各地高三数学文化题汇编
专题高三数学高考数学文化题汇编含含

专题数学文化题一、单项选择题1.《孙子算经》是我国古代的数学名著,书中有以下问题:“今有五等诸侯,共分橘子六十颗,人别加三颗. 问:五人各得几何?”其意思为:“有 5 个人分 60 个橘子,他们分得的橘子个数成公差为 3 的等差数列,问 5 人各得多少橘子 . ”依据这个问题,有以下 3 个说法:①获得橘子最多的人所得的橘子个数是 15;②获得橘子最少的人所得的橘子个数是 6;③获得橘子第三多的人所得的橘子个数是 12. 此中说法正确的个数是()A.0 B . 1 C .2 D . 3【答案】 C【分析】由题可设这五人的橘子个数分别为:,其和为 60,故 a=6 ,由此可知②获得橘子最少的人所得的橘子个数是 6;③获得橘子第三多的人所得的橘子个数是 12 是正确的,应选 C2.《算法统宗》中有一图形称为“方五斜七图”,注曰:方五斜七者此乃言其大概矣,内方五尺外方七尺有奇.实质上,这是一种开平方的近似计算,即用 7 近似表示,当内方的边长为 5 时,外方的边长为,略大于 7.以下图,在外方内随机取一点,则此点取自内方的概率为()A. B. C. D.【答案】 A【分析】由题意可得,,则外方内随机取一点,则此点取自内方的概率为,应选 A.3.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”已知某“堑堵”的三视图以下图,俯视图中间的实线均分矩形的面积,则该“堑堵”的表面积为A. B.2 C. D.【答案】 D【分析】依据题意和三视图知几何体是一个放倒的直三棱柱,底面是一个直角三角形,两条直角边分别是、斜边是 2,且侧棱与底面垂直,侧棱长是 2,几何体的表面积,应选:D.4.陕西省西安市周至县的旅行景点楼观台,号称“天下第一福地”,是我国有名的道教胜迹,古代圣哲老子曾在此著《道德经》五千言 . 景区内有一处景点建筑,是按古典著作《连山易》中记录的金、木、水、火、土之间相克相生的关系,以下图,现从五种不一样属性的物质中任取两种,则拿出的两种物质恰巧是相克关系的概率为()A. B. C. D.【答案】 B【分析】方法一:从五种不一样属性的物质中任取两种,基本领件数目为拿出两种物质恰巧相克的基本领件数目为则拿出两种物质恰巧是相克关系的概率为因此选 B.方法二:从五种不一样属性的物质中任取两种,基本领件有“火土,火金,火水,火木,土金,土水,土木,金水,金木,水木”,共 10 种,此中“拿出两种物质恰巧相克”的基本领件是“火土,土金,土木,金水,水木”,共 5 种,则拿出两种物质恰巧是相克关系的概率为5 110 2,选B.5.中国宋朝的数学家秦九韶曾提出“三斜求积术”,即假定在平面内有一个三角形,边长分别为,三角形的面积可由公式求得,此中为三角形周长的一半,这个公式也被称为海伦 - 秦九韶公式,现有一个三角形的边长知足,则此三角形面积的最大值为 ( )A. B. C. D.【答案】 C【分析】由题意,p= 10,S 8 ,∴此三角形面积的最大值为 8 .应选:C.6.《算法统宗》是中国古代数学名著,由明朝数学家程大位编著,它对我公民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,很多半学识题都是以歌诀形式体现的,“九儿问甲歌”就是此中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿年纪要详推.在这个问题中,记这位公公的第个儿子的年纪为,则 ( )。
高中数学文化试题及答案

