微积分第五章
微积分(第五章)

dx 1、 1 3 sin x dx 3、 2 sin x cos x 5
§3 分部积分法
第二节
一 、 降次法
例1 求下列积分
分部积分法
1、 x cos xdx
2 x x 3、 e dx
2、 xe x dx
第五章 不定积分
§3 分部积分法
二 、 转换法
例2
1、
求下列积分
x ln xdx
2、 x arctan xdx
3、 arcsin xdx
第五章 不定积分
§3 分部积分法
三 、 循环法
x e sin xdx
例3
求
第五章 不定积分
§3 分部积分法
四 、 递推法
例4
n I (ln x ) dx 的递推公式(其中 n 为正整 求 n 3 (ln x ) dx 。
数,且 n 2 ),并用公式计算 例5 求下列积分
3 sec xdx 1、
dx
2 2
a x dx 3、 3x 2 5、 x 1 x 2 dx
dx 7、 2 a x2
2、 4、
2 cos 2 xdx
6、
xe dx tan xdx
x2
dx 8、 2 x a2 dx dx arctanx 9、 e 10、 2 x(1 2 ln x) 1 x dx dx 11、 cos x sec xdx 12、 x ln x ln ln x
第五章 不定积分
§1
§2 §3 §4
不定积分的概念、性质
微积分李建平第五章+不定积分

第五章不定积分第一节不定积分的概念与性质一、原函数在微分学中,导数是作为函数的变化率引进的,例如,已知变速直线运动物体的路程函数s=s(t),则物体在时刻t的瞬时速度v(t)=s′(t),它的反问题是:已知物体在时刻t的瞬时速度v=v(t),求路程函数s(t),也就是说,已知一个函数的导数,要求原来的函数.这就引出了原函数的概念.定义1 设f(x)是定义在区间I上的已知函数,如果存在函数F(x),使对任意x∈I都有F′(x)=f(x),或d F(x)=f(x)d x,(5-1-1)则称F(x)为f(x)在区间I上的一个原函数.例如在(1,+∞)内,[ln(x)]′(1,+∞)内的一个原函数.显然,ln(x)+2,故ln(xln(x)的原函数.一般地,对任意常数C,ln(x)+C由此可知,当一个函数具有原函数时,它的原函数不止一个.关于原函数,我们首先要问:一个函数具备什么条件,能保证它的原函数一定存在?这个问题将在下一章中讨论,这里先介绍一个结论.定理1(原函数存在性定理) 如果函数f(x)在区间I上连续,则在区间I上存在可导函数F(x),使对任意x∈I,都有F′(x)=f(x).这个结论告诉我们连续函数一定有原函数.我们已经知道:一个函数如果存在原函数,那么原函数不止一个,这些原函数之间的关系有如下定理:定理2 如果F(x)是f(x)在区间I上的一个原函数,则在区间I上f(x)的所有原函数都可以表示成形如F(x)+C(C为任意常数)的形式.定理需要证明两个结论:(1) F(x)+C是f(x)的原函数;(2) f(x)的任一原函数都可以表示成F(x)+C的形式.证 (1) 已知F (x )是f (x )的一个原函数,故F ′(x )=f (x ). 又[F (x )+C ]′=F ′(x )=f (x ),所以F (x )+C 是f (x )的一个原函数.(2) 设G (x )是f (x )的任意一个原函数,即G ′(x )=f (x ),则有[G (x )-F (x )]′=G ′(x )-F ′(x )=f (x )-f (x )=0.由拉格朗日中值定理的推论1知,导数恒等于零的函数是常数,故G (x )-F (x )=C ,即 G (x )=F (x )+C .由定理2知,只要找到f (x )的一个原函数F (x ),就能写出f (x )的原函数的一般表达形式F (x )+C (C 为任意常数),即f (x )的全体原函数.