
并一个二极管的意义在于保护继电器的线圈不被断开时产生的高电压所损坏.(绝缘击穿,线间短路....).

一般来说继电器都有一定的滞后.通常在毫秒级或十毫秒级,加上二极管后虽然有时延,但通常也是可以忽略不计的.< 在电路图中电阻与电容xx起什么作用 就这两个电器元件来说,电阻与电容并联后,当电阻两端接高频交流时电阻短路,就相当于只有电容。接直流时电容不通就相当于只有电阻具体问题具体分析 阻容并联,滤波的一种,产生直流压降,并对交流短路。 工程上一般不用它来滤波,而用来粗略的稳压。典型应用,比如三极管放大电路中,射极电阻加旁路电容,用来稳定静态工作点,减小输入信号对静态点的影响。 交流电从外部输入电源供应器的第一道关卡,为了阻隔来自电力在线干扰,以及避免电源供应器运作所产生的交换噪声经电力线往外散布干扰其他用电装置,都会于交流输入端安装一至二阶的EMI(电磁干扰)Filter(滤波器),其功能就是一个低通滤波器,将交流电中所含高频的噪声旁路或是导向接地线,只让60Hz左右的波型通过。滤波电路整个包于铁壳中,能更有效避免噪声外泄;插座上只加上Cx与Cy电容,X电容(Cx,又称为跨接线路滤波电容):

电阻的串联和并联

电阻的串联和并联 知识点一:; :电阻的串联有以下几个特点:(指R1、R2串联,串得越多,总电阻越大) ①电流:I=I1=I2(串联电路中各处的电流相等) ②电压:U=U1+U2(串联电路中总电压等于各部分电路电压之和) ③电阻:R=R1+R2(串联电路中总电阻等于各串联电阻之和);如果n个等值电阻(R)串联,则有R总=nR 注:总电阻比任何一个分电阻都大,其原因是电阻串联相当于增加了导体的长度; ④分压作用:U1/U2=R1/R2(阻值越大的电阻分得电压越多,反之分得电压越少) ⑤比例关系:电流:I1∶I2=1∶1 例题:电阻为12Ω的电铃正常工作时的电压为6 V,若把它接在8 V的电路上,需要给它串联一个多大的电阻?(要求画出电路图,在图上标出有关物理量) 例题:把电阻R1=20Ω与电阻R2=15Ω串联起来接入电路中,流过R1、R2的电流之比是 __________,R1、R2两端的电压之比是_____________。 例题:如图所示,电源电压为10V,闭合开关S后,电流表、电压表的示数分别为O.5A和6V。求:(1)通过R1的电流I1是多少? (2)马平同学在求R2的电阻值时,解题过程如下: 根据欧姆定律:R2=U/I=6V/0.5A=12Ω 请你指出马平同学在解题过程中存在的错误,并写出正确的 解题过程。 练习1.电阻R1和R2串联后接在电压为6 V的电源上,电阻R1=2Ω,R2=4Ω,求: (1)总电阻. (2)R1两端的电压.(要求画出电路图,在图上标出有关物理量) 2.如图所示的电路中,若电源电压保持6 V不变,电阻R1=10Ω,滑动变阻器R2的变化范围是O~20Ω.求: (1)欲使电压表的示数为4 V,则此时电流表的示数为多大?滑动变阻器连入电路的电阻是多大? (2)当滑动变阻器连人电路的电阻为20Ω时,电流表、电压表的示数分别是多大? 3.把电阻R1=5Ω与电阻R2=15Ω串联起来接入电路中,流过R1、R2的电流之比是__________,