高中数学文化试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是函数y=2x^2的图像?A. 经过原点的抛物线B. 经过原点的直线C. 经过原点的双曲线D. 经过原点的椭圆答案:A2. 圆的一般方程是:A. (x-a)^2 + (y-b)^2 = r^2B. x^2 + y^2 = r^2C. x^2 + y^2 + r^2 = 0D. (x-a)^2 + (y-b)^2 = 0答案:A3. 已知集合A={1,2,3},B={2,3,4},则A∩B等于:A. {1,2}B. {2,3}C. {1,3}D. {3,4}答案:B4. 若f(x)=x^2-4x+3,则f(2)的值为:A. 1C. 3D. 5答案:A5. 等差数列{an}的前三项分别为1, 4, 7,则该数列的公差d为:A. 2B. 3C. 4D. 5答案:B6. 函数f(x)=x^3-3x^2+2在x=1处的导数为:A. 0B. 1C. 2D. -1答案:B7. 已知向量a=(2,3),b=(1,k),若a⊥b,则k的值为:A. 2B. -2C. 3D. -3答案:B8. 函数y=sinx在区间[0,π]上的最大值为:B. 1C. πD. -1答案:B9. 圆的半径为5,圆心在原点,该圆的方程为:A. x^2 + y^2 = 25B. (x-5)^2 + y^2 = 25C. x^2 + y^2 - 5^2 = 0D. x^2 + y^2 + 5^2 = 0答案:A10. 函数f(x)=x^2-6x+8的顶点坐标为:A. (3, -1)B. (-3, 1)C. (3, 1)D. (-3, -1)答案:A二、填空题(每题4分,共20分)1. 等比数列{an}的首项为2,公比为3,其第五项为______。
答案:1622. 抛物线y^2=4x的焦点坐标为______。
答案:(1,0)3. 直线l的斜率为-1,且经过点(2,3),则直线l的方程为______。
高考数学文化专项训练(原卷版)-高考数学二轮复习

高考数学文化专项训练1、我国天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同.二十四节气及晷长变化如图所示,相邻两个节气晷长减少或增加的量相同,周而复始.已知每年冬至的晷长为一丈三尺五寸,夏至的晷长为一尺五寸(一丈等于十尺,一尺等于十寸),则下列说法不正确的是( )A .相邻两个节气晷长减少或增加的量为一尺B .春分和秋分两个节气的晷长相同C .立春的晷长与立秋的晷长相同D .立冬的晷长为一丈五寸2、饕餮纹是青铜器上常见的花纹之一,如图(1)所示,最早见于长江中下游地区的良渚文化陶器和玉器上,盛行于商代至西周早期.将饕餮纹的一部分画到方格纸上,如图(2)所示,每个小方格的边长为一个单位长度,有一点P 从点A 出发,每次向右或向下移动一个单位长度,且向右或向下移动是等可能的,那么点P 经过3次移动后恰好是沿着饕餮纹的路线到达点B 的概率为( )A.116B .18 C.14 D .123、中国古代数学名著《算法统宗》中有一道题:“今有七人差等均钱,甲乙均七十七文,戊己庚均七十五文,问丙丁各若干?”,意思是甲、乙、丙、丁、戊、己、庚七个人,所分钱数为等差数列,甲、乙两人共分77文,戊、己、庚三人共分75文,则丙、丁两人各分多少文钱?则下列说法正确的是( )A .丙分34文,丁分31文B .丙分37文,丁分40文C .丙分40文,丁分37文D .丙分31文,丁分34文4、魏晋南北朝时期,中国数学在测量学取得了长足进展.刘徽提出重差术,应用中国传统的出入相补原理.因其第一题为测量海岛的高度和距离的问题,故题为《海岛算经》.受此题启发,某同学依照此法测量某纪念塔的高度.如图,点D ,G ,F 在水平线DH 上,CD 和EF 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,测得以下数据(单位:米):前表却行DG =1,表高CD =EF =2,后表却行FH =3,表距DF =61.则塔高AB =( )A .60米B .61米C .62米D .63米.5、美学四大构件是:史诗、音乐、造型(绘画、建筑等)和数学.素描是学习绘画的必要一步,它包括了明暗素描和结构素描,而学习几何体结构素描是学习素描最重要的一步.