二、 不定积分定义2 设F (x )是f (x )的一个原函数,则f (x )的全体原函数F (x )+C (C 为任意常数)称为f (x )的不定积分,记作()f x ⎰d x ,即()f x ⎰d x =F (x )+C , (5-1-2)其中,∫称为积分号,f (x )称为被积函数,f (x )d x 称为被积表达式,x 称为积分变量,C 称为积分常数.例1 求x ⎰d x .解 由于(212x )′=x ,故212x 是x 在(-∞,+∞)内的一个原函数, 因此 x ⎰d x =212x +C .例2 求1x⎰d x .解 由于(ln x )′=1x ,故ln x 是1x在(-∞,0)∪(0,+∞)内的一个原函数,因此1x ⎰d x =ln x +C .例3 设曲线通过点(1,2),且其上任一点处的切线斜率等于这点横坐标的两倍,求此曲线的方程.解 设所求的曲线方程为y =f (x ),按题设,曲线上任一点(x ,y )处的切线斜率为d d yx=2x , 即f (x )是2x 的一个原函数.因为2x ⎰d x =2x +C , 从而y =2x +C .因所求曲线通过点(1,2),故 2=1+C , C =1. 于是所求曲线方程为 y =2x +1.函数f (x )的原函数的图形称为f (x )的积分曲线.本例即是求函数2x 的通过点(1,2)的那条积分曲线.显然,这条积分曲线可以由另一条积分曲线(例如y =2x )经y 轴方向平移而得(见图5-1).图5-1三、 不定积分的性质从不定积分的定义,即可知其下述性质: 由于()f x ⎰d x 是f (x )的原函数,所以有(1)dd x[()f x ⎰d x ]=f (x ), 或 d [()f x ⎰d x ]=f (x )d x ; 又由于F (x )是F ′(x )的原函数,所以有 (2) '()F x ⎰d x =F (x )+C ,或记作 d ⎰F (x )=F (x )+C .由此可见,微分运算(以记号d 表示)与求不定积分的运算(简称积分运算,以记号⎰表 示)是互逆的.当记号∫与d 连在一起时,或者抵消,或者抵消后差一个常数. (3)[]()()f x g x αβ+⎰d x =α()f x ⎰d x +β()g x ⎰d x ,其中α,β为任意常数.此性质可以简单地说成:和的积分等于积分的和;常数因子可以从积分符号中提出来,这是一个积分常用的性质。
专升本(高数—)第五章多元函数微积分学PPT课件

第七节 二重积分的应用
*
2
考试点津:
• 本讲出题在18分—26分之间,本讲内容是 一元函数微分内容的延伸,一般在选择题、 填空题、解答题中出现。
• 本讲重点:
(1)二元函数的偏导数和全微分。
(2)二元函数的有关极值问题及应用。 (3)会计算二重积分
• 建议重点复习前几年考过的试题,把握考 试重心和知识点,重在模仿解题。
成人高考高数一辅导
•
College of Agriculture & Biological Engineering
*
1
第五章 多元函数微积分学 (11年考了22分)
第一节 多元函数、极限和连续 第二节 偏导数与全微分 第三节 二元函数的极值 第四节 二重积分的概念和性质 第五节 直角坐标系下二重积分的计算 第六节 极坐标系下二重积分的计算
可 以 证 明 ,一 元 函 数 关 于 极 限 的 运 算 法 则 仍 适 用 于 多 元 函 数 ,即 多 元 连 续 函 数 的 和 、差 、积 为 连 续 函 数 ,在 分 母 不 为 零 处 ,连 续 函 数 的 商 也 是 连 续 函 数 ,多 元 函 数 的 复 合 函 数 也 是 连 续 函 数 .由 此 还 可 得 出 如 下 结 论 : 一 切 多 元 初等函数在其定义区域内是连续的.
(4)最大值和最小值定理
在有界闭区域D上的多元连续函数,在D上至少取得它的最大 值和最小值各一次.