极管并联电阻的作用

一:电阻与二极管并联的作用是什么?这两个并联后,再与一个电容串联,起到什么作用呢? 作用 一般是降低二极管等效电阻,并上电阻后二极管两端压降没有减小,但是通过去的电流小了,被并联的电阻分流了,这也是保护二极管的一种办法。 但你这里后面接了电容就有别的作用了,因为二极管是正向电阻小,反向电阻很大,电容放电就不可能走二极管这里走,除非二极管的漏电流很大。加个电阻就可以提供电容放电的途径,当然这样你这个电阻就要比较大,正向通路,二极管电阻小,电流大都走二极管过去,反向时候二极管电阻大,电流走电阻回来。 看具体使用的场合 这样可以使电容的充电时间和放电时间不同,就是快速充电缓慢放电或缓慢充电快速放电,具体作用就要看使用的场合了,比如MCU的复位电路,上电时电容通过电阻充电,获得一个一定宽度的复位脉冲,掉电的时候电容通过二极管快速放电. 改变充放电时间 这样可以让电容的充电和放电时间不一样,锯齿波发生器中就这样做的,正向充电时电流通过二极管走快速给电容充电形成一个跳变,翻转之后电流通过电阻放电比较慢,这样波形缓慢变化二极管主要有下列应用 1、整流二极管 利用二极管单向导电性,可以把方向交替变化的交流电变换成单一方向的脉动直流电。 2、开关元件 二极管在正向电压作用下电阻很小,处于导通状态,相当于一只接通的开关;在反向电压作用下,电阻很大,处于截止状态,如同一只断开的开关。利用二极管的开关特性,可以组成各种逻辑电路。 3、限幅元件 二极管正向导通后,它的正向压降基本保持不变(硅管为,锗管为)。利用这一特性,在电路中作为限幅元件,可以把信号幅度限制在一定范围内。 、继流二极管4. 在开关电源的电感中和继电器等感性负载中起继流作用。 5、检波二极管 在收音机中起检波作用。

晶闸管(可控硅)两端并联电阻和电容的作用

晶闸管(可控硅)两端为什么并联电阻和电容 一、晶闸管(可控硅)两端为什么并联电阻和电容在实际晶闸管(可控硅)电路中,常在其两端并联RC 串联网络,该网络常称为RC 阻容吸收电路。 我们知道,晶闸管(可控硅)有一个重要特性参数-断态电压临界上升率dlv/dlt。它表明晶闸管(可控硅)在额定结温和门极断路条件下,使晶闸管(可控硅)从断态转入通态的最低电压上升率。若电压上升率过大,超过了晶闸管(可控硅)的电压上升率的值,则会在无门极信号的情况下开通。即使此时加于晶闸管(可控硅)的正向电压低于其阳极峰值电压,也可能发生这种情况。因为晶闸管(可控硅)可以看作是由三个PN 结组成。 在晶闸管(可控硅)处于阻断状态下,因各层相距很近,其J2结结面相当于一个电容C0。当晶闸管(可控硅)阳极电压变化时,便会有充电电流流过电容C0,并通过J3结,这个电流起了门极触发电流作用。如果晶闸管(可控硅)在关断时,阳极电压上升速度太快,则C0的充电电流越大,就有可能造成门极在没有触发信号的情况下,晶闸管(可控硅)误导通现象,即常说的硬开通,这是不允许的。因此,对加到晶闸管(可控硅)上的阳极电压上升率应有一定的限制。 为了限制电路电压上升率过大,确保晶闸管(可控硅)安全运行,常在晶闸管(可控硅) 两端并联RC 阻容吸收网络,利用电容两端电压不能突变的特性来限制电压上升率。因为电路总是存在电感的(变压器漏感或负载电感),所以与电容C 串联电阻R 可起阻尼作用,它可以防止R、L、C 电路在过渡过程中,因振荡在电容器两端出现的过电压损坏晶闸管(可控硅)。同时,避免电容器通过晶闸管(可控硅)放电电流过大,造成过电流而损坏晶闸管(可控硅)。 由于晶闸管(可控硅)过流过压能力很差,如果不采取可靠的保护措施是不能正常工作的。RC 阻容吸收网络就是常用的保护方法之一。 二、整流晶闸管(可控硅)阻容吸收元件的选择 电容的选择: C=(2.5-5)×10的负8次方×If If=0.367Id Id-直流电流值 如果整流侧采用500A 的晶闸管(可控硅) 可以计算C=(2.5-5)×10的负8次方×500=1.25-2.5mF 选用2.5mF,1kv 的电容器 电阻的选择: R=((2-4) ×535)/If=2.14-8.56 选择10欧 PR=(1.5×(pfv×2πfc)的平方×10的负12次方×R)/2 Pfv=2u(1.5-2.0) u=三相电压的有效值 阻容吸收回路在实际应用中,RC 的时间常数一般情况下取1~10毫秒。 小功率负载通常取2毫秒左右,R=220欧姆/1W,C=0.01微法/400~630V/。 大功率负载通常取10毫秒,R=10欧姆/10W,C=1微法/630~1000V。 R 的选取:小功率选金属膜或RX21线绕或水泥电阻;大功率选RX21线绕或水泥电阻。 C 的选取:CBB 系列相应耐压的无极性电容器。 看保护对象来区分:接触器线圈的阻尼吸收和小于

