实变函数期末考试模拟试题

合集下载

实变函数测试题与答案范本

实变函数测试题与答案范本

实变函数测试题与答案范本一、选择题1. 下列函数中,是实变函数的是:A. f(x) = √(x^2 - 1)B. f(x) = log(x)C. f(x) = cos(x)D. f(x) = 1/x答案:C. f(x) = cos(x)2. 设函数 f(x) 的定义域为 (-∞, 4],则下列函数定义中错误的是:A. f(x) = x^2B. f(x) = √(4 - x)C. f(x) = 1/(x - 3)D. f(x) = 2^x答案:C. f(x) = 1/(x - 3)3. 函数 f(x) = |x - 2| 的图像在 x = 2 处是否存在间断点?A. 存在间断点B. 不存在间断点答案:B. 不存在间断点二、计算题1. 求函数 f(x) = x^3 + 2x^2 - x 的零点。

解答:将 f(x) = 0,得到方程 x^3 + 2x^2 - x = 0。

对该方程进行因式分解得:x(x + 1)(x - 1) = 0。

解得 x = 0,x = -1,x = 1 为函数 f(x) 的零点。

2. 计算函数 f(x) = log(x^2 + 3x) 的导数。

解答:对 f(x) = log(x^2 + 3x) 进行求导。

使用链式法则,有 f'(x) = [1/(x^2 + 3x)] * (2x + 3)。

化简得到:f'(x) = (2x + 3)/(x^2 + 3x)。

三、证明题证明:若函数 f(x) 在区间 [a, b] 上连续且单调递增,那么 f(x) 在 [a, b] 上存在唯一的反函数。

解答:首先证明 f(x) 在 [a, b] 上是单射。

假设存在x1 ≠ x2,但 f(x1) = f(x2)。

由于 f(x) 在 [a, b] 上单调递增,可推出x1 ≠ x2,矛盾。

因此,f(x)在 [a, b] 上是单射。

接下来证明 f(x) 在 [a, b] 上是满射。

由于 f(x) 在 [a, b] 上连续,根据介值定理,f(x) 在 [a, b] 上取得最大值 M 和最小值 m。

实变函数测试题与答案

实变函数测试题与答案

实变函数测试题与答案实变函数测试题⼀,填空题1. 设1,2n A n ??=, 1,2n =, 则lim nn A →∞= .2. ()(),,a b -∞+∞,因为存在两个集合之间的⼀⼀映射为.3. 设E是2R 中函数1c o s ,00,0xy x x ?≠?=?? =?的图形上的点所组成的集合,则E '= ,E ?= .4. 若集合nE R ?满⾜E E '?, 则E 为集.5. 若(),αβ是直线上开集G 的⼀个构成区间, 则(),αβ满⾜: , .6. 设E 使闭区间[],a b 中的全体⽆理数集, 则mE = .7. 若()n mE f x →()0f x ??=?, 则说{}()n f x 在E 上.8. 设nE R ?, 0n x R ∈,若 ,则称0x 是E 的聚点.9. 设{}()n f x 是E 上⼏乎处处有限的可测函数列,, 则称{}()n f x 在E 上依测度收敛于()f x .10. 设()()n f x f x ?,x E∈, 则{}()n f x 的⼦列{}()jn fx , 使得.⼆, 判断题. 正确的证明, 错误的举反例. 1. 若,A B 可测, A B ?且A B ≠,则mA mB <.2. 设E 为点集, P E ?, 则P 是E 的外点.3. 点集11,2,,E n=是闭集. 4. 任意多个闭集的并集是闭集.5. 若n ER ?,满⾜*m E =+∞, 则E 为⽆限集合.三, 计算证明题 1. 证明:()()()A B C A B A C --=-2. 设M 是3R 空间中以有理点(即坐标都是有理数)为中⼼, 有理数为半径的球的全体, 证明M 为可数集. 3. 设n E R ?,i E B ?且i B 为可测集, 1,2i =.根据题意, 若有2ln 1,(),0,1x x P f x x x P ?+ ∈?=? ∈-??. 求1(L)()f x dx ?.5. 