(5)介值定理
在有界闭区域D上的多元连续函数,如果在D上取得两个不同的
函数值,则它在D上取得介于这两值之间的任何值至少一次.分
(一) 偏导数
1. 偏导数的定义
定义 设函数 z f (x, y)在点(x0, y0 )的某一邻域内有 定义,当 y固定在 y0,而 x在 x0处有增量x时,相应地函 数有增量 f (x0 x, y0 ) f (x0, y0 ),如果极限
数学分析(一):一元微积分 南京大学 5 第五章微分学的应用 (5.7.1) 常见函数的Taylor展开

一元微积分与数学分析—常见函数的T aylor展开梅加强南京大学数学系如果f在x0附近是光滑的,则称形式和∞n=0f(n)(x0)n!(x−x0)n为f在x0处的T aylor展开(级数)或(无限)T aylor公式.如果f在x0附近是光滑的,则称形式和∞n=0f(n)(x0)n!(x−x0)n为f在x0处的T aylor展开(级数)或(无限)T aylor公式.T aylor展开在x0=0的特殊情形也称Maclaurin展开(级数)或Maclaurin公式.如果f在x0附近是光滑的,则称形式和∞n=0f(n)(x0)n!(x−x0)n为f在x0处的T aylor展开(级数)或(无限)T aylor公式.T aylor展开在x0=0的特殊情形也称Maclaurin展开(级数)或Maclaurin公式.如果limn→∞n−1k=0f(k)(x0)k!(x−x0)k=f(x),则记f(x)=∞n=0f(n)(x0)n!(x−x0)n.此时称f在x0处的T aylor展开收敛到自身.如果f在x0附近是光滑的,则称形式和∞n=0f(n)(x0)n!(x−x0)n为f在x0处的T aylor展开(级数)或(无限)T aylor公式.T aylor展开在x0=0的特殊情形也称Maclaurin展开(级数)或Maclaurin公式.如果limn→∞n−1k=0f(k)(x0)k!(x−x0)k=f(x),则记f(x)=∞n=0f(n)(x0)n!(x−x0)n.此时称f在x0处的T aylor展开收敛到自身.注意:f光滑并不意味着其T aylor展开收敛到自身.例如,考虑函数f(x)=e−1 x2(x=0),f(0)=0,则f在0处的各阶导数均为零,其Maclaurin展开恒为零.问题1:对于给定的函数,如何较快地求出它的T aylor展开呢?问题2:T aylor展开有什么用?问题1:对于给定的函数,如何较快地求出它的T aylor展开呢?问题2:T aylor展开有什么用?定理1(T aylor公式系数的唯一性)设f在x0处n阶可导,且f(x)=nk=0a k(x−x0)k+o(x−x0)n(x→x0),则a k=1k!f(k)(x0),k=0,1,···,n.证明.根据带Peano余项的T aylor公式,f(x)又可写为f(x)=nk=01k!f(k)(x0)(x−x0)k+o(x−x0)n(x→x0).如果令b k=a k−1k!f(k)(x0),k=0,1,···,n,则两式相减可得nk=0b k(x−x0)k=o(x−x0)n(x→x0).首先,在上式中令x→x0即得b0=0.其次,上式两边除以x−x0,再令x→x0可得b1=0.这个过程可以继续,当等式两边除以(x−x0)k并令x→x0时就得到b k=0(0≤k≤n).T aylor展开的运算性质设f,g在x0=0处的Taylor展开分别为∞n=0a n x n,∞n=0b n x n,则(1)λf(x)+µg(x)的Taylor展开为∞n=0(λa n+µb n)x n,其中λ,µ∈R.(2)f(−x)的Taylor展开为∞n=0(−1)n a n x n;(3)f(x k)的Taylor展开为∞n=0a n x kn,其中k为正整数;(4)x k f(x)的Taylor展开为∞n=0a n x k+n,其中k为正整数;(5)f (x)的Taylor展开为∞n=1na n x n−1=∞n=0(n+1)a n+1x n;(6)x0f(t)d t的Taylor展开为∞n=0a nn+1x n+1;例子例11=1+x+x2+···+x n+···,x∈(−1,1).1−x例111−x=1+x+x2+···+x n+···,x∈(−1,1).证明.由等比级数求和公式可得1 1−x =1−x n1−x+x n1−x=1+x+x2+···+x n−1+x n1−x,固定x∈(−1,1),当n→∞时余项x n1−x→0.例111−x=1+x+x2+···+x n+···,x∈(−1,1).证明.