串联、并联电容与电阻作用(精制甲类)

场效应管闸极加入471/100v电容和10k电阻并联作用 场效应管闸极加入471/100v电容和10k电阻并联接地。这个电路起到什么左右啊。470pf的电容一般在什么地方使用的多? 推荐答案 1;场效应管输入电阻很大,如果上一级电路是电流输出型,则需要加一个并联到地的电阻将电流转换成电压(场效应管是电压控制性) 2;加电容是抗干扰 3:470PF电容一般用于电源去耦,滤波,高频耦合 晶闸管并联并联一个电阻和电容的作用 电容可以吸收尖脉冲高压,晶闸管并联一个电阻与电容串联的支路,是为了防止电源由于某种原因产生的瞬时脉冲高压击穿晶闸管。 在电路图中电阻与电容并联起什么作用 最佳答案 就这两个电器元件来说,电阻与电容并联后,当电阻两端接高频交流时电阻短路,就相当于只有电容。接直流时电容不通就相当于只有电阻具体问题具体分析 在电路中电阻的两端并联一个电容,或者电容一端接电阻,一端接地,这两种情况电容分别起什么作用? 一、对于电子电路: 电阻的两端并联一个电容,为了减小对高频信号的阻抗,相当于微分,这样信号上升速度加快,用于提高响应速度;电容一端接电阻,一端接地,则相反,滤去高频,相当于积分,用于滤波。 最典型的应用就是放大电路中的高低音频控制。 二、对于电力电路: 不管RC串联还是并联,电容的作用都是一样的,电容的作用就是防止电压突变,吸收尖峰状态的过电压,串联的电阻起阻尼作用,电阻消耗过电压的能量,从而抑制电路的振荡。并联的电阻吸收电容的电能,防止电容的放电电流过大,避免对与之并联的器件(如晶闸管)造成损坏。 最典型的应用就是防止操作过电压。 电容并联电阻,电感有何作用,电容串联电阻,电感有何作用 电容并联电阻,电感有何作用,电容串联电阻,电感有何作用,说明原理好吗? 电容并联电感,产生并联谐振,也称为电流谐振,谐振时,LC的谐振阻抗达到最大值;电容、电感中

并联电路中的电阻关系

四、并联电路中的电阻关系 五、欧姆定律的应用 【学习要求】 1.知道什么是并联电路,能区别串联电路和并联电路。 2.理解并联电路中各个导体的电流、电压、电阻跟电路的总电流、总电压、总电阻的关系。 3.能运用欧姆定律求解并联电路的常见问题。 【知识讲解】 一、知识回顾 1.电路的联接有两种基本方式,一种是将元件逐个顺次地联接起来,叫做串联;另一种是将元件并列地连接起来,叫做并联。 2.串联电路电流无分支,并联电路中电流要分成两条或多条支路;串联电路可以同时控制,而并联电路可以分别控制。 二、并联电路 1.问题的提出 修电子仪器时,需要一个5千欧的电阻,而手头只有20千欧、10千欧等多个电阻,那么可以把20千欧或10千欧的电阻组合起来代替? 并联电阻的知识,可以帮助我们解决这类问题,也可以用几个阻值大一些的电阻组合起来形成一个总电阻来代替一个阻值小的电阻。 2.电阻的并联,把几个电阻并列地连接起来叫电阻的并联.如图 我们学过并联电路的部分特点 a. 并联电路干路中的电流等于各支路中的电流之和 I =I 1+I 2 b. 并联电路里,各支路两端的电压相等 U =U 1=U 2 利用上面并联电路中两个特点和欧姆定律,可以推导出电阻并联后的总电阻与各个电阻之间的关系。 如图所示: 设并联电阻的阻值为R 1、R 2,并联后的总电阻为R ,由于各支路的电阻R 1、R 2两端的电压都等于U , 根据欧姆定律,可求得: 支路电流1 1R U I = 和 22R U I = 干路上的电流R U I = ,其中R 为并联电路的总电阻 ∵ I =I 1+I 2 即2 1R U R U R U + = 又∵ U =U 1+U 2 故211 11R R R + = 3.结论:这表明并联电路的总电阻的倒数,等于各并联电阻的倒数之和。 提出的问题,现在可以知道了,把两只10千欧的电阻并联起来就可以得到5千欧的电阻了。 从决定电阻大小的因素来看,把几个电阻并联起来,总电阻比任何一个电阻都小,这相当于增大了导体的横截面积。 三、对2 11 11R R R + =的理解 ①并联电路的总电阻比任何一个分电阻都小,即:R <R 1,R <R 2,可以理解为电阻并联时,相当于增加了导体的横截面积,而横截面积越大,导体电阻越小;例如,一个6欧和一个3欧的电阻并联后,总电阻为2欧,小于任何一个并联电阻。 ②并联电阻越多,相当于横截面积越大,所以总电阻越小;例如,一个6欧、一个3欧和一个2欧的电阻并联后,6欧与3欧的等效电阻为2欧,再与2欧的电阻并联,总电阻为1欧,同样小于任何一个并联电阻。 ③如果并联电路的某一个电阻变大,此时总电阻也会变大。一个6欧和一个3欧的电阻并联后,总电阻为2欧;当用另一个6欧的电阻代替3欧的时,等效电阻变为3欧,变大了。