设函数()f x 在Cantor 集0P 中点x 上取值为3 x , ⽽在0P 的余集中长为13n的构成区间上取值为16n , ()1,2n =, 求10()f x dx ?.6. 求极限: 13230lim(R)sin 1n nx nxdx n x →∞+?.实变函数试题解答⼀填空题 1.[]0,2.2. ()()()tan ,,.2x x a x a b b aππ=--∈??-??3.{}1(,)cos ,0(0,)1x y y x y y x ??=≠≤??; ?.4. 闭集.5. (),.,.G G G αβαβ? ? ?6.7. ⼏乎处处收敛于()f x 或 a.e.收敛于()f x .8. 对000,(,)U x δδ?> 有{}()0E x -=?.9.lim ()()0n n mE f x f x σ→∞-≥= 10.()()n f x f x → a.e.于E .⼆判断题 1. F . 例如, (0,1)A =, []0,1B =, 则A B ?且A B ≠,但1mA mB ==. 2. F . 例如, 0(0,1)?, 但0不是(0,1)的外点.3. F . 由于{}0E E '=.4. F . 例如, 在1R 中, 11,1n F nn ??=-, 3,4n =是⼀系列的闭集, 但是3(0,1)n n F ∞==不是闭集.5. T . 因为若E 为有界集合, 则存在有限区间I ,I <+∞, 使得E I ?, 则**,m E m I I ≤=<+∞ 于*m E =+∞ .三, 计算证明题. 1. 证明如下:()()()()()()()()SSS S S A B C A B CAB C A B C A B A C A B A C --=- = = = =-2. M 中任何⼀个元素可以由球⼼(,,)x y z , 半径为r 唯⼀确定, x ,y , z 跑遍所有的r 跑遍所有的有理数. 因为有理数集于正有理数集为可数集都是可数集, 故M 为可数集. 3. 令1i i BB ∞==, 则i E B B ??且B 为可测集, 于是对于i ?, 都有i B E B E -?-, 故()()**0i m B E m B E ≤-≤-,令i →∞, 得到()*0m B E -=, 故B E -可测. 从⽽()E B B E =--可测. 4. 已知0mP =, 令[]0,1G P = -, 则()1320221130(L)()(L)ln 1(L)(L)()(L)(L)(R)()133PGGPGf x dx x dx x dxf x dxx dx x dxf x dxx=++ =0+ =+ = ==.5. 将积分区间[]0,1分为两两不相交的集合: 0P , 1G , 2G , 其中0P 为Cantor 集,n G 是0P 的余集中⼀切长为1n的构成区间(共有12n -个)之并. 由L 积分的可数可加性,并且注意到题中的00mP =, 可得101111111()()()()()1()61126631112916nn P G P G n n P G n n n n n nn n n n f x dx f x dx f x dxf x dx f x dxf x dx dxmG ∞=∞=∞=-∞∞==∞==+ =+ =+ =0+=? =?=∑∑?∑∑∑6. 因为323sin 1nx nx n x +在[]0,1上连续, 13 230(R)sin 1nx nxdx n x+?存在且与13230(L)sin 1nx nxdx n x+?的值相等. 易知 32232323211sin .11122nx nx nx nx n x n x n x x x≤≤?≤+++ 由于12x在()0,1上⾮负可测,且⼴义积分112dx x收敛,则12x在()0,1上(L)可积,由于323lim sin 01n nx nx n x →∞=+, ()0,1x ∈,于是根据勒贝格控制收敛定理,得到1133232300132301lim(R)sin lim(L)sin 11lim sin 100n n n nx nx nxdx nxdx n x n x nx nx dxn x dx →∞→∞→∞=++?? = ?+?? ==.。