由等比级数求和公式可得1 1−x =1−x n1−x+x n1−x=1+x+x2+···+x n−1+x n1−x,固定x∈(−1,1),当n→∞时余项x n1−x→0.例2ln(1−x)=−∞n=1x nn=−x−x22−···−x nn−···,∀x∈[−1,1).(1)对数函数的展开证明.利用积分可得ln(1−x)=−xd t1−t=−x1+t+···+t n−1+t n1−td t=−x−x22−···−x nn−xt n1−td t.如果−1≤x<0,则xt n1−td t≤xt n d t=|x|n+1n+1→0;(n→∞)如果0≤x<1,则xt n1−td t≤11−xxt n d t=x n+1(1−x)(n+1)→0.(n→∞)由此即得(1).将(1)中x换成−x,则得ln(1+x)=∞n=1(−1)n−1nx n=x−x22+x33−···,∀x∈(−1,1].(2)特别地,在上式中取x=1,得ln2=1−12+13−14+15−16+···.将(1)中x换成−x,则得ln(1+x)=∞n=1(−1)n−1nx n=x−x22+x33−···,∀x∈(−1,1].(2)特别地,在上式中取x=1,得ln2=1−12+13−14+15−16+···.例3arctan x=∞n=1(−1)n−1x2n−1(2n−1)!=x−x33+x55−x77+···,∀x∈[−1,1].(3)证明.利用积分可得arctan x=xd t1+t2=x−x33+x55+···+(−1)n−1x2n−12n−1+R n(x),其中余项R n(x)=(−1)nxt2n1+t2d t.当x∈[−1,1]时|R n(x)|≤|x|0t2n d t=|x|2n+12n+1→0(n→∞),这说明(3)式成立.特别地,取x=1,我们就重新得到了Leibniz公式π4=1−13+15−17+···.(Leibniz-Gregory)例4e x=1+x+x22!+x33!+···+x nn!···,∀x∈(−∞,∞).(4)例4e x=1+x+x22!+x33!+···+x nn!···,∀x∈(−∞,∞).(4)证明.e x的各阶导数仍为它自己,由Lagrange余项可得e x=n−1n=0x kk!+R n(x),R n(x)=eθxn!x n,其中θ∈(0,1).此时有如下估计|R n(x)|≤e|x||x|nn!→0(n→∞).这说明(4)式成立.例5sin x=∞n=1(−1)n−1x2n−1(2n−1)!=x−x33!+x55!+···+,∀x∈(−∞,∞).(5)cos x=∞n=0(−1)n x2n(2n)!=1−x22!+x44!−···,∀x∈(−∞,∞).(6)例5sin x=∞n=1(−1)n−1x2n−1(2n−1)!=x−x33!+x55!+···+,∀x∈(−∞,∞).(5)cos x=∞n=0(−1)n x2n(2n)!=1−x22!+x44!−···,∀x∈(−∞,∞).(6)证明.利用sin x=cos x,cos x=−sin x可得sin(2k+1)(0)=(−1)k,sin(2k)(0)=0.由带Lagrange余项的T aylor公式可得sin x=x−x33!+x55!+···+(−1)n−1x2n−1(2n−1)!+(−1)n x2n+1cosθx(2n+1)!,(θ∈(0,1))当n→∞时余项趋于零.cos x的展开类似可得.。
数学分析(一):一元微积分 南京大学 5 第五章微分学的应用 (5.3.1) 凸函数

一元微积分与数学分析—凸函数梅加强南京大学数学系导数是函数的变化率.对于质点的位移函数来说,一阶导数表示质点的速度,二阶导数表示加速度.在物理中,二阶导数反映的是作用力或作用强度;导数是函数的变化率.对于质点的位移函数来说,一阶导数表示质点的速度,二阶导数表示加速度.在物理中,二阶导数反映的是作用力或作用强度;在几何中,二阶导数反映的是曲率或几何对象的弯曲程度.以函数图像为例,反映其弯曲性质的有所谓的凸凹性.导数是函数的变化率.对于质点的位移函数来说,一阶导数表示质点的速度,二阶导数表示加速度.在物理中,二阶导数反映的是作用力或作用强度;在几何中,二阶导数反映的是曲率或几何对象的弯曲程度.以函数图像为例,反映其弯曲性质的有所谓的凸凹性.定义1(凸函数)设f为区间I中定义的函数.如果任给a=b∈I以及t∈(0,1),均有fta+(1−t)b≤tf(a)+(1−t)f(b),(1)则称f为I中的凸函数,不等号反向时称为凹函数.不等号为严格小于号时称为严格凸函数,不等号为严格大于号时称为严格凹函数.凸性的几何含义yf(x)ℓ(x)a bO x图1:凸函数注1凸函数的几何形象是很直观的:它的图像总是位于满足同样边界条件的线性函数图像的下方.