二极管并联电阻的作用

二极管并联电阻的作用 This model paper was revised by the Standardization Office on December 10, 2020

一:电阻与二极管并联的作用是什么这两个并联后,再与一个电容串 联,起到什么作用呢 作用 一般是降低二极管等效电阻,并上电阻后二极管两端压降没有减小,但是通过去的电流小了,被并联的电 阻分流了,这也是保护二极管的一种办法。 但你这里后面接了电容就有别的作用了,因为二极管是正向电阻小,反向电阻很大,电容放电就不可能走二极管这里走,除非二极管的漏电流很大。加个电阻就可以提供电容放电的途径,当然这样你这个电阻就要比较大,正向通路,二极管电阻小,电流大都走二极管过去,反向时候二极管电阻大,电流走电阻回 来。 看具体使用的场合 这样可以使电容的充电时间和放电时间不同,就是快速充电缓慢放电或缓慢充电快速放电,具体作用就要看使用的场合了,比如MCU的复位电路,上电时电容通过电阻充电,获得一个一定宽度的复位脉冲,掉电的时候电容通过二极管快速放电. 改变充放电时间 这样可以让电容的充电和放电时间不一样,锯齿波发生器中就这样做的,正向充电时电流通过二极管走快速给电容充电形成一个跳变,翻转之后电流通过电阻放电比较慢,这样波 形缓慢变化 二极管主要有下列应用 1、整流二极管

利用二极管单向导电性,可以把方向交替变化的交流电变换成单一方向的脉动直流电。 2、开关元件 二极管在正向电压作用下电阻很小,处于导通状态,相当于一只接通的开关;在反向电压作用下,电阻很大,处于截止状态,如同一只断开的开关。利用二极管的开关特性,可以组成各种逻辑电路。 3、限幅元件 二极管正向导通后,它的正向压降基本保持不变(硅管为,锗管为)。利用这一特性,在电路中作为限幅元件,可以把信号幅度限制在一定范围内。 4、继流二极管在开关电源的电感中和继电器等感性负载中起继流作用。 5、检波二极管在收音机中起检波作用。 6、变容二极管使用于电视机的高频头中。你说的应该是稳压或续流二极管,由于没有电路图,无法详细回答.