某中学2020级某同学在画“切面圆柱体”(用与圆柱底面不平行的平面去截圆柱,底面与截面之间的部分叫做切面圆柱体)的过程中,发现“切面”是一个椭圆,若“切面”所在平面与底面成45°角,则该椭圆的离心率为( )A.12 B .22 C.32 D .136、如图,圭表是中国古代通过测量表影长度来确定节令的仪器,也是指导古代劳动人民农事活动的重要依据,它由“圭”和“表”两个部件组成,圭是正南正北方向水平放置于地面上的测定表影长度的刻板,表是与地面垂直的杆,正午时太阳照在表上,通过测量此时表在圭上的影长度来确定节令.已知冬至和夏至正午时,太阳光线与圭所在平面所成角分别为α,β,测得表影长度之差为l ,那么表高为( )A.l tan αtan βtan α-tan β B .l (tan β-tan α)tan βtan αC.l tan βtan αtan β-tan α D .l (tan α-tan β)tan αtan β7、筒车是我国古代发明的一种灌溉工具,因其经济又环保,至今还在农业生产中得到使用,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理,如图所示.假设在水流量稳定的情况下,筒车上的每一个盛水筒都做逆时针匀速圆周运动,现有一个半径为3米的筒车按逆时针方向每分钟旋转1圈,筒车的轴心距离水面的高度为2米,设筒车上的某个盛水筒P 到水面的距离为d (单位:米,在水面下,d 为负数),若以盛水筒P 刚浮出水面时为初始时刻,经过t 秒后,下列说法正确的是⎝⎛⎭⎫参考数据:cos 48°≈23( )A .d =2-3sin ⎝⎛⎭⎫π30t +θ,其中sin θ=23,且θ∈⎝⎛⎭⎫0,π2 B .d =2+3sin ⎝⎛⎭⎫π30t +θ,其中sin θ=23,且θ∈⎝⎛⎭⎫0,π2 C .当t ≈38时,盛水筒P 再次进入水中D .当t ≈22时,盛水筒P 到达最高点8、中国古代数学的瑰宝《九章算术》中记载了一种名为“曲池”的几何体,该几何体的上、下底面平行且均为扇环(圆环被扇形截得的部分)形.现有一个如图所示的曲池,其高为3,AA 1∥BB 1∥CC 1∥DD 1,AA 1⊥底面ABCD ,底面扇环所对的圆心角为π2,弧AD 长度为弧BC 长度的3倍,且CD =2,则该曲池的体积为( )A.9π2B .6π C.11π2 D .5π.9、日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A .20°B .40°C .50°D .90°10、沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”.如图,AB ︵ 是以O 为圆心,OA 为半径的圆弧,C 是AB 的中点,D 在AB ︵ 上,CD ⊥AB .“会圆术”给出AB ︵的弧长的近似值s 的计算公式:s =AB +CD 2OA .当OA =2,∠AOB =60°时,s =( )A.11-332B .11-432 C.9-332 D .9-43211、许多建筑融入了数学元素,更具神韵,数学赋予了建筑活力,数学的美也被建筑表现得淋漓尽致.如图1是单叶双曲面(由双曲线绕虚轴旋转形成的立体图形)型建筑,图2是其中截面最细附近处的部分图象,上、下底面与地面平行.现测得下底直径AB =2010 米,上底直径CD =20 2 米,AB 与CD 间的距离为80米,与上、下底面等距离的G 处的直径等于CD ,则最细部分处的直径为( )A .10米B .20米C .10 3 米D .10 5 米12、2022年2月20日晚,第二十四届冬季奥林匹克运动会闭幕式在国家体育场(如图1所示)举行,北京成为全球首座“双奥之城”.国家体育场“鸟巢”的钢结构鸟瞰图如图2所示,内、外两圈的钢骨架是两个“相似椭圆”(离心率相同的两个椭圆,我们称之为“相似椭圆”).由外层椭圆长轴一端点A 和短轴一端点B 分别向内层椭圆引切线AC ,BD ,其中C ,D 为切点,若两切线斜率之积等于-34,则椭圆的离心率为( )A.34B .74 C.12 D .2213、《九章算术·商功》中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈.其描述的是如图所示的一个五面体,其中底面ABCD 是矩形,且AB =4丈(丈为古代长度单位),BC =3丈,DE =AE =BF =CF ,EF =2丈,该五面体的高(即点F 到底面ABCD 的距离)为1丈,则该刍甍中点F 到平面EBC 的距离(单位:丈)为( )A.15B .35 C.105 D .25514、达·芬奇的经典之作《蒙娜丽莎》举世闻名,画中女子神秘的微笑,数百年来让无数观赏者入迷.如图所示,某业余爱好者对《蒙娜丽莎》的缩小影像作品进行了粗略测绘,将画中女子的嘴唇近似看作一个圆弧,在嘴角A ,C 处分别作圆弧的切线,两条切线交于点B ,测得如下数据:AB =6 cm ,BC =6 cm ,AC =10.392 cm.根据测量得到的结果推算,该圆弧对应的圆心角大约等于⎝⎛⎭⎫参考数据:32≈0.866( )A.π3B .π4 C.π2 D .2π315、小华在学习绘画时,对古典装饰图案产生了浓厚的兴趣,拟以矢量图(在数学上定义为一系列由点连接的线,是根据几何特性绘制的图形)的模式精细地描绘以下古典装饰图案,如图1所示,经过研究,小华发现该图案可以看成一个边长为4的等边三角形ABC ,如图2所示,图1上边中间莲花形的两端恰好是边AB 的四等分点(E ,F ),则CE →·(BF →-BC →)=( )A .9B .16C .12D .1116、(多选)十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家赫锐奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.则下列与不等式有关的命题正确的是( )A .若ab ≠0且a <b ,则1a >1bB .若a ,b ,m 均为正实数,且b >a ,则a +m b +m >a bC .若a >b >c 且ac <0,则cb 2<ab 2D .若a >0,b >0,则⎝⎛⎭⎫a +1a ⎝⎛⎭⎫b +1b ≥4 17、(多选)沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时,细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时.如图,某沙漏由上、下两个圆锥组成,圆锥的底面直径和高均为8 cm ,细沙全部在上部时,其高度为圆锥高的23(细管长度忽略不计).假设该沙漏每秒钟漏下0.02 cm 3的沙,且细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆.以下结论正确的是( )A .沙漏中的细沙体积为1 024π81cm 3 B .沙漏的体积是128π cm 3C .细沙全部漏入沙漏的下部后,此锥形沙堆的高度约为2.4 cmD .该沙漏的一个沙时大约是1 565 s(π≈3.14)18、(多选)有一句诗歌是这样的:世界上最远的距离,不是树枝无法相依,而是相互瞭望的星星,却没有交会的轨迹;世界上最远的距离,不是星星之间的轨迹,而是纵然轨迹交会,却在转瞬间无处寻觅.已知点M (0,2),直线l :y =-3,若某直线上存在点P ,使得点P 到点M 的距离比到直线l 的距离小1,则称该直线为“最远距离直线”,则下列结论正确的是( )A .点P 的轨迹是一条线段B .点P 的轨迹与直线l 0:y =-1没有交会(即两个轨迹没有交点)C .y =2x -3是“最远距离直线”D .y =12x -1不是“最远距离直线” 19、(多选)瑞士著名数学家欧拉在1765年提出定理:三角形的外心、重心、垂心位于同一直线上,这条直线被后人称为三角形的“欧拉线”.在平面直角坐标系中,B (-1,3),C (4,-2),作△ABC ,使AB =AC =4,且其“欧拉线”与圆M :(x -3)2+y 2=r 2(r >0)相切,则下列结论正确的是( )A .