实变函数模拟试题

实变函数模拟试题

《实变函数》模拟试题(适用于高师函授数学与应用数学专业专科起点本科学生,闭卷考试 时间120分钟)得 分阅卷人一、选择题 (共10题,每题3分,共30分)1.设Q 是R 中有理数的全体,则在R 中Q 的导集Q '是 【 】 (A) Q(B) φ (C) R (D)Q R -2.设{}n F 是一列闭集, ∞==1n n F F ,则F 一定是 【 】(A)开集 (B)闭集 (C) δG 型集 (D) σF 型集3.设E 是R 中有理数全体,则=mE 【 】 (A) 0(B)1 (C)+∞(D)-∞4.下面哪些集合的并组成整个集合的点 【 】 (A) 内点,界点,聚点 (B) 内点,界点,孤立点 (C) 孤立点,界点,外点(D) 孤立点,聚点,外点5.设P 是Cantor 集,则 【 】 (A) P 与n R 对等,且P 的测度为0 (B) P 与n R 对等,且P 的测度为1 (C) P 与n R 不对等,P 的测度为0 (D) P 与n R 不对等,P 的测度为16. 设)(x f 与)(x g 在E 上可测,则[]g f E ≥是 【 】 (A) 可测集 (B) 不可测集 (C)空集 (D) 无法判定7. 设)(x f 在可测集E 上有定义,{}n x f x f n ),(min )(=,则)(x f n 是 【 】 (A) 单调递增函数列 (B) 单调递减函数列 (C) 可积函数列(D) 连续函数列8. 设E 是任一可测集,则 【 】(A) E 是开集 (B) E 是闭集 (C) E 是完备集 (D) 对任意0>ε,存在开集E G ⊃,使ε<-)(E G m9.设⎩⎨⎧-∈+∈=QQ ]1,0[21]1,0[2sin )(x,x x,x x f ,则=⎰]10[,f (x )d x 【 】(A) 1 (B) 2 (C) 3 (D) 410.设{}n f 是E 上一列几乎处处有限的可测函数,若对任意0>σ,有下面条件成立,则{})(x f n 依测度收敛于)(x f . 【 】 (A) []0)()(lim >≥-∞→σx f x f mE n n (B) []0)()(lim <≥-∞→σx f x f mE n n(C) []0)()(lim ==-∞→σx f x f mE n n (D) []0)()(lim =≥-∞→σx f x f mE n n得 分 阅卷人二、定理叙述题(共2题,每题5分,共10分)1.鲁津定理2.Fatou 引理得 分 阅卷人三、判断改正题(正确的打对号,错误的打错号并改正,共5题,每题4分,共20分)1. 若E 与它的真子集对等,则E 一定是有限集. 【 】2. 凡非负可测函数都是L 可积的. 【 】3.设A 为1R 空间中一非空集,若.a A ≤'则.a A ≤ 【 】4.设E 为可测集,则存在δG 型集F ,使得E F ⊂,且0)(=-F E m . 【 】5.)(x f 在[]b a ,上L 可积,则)(x f 在[]b a ,R 可积且[]⎰⎰=b a badx x f R dx x f L ,)()()()(【 】得 分阅卷人四、证明题(共4题,每题10分,共40分)1.开集减闭集后的差集为开集,闭集减开集后的差集为闭集.2.n R 上全体有理数点集的外测度为零.3.设函数列}{n f 在E 上依测度收敛f ,且h f n ≤e a .于E ,则h f ≤e a .于E .4.设)(x f 在[]εε+-b a ,上可积,则0)()(lim 0=-+⎰→dx x f t x f bat .。