二极管并联电阻的作用

二极管并联电阻的作用 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

一:电阻与二极管并联的作用是什么这两个并联后,再与一个 电容串联,起到什么作用呢 作用 一般是降低二极管等效电阻,并上电阻后二极管两端压降没有减小,但是通过去的电流小了,被并联的电阻分流了,这也是保护二极管的一种办法。 但你这里后面接了电容就有别的作用了,因为二极管是正向电阻小,反向电阻很大,电容放电就不可能走二极管这里走,除非二极管的漏电流很大。加个电阻就可以提供电容放电的途径,当然这样你这个电阻就要比较大,正向通路,二极管电阻小,电流大都走二极管过去,反 向时候二极管电阻大,电流走电阻回来。 看具体使用的场合 这样可以使电容的充电时间和放电时间不同,就是快速充电缓慢放电或缓慢充电 快速放电,具体作用就要看使用的场合了,比如MCU的复位电路,上电时电容通过 电阻充电,获得一个一定宽度的复位脉冲,掉电的时候电容通过二极管快速放电. 改变充放电时间 这样可以让电容的充电和放电时间不一样,锯齿波发生器中就这样做的,正向 充电时电流通过二极管走快速给电容充电形成一个跳变,翻转之后电流通过电 阻放电比较慢,这样波形缓慢变化 二极管主要有下列应用 1、整流二极管 利用二极管单向导电性,可以把方向交替变化的交流电变换成单一方向的脉动直流电。 2、开关元件 二极管在正向电压作用下电阻很小,处于导通状态,相当于一只接通的开关;在反向电压作用下,电阻很大,处于截止状态,如同一只断开的开关。利用二极管的开关特性,可以组成各种逻辑电路。

3、限幅元件 二极管正向导通后,它的正向压降基本保持不变(硅管为,锗管为)。利用这一特性,在电路中作为限幅元件,可以把信号幅度限制在一定范围内。 4、继流二极管 在开关电源的电感中和继电器等感性负载中起继流作用。 5、检波二极管 在收音机中起检波作用。 6、变容二极管 使用于电视机的高频头中。 你说的应该是稳压或续流二极管,由于没有电路图,无法详细回答.

晶振串并联电阻的作用

一份电路在其输出端串接了一个22K的电阻,在其输出端和输入端之间接了一个10M的电阻,这是由于连接晶振的芯片端内部是一个线性运算放大器,将输入进行反向180度输出,晶振处的负载电容电阻组成的网络提供另外180度的相移,整个环路的相移360度,满足振荡的相位条件,同时还要求闭环增益大于等于1,晶体才正常工作。 晶振输入输出连接的电阻作用是产生负反馈,保证放大器工作在高增益的线性区,一般在M 欧级,输出端的电阻与负载电容组成网络,提供180度相移,同时起到限流的作用,防止反向器输出对晶振过驱动,损坏晶振。 和晶振串联的电阻常用来预防晶振被过分驱动。晶振过分驱动的后果是将逐渐损耗减少晶振的接触电镀,这将引起频率的上升,并导致晶振的早期失效,又可以讲drive level调整用。用来调整drive level和发振余裕度。 Xin和Xout的内部一般是一个施密特反相器,反相器是不能驱动晶体震荡的.因此,在反相器的两端并联一个电阻,由电阻完成将输出的信号反向180度反馈到输入端形成负反馈,构成负反馈放大电路.晶体并在电阻上,电阻与晶体的等效阻抗是并联关系,自己想一下是电阻大还是电阻小对晶体的阻抗影响小大? 电阻的作用是将电路内部的反向器加一个反馈回路,形成放大器,当晶体并在其中会使反馈回路的交流等效按照晶体频率谐振,由于晶体的Q值非常高,因此电阻在很大的范围变化都不会影响输出频率。过去,曾经试验此电路的稳定性时,试过从100K~20M都可以正常启振,但会影响脉宽比的。 晶体的Q值非常高, Q值是什么意思呢?晶体的串联等效阻抗是Ze = Re + jXe, Re<< |jXe|, 晶体一般等效于一个Q很高很高的电感,相当于电感的导线电阻很小很小。Q一般达到10^-4量级。 避免信号太强打坏晶体的。电阻一般比较大,一般是几百K。 串进去的电阻是用来限制振荡幅度的,并进去的两颗电容根据LZ的晶振为几十MHZ一般是在20~30P左右,主要用与微调频率和波形,并影响幅度,并进去的电阻就要看IC spec了,有的是用来反馈的,有的是为过EMI的对策 可是转化为并联等效阻抗后,Re越小,Rp就越大,这是有现成的公式的。晶体的等效Rp 很大很大。外面并的电阻是并到这个Rp上的,于是,降低了Rp值----->增大了Re ----->