事实上,满足条件 (a)=f(a), (b)=f(b)的线性函数可以表示为(x)=b−xb−af(a)+x−ab−af(b),于是(1)可以表示为f(x)≤ (x),∀x∈(a,b).(2)事实上,满足条件 (a)=f(a), (b)=f(b)的线性函数可以表示为(x)=b−xb−af(a)+x−ab−af(b),于是(1)可以表示为f(x)≤ (x),∀x∈(a,b).(2)命题1设f为区间I中定义的函数,我们有(1)如果f二阶可导且二阶导数处处非负,则f为凸函数.(2)反之,如果f为凸函数且在I的内点x0处二阶可导,则f (x0)≥0.证明.(1)任取a,b∈I,不妨设a<b.对函数f− 在[a,b]中应用“极值和最值”那一单元例3即可.(2)由x0为内点可知,存在δ>0,使得(x0−δ,x0+δ)⊂I.当h∈(−δ,δ)时,记g(h)=[f(x0+h)+f(x0−h)]/2.如果f为凸函数,则由x0=(x0−h)/2+(x0+h)/2以及(1)可知h=0是g的最小值点.由“极值和最值”那一单元推论1可知g (x0)≥0.另一方面,g (x0)=f (x0),因此f (x0)≥0.证明.(1)任取a,b∈I,不妨设a<b.对函数f− 在[a,b]中应用“极值和最值”那一单元例3即可.(2)由x0为内点可知,存在δ>0,使得(x0−δ,x0+δ)⊂I.当h∈(−δ,δ)时,记g(h)=[f(x0+h)+f(x0−h)]/2.如果f为凸函数,则由x0=(x0−h)/2+(x0+h)/2以及(1)可知h=0是g的最小值点.由“极值和最值”那一单元推论1可知g (x0)≥0.另一方面,g (x0)=f (x0),因此f (x0)≥0.Y oung不等式回顾.指数函数e x的二阶导数恒正,因此为(严格)凸函数.当a,b>0,p,q>1且1/p+1/q=1时,有ab=e1p ln a p+1q ln b q≤1pe ln a p+1qe ln b q=a pp+b qq.Jensen不等式定理1(Jensen不等式)设f是区间I中的凸函数.任给{x i}ni=1⊂I,当λi≥0且ni=1λi=1时,均有fni=1λi x i≤ni=1λi f(x i).(3)定理1(Jensen不等式)设f是区间I中的凸函数.任给{x i}ni=1⊂I,当λi≥0且ni=1λi=1时,均有fni=1λi x i≤ni=1λi f(x i).(3)证明.对n用数学归纳法.n=1是显然的,n=2由凸函数定义直接得到.假设不等式(3)对n=k成立.当n=k+1时,不妨设0<λk+1<1,此时k i=1λi1−λk+1=1.证明(续).由归纳假设,有fk+1i=1λi x i=f(1−λk+1)ki=1λi1−λk+1x i+λk+1x k+1≤(1−λk+1)fki=1λi1−λk+1x i+λk+1f(x k+1)≤(1−λk+1)ki=1λi1−λk+1f(x i)+λk+1f(x k+1) =k+1i=1λi f(x i).这说明不等式对n=k+1也成立,从而定理得证.例1设a1,···,a n>0,p i≥0且ni=1p i=1,证明加权算术–几何平均值不等式:p1a1+···+p n a n≥a p11a p22···a p n n.例1设a1,···,a n>0,p i≥0且ni=1p i=1,证明加权算术–几何平均值不等式:p1a1+···+p n a n≥a p11a p22···a p n n.证明.考虑函数f(x)=−ln x(x>0).由f (x)=x−2>0可知f为(严格)凸函数.根据Jensen不等式,当a1,···,a n>0时−ln(p1a1+···+p n a n)≤−(p1ln a1+p2ln a2+···+p n ln a n),即p1a1+···+p n a n≥a p11a p22···a p n n.当p i都等于1/n时就重新得到了算术–几何平均值不等式.设P=(c,d)为平面上的一个固定点.考虑X轴上的点到P的距离函数,它可以表示为ρ(x)=(x−c)2+d2,x∈R.设P=(c,d)为平面上的一个固定点.考虑X轴上的点到P的距离函数,它可以表示为ρ(x)=(x−c)2+d2,x∈R.我们来说明ρ(x)为凸函数.当P落在X轴上时,d=0,ρ(x)=|x−c|,此时显然ρ(x)是凸函数.设P=(c,d)为平面上的一个固定点.考虑X轴上的点到P的距离函数,它可以表示为ρ(x)=(x−c)2+d2,x∈R.我们来说明ρ(x)为凸函数.当P落在X轴上时,d=0,ρ(x)=|x−c|,此时显然ρ(x)是凸函数.O c|x−c|图2:绝对值函数的凸性下设d =0.