《实变函数》试卷及参考答案

《实变函数》试卷及参考答案

《实变函数》试卷及参考答案《实变函数》试卷一一、单项选择题(3分×5=15分)1、1、下列各式正确的是( ),,,,limAA,,,limAA,,,(A); (B); nknk,,,,nnkn11nknn,,,,,,,,limAA,,,limAA,,,(C); (D); nknk,,,,nnkn1,,nkn1,,n2、设P为Cantor集,则下列各式不成立的是( ),'P,mP,0(A) c (B) (C) (D) P,PP,P3、下列说法不正确的是( ) (A) 凡外侧度为零的集合都可测(B)可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D)波雷耳集都可测fx()E是上的有限的可测函数列,则下面不成立的是( ) 4、设ae..,,n sup()fxfxfx()(),fxfx()(),(A)若, 则 (B) 是可测函数 ,,nnnnfxfx()(), (C)是可测函数;(D)若,则可测 inf()fxfx(),,nnn5、设f(x)是上有界变差函数,则下面不成立的是( ) [a,b](A) 在上有界 (B) 在上几乎处处存在导数 f(x)[a,b]f(x)[a,b]b'f'(x)dx,f(b),f(a)f(x)(C)在上L可积 (D) [a,b],a二. 填空题(3分×5=15分)()(())CACBAAB,,,,,1、_________ sso'E0,12、设是上有理点全体,则=______,=______,=______. EEE,, nET3、设是中点集,如果对任一点集都有R1 (第页,共47页)EL_________________________________,则称是可测的、可测的________条件是它可以表成一列简单函数的极限函数. 4f(x)(填“充分”,“必要”,“充要”)ab,ab,5、设为上的有限函数,如果对于的一切分划,使fx(),,,,ab,______________________,则称为上的有界变差函数。

实变函数期末考试题库

实变函数期末考试题库

《实变函数》期末考试试题汇编目录《实变函数》期末考试模拟试题(一) (2)《实变函数》期末考试模拟试题(二) (7)《实变函数》期末考试模拟试题(三) (13)《实变函数》期末考试模拟试题(四) (18)《实变函数》期末考试模拟试题(五) (27)《实变函数》期末考试模拟试题(六) (30)《实变函数》期末考试模拟试题(七) (32)《实变函数》期末考试模拟试题(八) (36)《实变函数》期末考试模拟试题(九) (41)《实变函数》期末考试模拟试题(十) (47)《实变函数》期末考试题(一) (57)《实变函数》期末考试题(二) (63)《实变函数》期末考试模拟试题(一)(含解答)一、选择题(单选题)1、下列集合关系成立的是( A )(A )(\)A B B A B ⋃=⋃ (B )(\)A B B A ⋃= (C )(\)B A A A ⋃⊆ (D )(\)B A A ⊆ 2、若n E R ⊂是开集,则( B )(A )E E '⊂ (B )E 的内部E = (C )E E = (D )E E '= 3、设P 是康托集,则( C )(A )P 是可数集 (B )P 是开集 (C )0mP = (D )1mP = 4、设E 是1R 中的可测集,()x ϕ是E 上的简单函数,则( D ) (A )()x ϕ是E 上的连续函数 (B )()x ϕ是E 上的单调函数 (C )()x ϕ在E 上一定不L 可积 (D )()x ϕ是E 上的可测函数5、设E 是n R 中的可测集,()f x 为E 上的可测函数,若()d 0Ef x x =⎰,则( A )(A )在E 上,()f z 不一定恒为零 (B )在E 上,()0f z ≥ (C )在E 上,()0f z ≡ (D )在E 上,()0f z ≠ 二、多项选择题(每题至少有两个或两个以上的正确答案) 1、设E 是[0,1]中的无理点全体,则(C 、D )(A )E 是可数集 (B )E 是闭集 (C )E 中的每一点都是聚点 (D )0mE > 2、若1E R ⊂至少有一个内点,则( B 、D )(A )*m E 可以等于零 (B )*0m E > (C )E 可能是可数集 (D )E 是不可数集3、设[,]E a b ⊂是可测集,则E 的特征函数()E X x 是 (A 、B 、C ) (A )[,]a b 上的简单函数 (B )[,]a b 上的可测函数 (C )E 上的连续函数 (D )[,]a b 上的连续函数4、设()f x 在可测集E 上L 可积,则( B 、D )(A )()f z +和()f z -有且仅有一个在E 上L 可积 (B )()f z +和()f z -都在E 上L 可积 (C )()f z 在E 上不一定L 可积 (D )()f z 在E 上一定L 可积5、设()f z 是[,]a b 的单调函数,则( A 、C 、D )(A )()f z 是[,]a b 的有界变差函数 (B )()f z 是[,]a b 的绝对连续函数 (C )()f z 在[,]a b 上几乎处处连续 (D )()f z 在[,]a b 上几乎处处可导 三、填空题(将正确的答案填在横线上)1、设X 为全集,A ,B 为X 的两个子集,则\A B=C A B ⋂ 。