圆M 上的点到直线x -y +3=0的最小距离为2 2B .圆M 上的点到直线x -y +3=0的最大距离为3 2C .若点(x ,y )在圆M 上,则x +3y 的最小值是3-2 2D .若圆(x -a -1)2+(y -a )2=8与圆M 有公共点,则a 的取值范围是[1-22,1+22]20、扇面是中国书画作品的一种重要表现形式,一幅扇面书法作品如图所示,经测量,上、下两条弧分别是半径为27和12的两个同心圆上的弧,侧边两条线段的延长线交于同心圆的圆心且圆心角为2π3.若某几何体的侧面展开图恰好与图中扇面形状、大小一致,则该几何体的高为_______.21、我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是S =14⎣⎡⎦⎤c 2a 2-⎝⎛⎭⎫c 2+a 2-b 222,其中a ,b ,c 是三角形的三边,S 是三角形的面积.设某三角形的三边a =2,b =3,c =2,则该三角形的面积S =________.22、《九章算术》中将底面为直角三角形且侧棱垂直于底面的三棱柱称为堑堵,在堑堵ABC -A 1B 1C 1中,已知棱AB 最长,AC =3,BC =4,且该堑堵存在内切球,则该堑堵外接球的表面积为________.23、有一种制作正二十面体的方法:如图(1),先制作三张一样的黄金矩形ABCD ⎝ ⎛⎭⎪⎫短边长边=5-12,然后从长边CD 的中点E 出发,沿着与短边平行的方向剪开一半,即OE =12AD ,再沿着与长边AB 平行的方向剪出相同的长度,即OF =OE ,将这三个矩形穿插两两垂直放置,如图(2),连接所有顶点即可得到一个正二十面体,如图(3).若黄金矩形的短边长为4,则按如上方法制作的正二十面体的表面积为________,其外接球的表面积为________.24、“杨辉三角”是中国古代重要的数学成就,它的发现比西方的“帕斯卡三角形”早了500年左右,如图是由“杨辉三角”拓展而成的三角形数阵,记a n 为图中虚线上的数1,3,6,10,…依次构成的数列的第n 项,则1a 1+1a 2+…+1a 9的值为________.25、有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:223=223,338=338,4415=4415,5524=5524,….按照以上规律,若n n 120=n n 120具有“穿墙术”,则n =________.26、庑殿顶(如图1)是中国古代建筑的一种屋顶样式,而且等级是最高的,如故宫的英华殿.它屋面有四面坡,前后坡屋面全等且相交成一条正脊,两侧屋面全等且与前后屋面相交成四条垂脊.由于屋顶有四面斜坡,也称“四阿顶”.图2是庑殿顶的几何模型示意图,底面ABCD 是矩形,若四个侧面与底面所成的角均相等,已知BC =2,EF =1,则AB =_______.。
数学文化题目

一选择题1《三角形论》的作者是谁?A乾隆 B康熙 C雍正 D顺治2中国古代哪一项“四大发明”与宋代没有关系?A火药 B指南针 C造纸 D印刷术3 下列哪个学派提出“万物皆数”这个观点?A毕达哥拉斯学派 B泰勒斯学派 C巧辩学派 D 厄里亚学派4下列哪位数学家创立了“拓扑学”?A康托 B伽罗瓦 C高斯 D 庞加莱5黎曼开创了下列哪一个数学领域?A现代微分几何 B抽象代数 C拓扑学 D非欧几何6下列哪一个朝代出现了甲骨文?A夏 B商朝 C西周 D 战国7第二次数学危机发生在什么时候?A公元前5世纪 B16世纪 C17世纪 D 19世纪8“以反对中世纪经院哲学派的基督教思想体系为中心,推崇人文主义。
颂扬人,蔑视神;赞美人性,贬抑神性;提倡人权,否定神权;标榜人道,反对神道。