对ρ(x )求导可得ρ (x )=d 2 (x−c )2+d 2 −3/2,这说明ρ(x )为严格凸函数.特别地,ρ (a +b )/2 ≤[ρ(a )+ρ(b )]/2.下设d =0.对ρ(x )求导可得ρ (x )=d 2 (x−c )2+d 2 −3/2,这说明ρ(x )为严格凸函数.特别地,ρ (a +b )/2 ≤[ρ(a )+ρ(b )]/2. 考虑平面上以P ,(a ,0),(b ,0)为顶点的三角形.上式可以解释为从P 出发的中线的长度不超过从P 出发的两条边的长度之和的一半.下设d =0.对ρ(x )求导可得ρ (x )=d 2 (x−c )2+d 2 −3/2,这说明ρ(x )为严格凸函数.特别地,ρ (a +b )/2 ≤[ρ(a )+ρ(b )]/2. 考虑平面上以P ,(a ,0),(b ,0)为顶点的三角形.上式可以解释为从P 出发的中线的长度不超过从P 出发的两条边的长度之和的一半.P =(c,d )a b O xy 图3:中线长度与距离函数的凸性。
微积分教学课件第5章不定积分第2节基本积分表

x dx 2
1
cos 2
x
dx
1 ( x sin x) C 2
(6)
1
dx sin
x
1 sin x dx
(1 sin x)(1 sin x)
1 sin x
cos2 x dx
(sec2 x secx tan x)dx tan x secx C
10
训练:求下列不定积分
(1) ( x2 1)2 dx ( x4 2x 2 1)dx 1 x5 2 x3 x C 53
11
1
( x2 1 x2 )dx x arctan x C
7
例3 求下列不定积分
(5)
x4 1 x2 dx
x4 11 1 x2 dx
( x2 1)( x2 1) 1
1 x2
dx
(x2
1
1 1 x2 )dx
x3 3
x arctan
xC
8
例4 求下列不定积分
三角恒等变形
ln
|
x
|
C
6
例3 求下列不定积分
(3)
( x2 1)
1 x2 2x dx
x2 1
(
2
) dx
x 1 x2
x
1 x2
( x 1 2 )dx 1 x2 ln | x | 2arcsinx C
x 1 x2
2
(4)
1 x2 (1
x2 ) dx
x2 1 x2 x 2 (1 x 2 ) dx
1 sin2 x cos2 x dx
sin2 x cos 2 x sin2 x cos 2 x dx
(sec2 x csc2 x)dx tan x cot x C
@@@微积分基础(国家开放大学)---第5章---第1节---积分的几何应用

y f ( x)
y
x
y f ( x)
o
a
b
oa
(2)
c
(3)
b
x
(1)
(1) S f ( x)dx
a c a c
b
(2) S f ( x)dx
a b c b a c
b
(3) S | f ( x)dx | f ( x)dx f ( x)dx f ( x)dx
A
x
2
2 32 1 x 3 1 2 1 1 x |0 |0 . 3 3 3 3 3
【总结提升】
求两曲线围成的平面图形的面积的一般步骤: (1)作出示意图;(弄清相对位置关系)
(2)求交点坐标,确定图形范围(积分的上限,下限)
(3)写出平面图形的定积分表达式; (4)运用微积分基本定理计算定积分,求出面积.
1
x
x x ( x ) ( x) 3 3 1
3
2
3
8 . 3 1
1
5.如图,求曲线y=x2与直线y=2x所围图形的面积S.
y=2x, 由方程组 2 y = x ,
解
可得 x1=0,x2=2.
故所求图形的面积为
x dx=x S= 2xdx -
2 2 2 22 0
曲边形面积的求解思路
y
A 0 a bX a
1
A2 b a b
曲边形
曲边梯形(三条直边,一条曲边)
面积 A=A1-A2
类型2:由两条曲线y=f(x)和y=g(x),直线x=a,x=b
(a<b)所围成平面图形的面积S
y f ( x)
第五章 范数及其应用

(1) (正定性 )
(2) (正齐性 )
|| x || 0;
x || x || 0
|| x || | | || x || ; ( F )
(3)(三角不等式) ||x y|| ||x|| ||y|| ,x、y V
i
例 10 计算向量
α = (3i, - 4i, 0, - 12)T
的p范数,这里 p = 1, 2,
.
解 :
|| α ||1 =
å
4
| xk | = | 3i | + | - 4i | + | - 12 | = 19.
k
k= 1
|| α ||¥ = max | xk | = max(3, 4, 0,12) = 12.