并联电阻的分流作用教案

睢宁县职业教育中心教师项目课程教案 授课班级10电子专业电工电子授课教师王雎授课时间 3.22 编号10 课时1课时授课课题并联电阻的分流作用 使用教具多媒体 授课目标能力目标 让学生熟知电阻的并联求解及其应用,掌握电流表构成原 理。 知识目标 1:熟悉电阻并联的特点和性质。 2:掌握电流表的构成原理。 情感目标 增强学生的学习兴趣和团队协作意识 提高独立完成任务的能力 教学重点1:熟悉电阻并联的特点和性质。 2:掌握电流表的构成原理,分流电阻的计算 教学难点电流表的结构,分流电阻的求解课后阅读阅读课本P79---P82 课外作业与操作课后阅读P79----P82 做P82 4、5 教学后记 学生有基础,对并联电路的特点学生掌握也较好,但对分流作用的运用,即分流电阻的计算不熟练。

设备条件及地点多媒体、10电工电子教室分组情况36学生分2组 方案设计 教 学环节 教师活动教学内容学生活动 时间 分配复习提问1: 指导学生看 书 教师举例引 入 提问2 提问3 提问4 提问5 教师引导、推 动 1、串联电路性质? 2、电压表结构中分压电阻的计算 公式 一、并联电路的基本特点 1 U1=U2=U3=U 2 I1+I2+I3=I 二、并联电路的重要性质 1. 等效电导: G= G1 +G2+…+G n 即 n R R R R 1 1 1 1 2 1 +???+ + = 2. 分流关系: R1I1 = R2I2 = …= R n I n= RI= U 3. 功率分配: R1P1 = R2P2 = …= R n P n = RP = U2 特例:两只电阻R1、R2并联时 I R R R I I R R R I 2 1 1 2 2 1 2 1+ = + =, 学生回答 学生回答 学生看书 学生回答 学生回答 学生理解、回答 学生理解、回答 学生参与 2′ 4′ 2′ 6′

电阻的并联

电阻的并联 一、教学目的 1. 复习巩固并联电路电流、电压的特点。 2. 使学生确认并会独立推导并联电阻与分各电阻定量关系。 3. 使学生知道几个电阻并联后的总电阻比其中任何一个电阻的阻值都小,并对并联总电阻随任一电阻增大而增大形成结论性的认识。 二、重难点 1、并联电路电阻关系的得出。 2、并联电路电阻关系的理解和运用。 三、教学方法 演示实验和师生共同论证、体现理论和实践的结合。 四、教具 干电池二节,电压表、电流表、滑动变阻器和开关各一只,定值电阻2只(5欧和10欧各一只),导线若干条。 五、师生活动 1.提问在串联电路中电阻有什么关系?这个关系是怎么得到的? 要求学生答出,串联电路的总电阻等于串联的各导体的电阻之和.这个关系是通过实验探索和理论推导得到的. 通过电阻串联的学习解决了用几个小电阻去替代一个大电阻的问题.现在提出一个相反的问题能不能用几个大电阻去替代一个小电阻?启发学生思考导体的电阻与横截面积有关,在长度、材料一定的情况下,横截面积越大电阻就越小.如果将一5 的电阻与另一个电阻并联起来,就相当于增加了导体的横截面积,它们的总电阻就应该小于5 了.这样的猜想对不对?本节课我们将研究这方面的问题。 板书:〈第五节电阻的并联〉 2.展示学习目标: ①知道几个电阻并联后的总电阻比其中任何一个电阻的阻值都小。 ②并联总电阻随任一电阻增大而增大。 ③使学生确认并会独立推导并联电阻与分各电阻定量关系 3.出示自习提纲,指导学生自习: ①如何利用设计实验来检验猜想? ②实验的结论是什么? ③怎样推导并联电路的总电阻与分电阻的关系 4.检查自习情况: ①回顾伏安法测电阻的电路图。 ②你是如何设计实验来验证你的猜想的? (等效法、伏安法),设计电路图。 并联电阻实验(测并联电路的总电阻) 具体做法:将并联接在a、b两点间,如图,闭合开关前,提示学生,把已并联的电阻当作一个整体(一个电阻看待). 闭合开关,调节滑动变阻器,使电流表的读数为一便于计算 的数(如 0.2A),电压表的读数为 0.66V,根据伏安法测出总电阻R

相关主题
相关文档
最新文档