”这段文字描述的是下列哪个时期?A古典时期 B 古希腊时期 C文艺复兴时期 D 中世纪9下列哪一项不是古印度的数学知识积累?A楔形文字泥板 B桦树皮 C经文 D碑文10文明古国的数学知识非常丰富,金文是下列哪个古国的数学知识?A古埃及 B古中国 C古印度 D玛雅11下列哪一个著作是丢番图(Diophantus of Alexandria 约246~330)完成的?A《算术》 B《数学汇编》 C《圆锥曲线》 D《算术入门》12自从公元前200多年罗马入侵后,古希腊数学以至整个古希腊文明就开始遭到破坏,其中有三把火加速这些破坏,下列哪一项不是?A、B.C.47年凯撒纵火,亚历山大里亚图书馆藏书50万份手稿被焚B 392年罗马王泰奥多希乌斯下令拆神庙,塞拉皮斯神庙所30万份手稿被焚C公元529年,东罗马王子封闭了所有的古希腊学园,包括柏拉图学园,古希腊的学者们纷纷逃散到波斯。
D 640年阿拉伯人奥玛下令焚书达 6 个月13下列哪一项不是古希腊数学的成就?A倡导理性和抽象,为数学的理论及其发展奠定了基础B三、四次方程的求解C建立了逻辑推理和证明的方法,对数学的严密性产生了深远的影响D确立了数学观以及初等数学全面开创14阿拉伯数学的兴盛期是9 — 13世纪,以巴格达、布哈拉、开罗、科尔瓦多、托来多等中心,其中有以阿尔-花拉子模为代表的创造性工作,下列哪个著作是阿尔-花拉子模完成的?A《代数学》 B《圆周论》 C《论四边形》 D《算术之钥》15下列哪位历史人物首创内插法,编《皇极历》并用内插法算子午线?A赵爽 B刘徽 C祖冲之 D刘焯16.1840年鸦片战争,打开了清廷闭关自守的大门。
高考数学文化题汇总

数学与日常生活
总结词
数学在日常生活中无处不在,从购物决策到 建筑设计,都涉及到数学的应用。
详细描述
购物时比较不同商品的价格和性价比需要进 行简单的算术计算;建筑设计需要考虑几何 学原理;时间管理则涉及到线性规划等数学 知识。此外,天气预报、股票交易等领域也 大量使用了数学工具。
04
CATALOGUE
现代中国数学
中国现代数学在几何学、拓扑学、概率论和统计学等方面取得了一定的成就, 逐渐与国际数学界接轨。
02
CATALOGUE
数学与文学艺术
数学与诗歌
总结词
数学概念和原理经常被用作诗歌的主题,以增加其深度和复 杂性。
详细描述
数学与诗歌的结合可以追溯到古代文明,如毕达哥拉斯学派 用诗歌来表达数学理念。在现代,也有许多诗人运用数学概 念和原理,如分形、无限等,来创作出富有哲理和美感的诗 歌。
近现代数学文化题解析
总结词
考察近现代数学的重要分支和应用
详细描述
近现代数学文化题主要涉及19世纪和20世纪的数学发展 ,如微积分、线性代数、概率论和统计学等分支的进展 。这些题目要求考生了解近现代数学的基本概念、定理 和思想,并能够运用这些知识解决实际问题。同时,这 些题目还要求考生了解数学与其他学科的交叉融合,如 数学与物理、经济和计算机科学等领域的联系。
高考数学文化题汇 总
contents
目录
• 数学历史与文化 • 数学与文学艺术 • 数学与社会生活 • 高考数学文化题解析
01
CATALOGUE
数学历史与文化
古代数学的发展
01
02
03
古埃及数学
古埃及人发展了数学符号 系统,用于解决日常生活 和建筑、农业等方面的问 题。
高考数学文化题集锦含答案.docx

历年高考数学文化题集锦一. 数学名著中的立几题,例如:2015年全国1卷文6理6题6、《九章算术》是我国古代内容极为丰富的数学名著,书屮有如下问题:“今有委米依垣内角,下周八尺,高五尺,问''积及为米几何?”其意思为广在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?"已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()(A) 14斛(B) 22 斛(C) 36斛(D) 66 斛答案:B2012年湖北理科数学第10题10.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术”相当于给出了已知球的体积〃,求其直径〃的一个近似公式d 珂尹.人们还用过一些类似的近似公式.根据71=3.14159…判断,下列近似公式中最精确的一个是A. B. d =何 C・d = J型7—vV 9 V157考点分析:考察球的体积公式以及估算.解析:由卩二彳龙上几削二:胚‘设选项中常数为纟,则好④;力中代入得好空=3.375,3 2 V 7C b a163中代入得K空=3, C中代入得好空卫=3.14,科代入得好空丄3.142857,2 300 21曲于I)中值最接近加勺真实值,故选择D。