D( x , y) ? || x
y ||2 =
( x - y)T ( x - y)
其他距离测度还包括
以及与椭圆范数类似的Mahalanobis距离:
d ( x , y) ? ( x
2
这里
y) Σ ( x - y) ,
T - 1 T
x, y
是从正态总体
N ( μ, Σ) 中抽取的两个样本。
例 14 对任意
定义的 || ||1 是 F n 上的向量范数,称为1-范数或 l1 范数或和范数,也被风趣地称为Manhattan范数。
B
A
C
遗憾的是,当
0 p1
时,由
2 1/ p
骣 p || x || p º 琪 | x | 琪 å i 琪 琪 桫
i= 1
定义的 || || p 不是 F n 上的向量范数。 因为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F ( x ) f ( x ) 或 dF ( x ) f ( x )dx
(arcsin x )
2
则称F(x)是f(x)在区间(a,b)内的一个原函数.
例1. 在(-1,1)内 所以 arcsin x 是
1
1 x2
1/ 1 x
在(-1,1)内的一个原函数
例2. 在 ( , ) 上
.
二. 直接积分法 将被积函数化为几个函数的代数和,然后分项积分.
1 解:原积分 ( t 3 )dt t 例1. 求 ( 2 x) xdx 1 2 3/ 2 t dt 3dt dt )dx 解:原积分= ( 2 x x t 3 3/ 2 t 2 xdx x dx 3t ln t C 1 3 / 2 3 x 2 x C x 3x 2 1 3/ 2 练习: dx x 1 2 5/ 2 x2 x C ( x 1)( x 2) 5 dx x 1 t 3 3t 1 例2. 求 dt xdx 2 dx x 2 / 2 2 x C t
G f ( x ) G F 由拉格朗日定理的推论可知 F f ( x) G ( x ) F ( x ) C 由G(x) 的任意性可知,原命题成立.
即
2. 不定积分的定义:如果 F(x) 是 f(x) 的一个原函数,那么 f(x) 的所有原函数F(x)+C 称为 f(x) 的不定积分,记为 f ( x )dx
(cos x ) sin x 所以 cosx 是 –sinx 在( , )上的一个原函数. ( x 2 ) ( x 2 1) ( x 2 1) ... 2 x 例3. 因为
所以函数 2x 有无穷多个原函数,那么这无穷多个原函数有何 关系呢?请看如下定理: 定理:如果 F(x) 是 f(x) 的一个原函数,那么 f(x) 的所有原函 数都可表示为:F(x)+C 的形式. (C 为任意常数) 证明:设 G(x) 为 f(x) 的任意一个原函数,则由
(7) sec xdx tan x C ;
2
(8) csc xdx cot x C ;
2
( 9)
dx
2
1 x dx (10) arctan x C 2 1 x
arcsin x C ;
(11) sec x tan xdx sec x C
(12 ) csc x cot xdx csc x C
1 1 f (ax b)dx f (ax b)d (ax b) F (ax b) C a a
例4. 求下列不定积分
x sin( 1 x 2 )dx , x x 2 1dx 1 x 2 1d ( x 2 1) 2 2 解: x sin( 1 x )dx 1 2 ( x 1)3 / 2 C 1 3 sin(1 x 2 )d (1 x 2 ) xdx 1 d (1 x 2 ) 12 cos(1 x 2 ) C 2 1 x 2 1 x2 2 1 1 2 xdx d (ax b) ln(1 x 2 ) C 2a 2
( k1 f1 ( x ) k 2 f 2 ( x ) ... k n f n ( x ))dx k1 f1 ( x )dx k 2 f 2 ( x )dx ... k n f n ( x )dx
5.2 基本积分公式 一. 几个基本积分公式
(1) kdx kx C (k是常数) x ( 2) x dx C ( 1) 1dx
2x
x
例1. 下列各式是否正确?为什么?
sin x C sin xdx 3 e tan x dx e tan x C
2
3
以上错误的式子,如何改正 可变成正确的?对于积分公 式的形式不变性,你理解了 吗?最容易出现的错误是什 么?
5.3 换元积分法
一. 第一换元积分法(凑微分) 解: cos dx 2 cos d ( ) 若 f ( u)du F ( u) C
( 2)
ln u C
对否?
若分子能凑分母的微分必用上述公式.
(3) du
x
1 u
2
arctan u C
dx de arctan 2 x C 2 ____ 1 4x 1 e d ln x d( ) arcsin(ln x ) C 2 arctan x C 1 ln x 1 x sec 2 xd x tan x C dx arctan x C ? 1 1 x ln xdx C
性质2. 两个函数代数和的不f ( x ) g( x )]dx f ( x )dx g( x )dx
性质3. 非零常数因子k可以提到积分号前面来,即
(k为非零常数).
kf ( x )dx k f ( x )dx
性质2与性质3合在一起可以推广为:
2
即曲线方程为yx2C. 因所求曲线通过点(1, 2), 故 21C, C1.