实变函数测试题_参考答案

实变函数测试题_参考答案

实变函数测试题1本试题参考答案由08统计班15号 李维提供 有问题联系151********1、设 212(0,1/),(0,),0,1,2...,n n A n A n n -===n 求出集列{A }的上限集和下限集合。

解:()∞=∞→,0lim n n A ;设()∞∈,0x .则存在N.使x N <.因此n N >时.0x n <<.即n A x 2∈.所以x 属于下标比N 大的一切偶指标集.从而x 属于无限多n A .得n n A x ∞→∈lim 又显然()∞⊂∞→,0lim n n A .所以()∞=∞→,0lim n n A 。

φ=∞→n n A lim ;若有n n A x ∞→∈lim .则存在 A.使任意n N >,有n A x ∈。

因此若21n N->时.12-∈n A x .即10x n <<.令∞→n 得00x <≤.此不可能.所以φ=∞→n n A lim 。

2、证明:()f x 为[,]a b 上连续函数的充分必要条件是对任意实数c .集{}()E x f x c =≥和{}1()E x f x c =≤都是闭集。

证明:必要性:若()f x 是[],a b 上连续函数.由第二章习题8可知1E 和E 是闭集。

充分性:若1E 和E 都是闭集。

若有[]0,x a b ∈.()f x 在0x 点不连续。

则存在()()00000,,n n x x f x f x εε>→≥+.或()()00ε-≤x f x f n .不妨设出现第一种情况。

令()00ε+=x f c .则(){}c x f x E x n ≥=∈.而E x ∉0(因为c x f x f =+<000)()(ε).此与E 是闭集相矛盾。

所以()f x 在[],a b 上是连续的。

证毕。

3、设nR E ⊂是任意可测集.则一定存在可测集δG 型集G.使得EG ⊃,且()0=-E G m3.由外侧度定义.对任意正整数n .存在开集E G n ⊃,使n E G m n 1)(<-.令 ∞==1n n G G .则G 为δG 型集.E G ⊃且 2,1,1)()(=<-≤-n nE G m E G m n 故0)(=-E G m 。

实变函数(复习资料,带答案)

实变函数(复习资料,带答案)

---《实变函数》试卷一一、单项选择题( 3 分×5=15 分)1、下列各式正确的是()( A) lim A n A k ;(B) lim A nn 1 k n A k ;n n 1 k n n( C) lim A n A k ;( D) lim A nn 1 k A k ;n n 1 k n n n2、设 P 为 Cantor 集,则下列各式不成立的是()(A)P c (B)mP 0(C)P'P(D)P P3、下列说法不正确的是()(A)凡外侧度为零的集合都可测( B)可测集的任何子集都可测(C) 开集和闭集都是波雷耳集(D)波雷耳集都可测4、设f n ( x) 是 E 上的a.e.有限的可测函数列 , 则下面不成立的是()(A)若f n(x) f ( x) ,则f n( x) f ( x)(B)sup f n ( x) 是可测函数(C)inf f n (x) 是可测函数 ; ( D)若n nf n (x) f (x) ,则 f (x) 可测5、设 f(x) 是[ a,b]上有界变差函数,则下面不成立的是()(A) f (x) 在 [ a, b] 上有界(B)f ( x) 在 [ a,b] 上几乎处处存在导数(C)f'( x)在[ a, b]上 L 可积 (D)bf '(x)dx f (b) f (a)a二.填空题 (3 分× 5=15 分 )1、(C s A C s B) ( A ( A B))_________2、设 E 是 0,1 上有理点全体,则oE' =______, E =______, E =______.3、设 E 是 R n中点集,如果对任一点集T 都,则称 E是L可测的4、f ( x)可测的 ________条件是它可以表成一列简单函数的极限函数 . (填“充分”,“必要”,“充要”)5、设f (x)为 a, b 上的有限函数,如果对于a, b 的一切分划,使_____________________________________则,称f ( x)为a, b 上的有界变差函数。