于是所求曲线方程为yx21.
例7. 求过点 (1,1/3),切线
斜率为 2x 的曲线 解: 2 xdx
2) F ( x )dx F ( x ) C
dF ( x ) F ( x ) C
f ( x )dx F ( x ) C
f ( x )dx
其中
f ( x) x
积分号 被积函数
1 1 [ln( x )] ( 1) x x
故
积分变量
1 dx ln x C x
二. 不定积分的几何意义 f ( x )dx 被积表达式 f ( x ) 3 x 2 的不定积分设 F(x) 是f(x) 的一个原函数,则 例4. 求 3 2 Y=F(x) 是平面上的一条曲线,称 解:因为 ( x ) 3 x 2 3 为 f(x) 的一条积分曲线,而f(x) 所以 3 x dx x C 1 的不定积分 F(x)+C 表示全体 例5. 求 dx x 原函数,其几何意义为 f(x) 的积 1 解:当 x > 0 时, x ) (ln 分曲线簇.如果我们只求其中的一 x 当 x < 0 时, 条曲线,则需确定常数 C的值.
第五章 不定积分
5.1 不定积分的概念与性质
一. 原函数与不定积分
y x 2 我们可以求出其导数 y 2 x ,那么 2x 给出函数: x 2 如何称呼他呢?这就是我们今天要学习的第一个问题 见到
1. 原函数的定义
定义5.1设f(x)是定义在区间(a,b)内的已知函数,如果存在函数 F(x),使得对于区间(a,b)内的一切x,恒有
x 2 C 由此可见, 微分运算(以记号d表 示)与求不定积分的运算(简称 2 y 积分曲线簇为: x C 积分运算, 以记号 表示)是互逆 因为曲线过点 (1,1/3),所以的. 当记号 与d 连在一起时, 或者
C=-2/3 ,故所求曲线为: 抵消, 或者抵消后差一个常数.
例6 设曲线通过点(1, 2), 且其上任一点处的切线斜率 等于这点横坐标的两倍, 求此曲线的方程. 解: 设所求的曲线方程为yf(x), 按题设, 曲线上任一 点(x, y)处的切线斜率为yf (x)2x, 即f(x)是2x 的一个原函数. 因为
2 xdx x C 故必有某个常数C使f(x)x2C,
f [ ( x )] ( x )dx f [ ( x )]d ( x )
则
x x 2 2 x 2 sin C 2 (5 x 1) 2 dx 例3. 求
(5 x 1)2 dx 解:
x 2
F [ ( x )] C
例1. 求
e 2 x dx
1 2
解: e 2 x dx
y x2 2 / 3
三. 不定积分的性质
性质1:
例8. 若 求
f ( x )dx sin x C
f ( x)
f(x) = cosx
1) f ( x )dx f ( x ) d f ( x )dx f ( x )dx
解:将已给等式两边对 x 求导得
于是
f ( x ) cos x
2
2 2
例5. 求 tan
2
xdx
积分公式的形式不变性
在公式 f (u)du F (u) C 中无论u是自变量,还是中间变 du 量,上述公式都成立.
u (1)u du C ( 1) 1 1 2 ( 2 x 1) d ( 2 x 1) ( 2 x 1)3 C 3 d (2 x ) 1 C 2 (2 x ) 2 x
4 2
3. 利用三角公式分项
dx 练习: 解:原积分= (sec x 1)dx sin x cos x sec2 xdx dx (sin2 x cos2 x )dx tan x x C sin2 x cos2 x 2 x 例6. 求 cos 2 dx dx dx 2 1 cos x 2 cos x sin x 解:原积分= dx 2 tan x cot x C 1 1 dx cos xdx 2 2 1 ( x sin x ) C 2
2x
e2 xd 2 x
1 e C 2 x 例2. 求 cos dx
2
1 (5 x 1)2 d (5 x 1) 5 1 (5 x 1)3 C 15 以上三例中,新的积分变量是 如何得到的? 也就是说第一步 凑谁的微分?是否知晓?
以上各例被积函数为一个复合函数,且中间变量是一次函数, 只需凑中间变量的微分即可,即新的积分变量是中间变量.其 一般形式如下: 若 f ( u)du F ( u) C 则