(完整版)实变函数期末考试卷A及参考答卷

(完整版)实变函数期末考试卷A及参考答卷

2011—2012学年第1学期数计学院09级数学与应用数学专业(1、2班)《实变函数》期末考试卷(A)考生考试诚信承诺书在我填写考生信息后,表示我已阅读和理解《龙岩学院考试纪律与违纪处分办法》的有关规定,承诺在考试中自觉遵规守纪,如有违反将接受处理;我保证在本科目考试中,本人所提供的个人信息是真实、准确的。

考生签名:实变函数期末考试卷(A )2009级本科1、2班用 考试时间2012年01月 04日一 填空题(每小题3分,满分24分) 1 我们将定义在可测集qE ⊂上的所有L 可测函数所成的集合记为()M E .任取()f M E ∈,都可以确定两个非负可测函数:()()()(),0,0,0.f x x E f fx x E f +∈>⎧=⎨∈≤⎩当时当时 和()()()()0,0,,0.x E f fx f x x E f -∈>⎧=⎨-∈≤⎩当时当时分别称为f 的正部和负部。

请你写出()()(),,f x fx f x +-和()f x 之间的关系:()f x =,()f x =。

2 上题()M E 中有些元素ϕ被称为非负简单函数,指的是:12k E E E E =是有限个互不相交的可测集的并集,在i E 上()i x c ϕ≡(非负常数)(1,2,,i k =).ϕ在E 上的L 积分定义为:()Ex dx ϕ=⎰,这个积分值可能落在区间中,但只有当时才能说ϕ是L 可积的。

3 若()f M E ∈是非负函数,则它的L 积分定义为:()Ef x dx =⎰,这个积分值可能落在区间中,但只有当时才能说f 是L 可积的。

4 ()M E 中的一般元素f 称为是积分确定的,如果f +和f -, 即()Efx dx +⎰和()E f x dx -⎰的值;但只有当时才能说f 是L 可积的,这时将它的积分定义为:()Ef x dx =⎰。

5 从()M E 中取出一个非负函数列(){}n f x ,则法图引理的结论是不等式:;如果再添上条件和就试卷 共 8 页 第 2 页得到列维定理的结论:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实变函数期末考试模拟试题
一、定义或名词解释。

1、定义集合的外测度及集合的测度;
2、定义可测函数与简单函数;
3、Lebesgue可积的定义(提示a,b,c,d 共4点);
4、解释距离空间、线性空间、线性赋范空间;
5、解释符号:f属于C C(R)、f属于R(D)。

6、写出叶果罗夫定理及鲁津定理。

二、计算及定理证明:
1、设E可测,f在E非负可测。

那么,存在非负简单函数ψk,k是正整数。

st 对任意的k,任意的x有:
0≤ψk(x)≤ψk+1(x),且lim
k→∞
ψk(x)=f(x)。

2、设E可测,k是正整数,ψk在E可测。

令g=sup{ψk:k正整数},
h=inf{ψk:k正整数}。

证明:g,h,lim
k→∞supψk(x),lim
k→∞
infψk(x)均
可测。

3、设a属于R。

f属于L(R)。

且f(a)=0,f’(a)属于R,那么
f(x)
|x−a|
属于L(R).
4.问当P为实数何值时,lim
k→∞∫xdx
1+x sin
k
收敛。

相关文档
最新文档