二、数学名著中的数列题,例如:2011年湖北卷文9理13题;13.《九章算术》“竹九节”问题:现有1根9节的竹子,自上而下各节的容积成等差数列,上面四节的容积共3升,下面3节的容积共4升,则第5节的容积为【解析】设该数列的杵项为公筮为依题总应该疇(8)右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术"。
执行该程序框图,若输入a,b分别为14,18,则输出的玄= ___________【答幻B晦】師atWTil®中,a, 6的值依次为a = 14. 6 = 18; 6 = 4; a = 10; a = 6; a=2 b = 2・d匕时a = b = 2程牌抹,输岀a的值为2・故选B・数学名著中的统计题,例如:2015年湖北卷文2理2题2. (5分)(2015-湖北)我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为(A. 134 石)B. 169 石C. 338 石D. 1365 石升。
专题 高三数学高考数学文化题汇编含答案

专题数学文化题一、单选题1.《孙子算经》是我国古代的数学名著,书中有如下问题:“今有五等诸侯,共分橘子六十颗,人别加三颗.问:五人各得几何?”其意思为:“有5个人分60个橘子,他们分得的橘子个数成公差为3的等差数列,问5人各得多少橘子.”根据这个问题,有下列3个说法:①得到橘子最多的人所得的橘子个数是15;②得到橘子最少的人所得的橘子个数是6;③得到橘子第三多的人所得的橘子个数是12.其中说法正确的个数是()A.0 B.1 C.2 D.3【答案】C【解析】由题可设这五人的橘子个数分别为:,其和为60,故a=6,由此可知②得到橘子最少的人所得的橘子个数是6;③得到橘子第三多的人所得的橘子个数是12是正确的,故选C 2.《算法统宗》中有一图形称为“方五斜七图”,注曰:方五斜七者此乃言其大略矣,内方五尺外方七尺有奇.实际上,这是一种开平方的近似计算,即用 7 近似表示,当内方的边长为5 时,外方的边长为,略大于7.如图所示,在外方内随机取一点,则此点取自内方的概率为()A.B.C.D.【答案】A【解析】由题意可得,,则外方内随机取一点,则此点取自内方的概率为,故选A.3.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”已知某“堑堵”的三视图如图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的表面积为A.B.2 C.D.【答案】D【解析】根据题意和三视图知几何体是一个放倒的直三棱柱,底面是一个直角三角形,两条直角边分别是、斜边是2,且侧棱与底面垂直,侧棱长是2,几何体的表面积,故选:D.4.陕西省西安市周至县的旅游景点楼观台,号称“天下第一福地”,是我国著名的道教胜迹,古代圣哲老子曾在此著《道德经》五千言.景区内有一处景点建筑,是按古典著作《连山易》中记载的金、木、水、火、土之间相生相克的关系,如图所示,现从五种不同属性的物质中任取两种,则取出的两种物质恰好是相克关系的概率为()A.B.C.D.【答案】B【解析】方法一:从五种不同属性的物质中任取两种,基本事件数量为取出两种物质恰好相克的基本事件数量为则取出两种物质恰好是相克关系的概率为所以选B.方法二:从五种不同属性的物质中任取两种,基本事件有“火土,火金,火水,火木,土金,土水,土木,金水,金木,水木”,共10种,其中“取出两种物质恰好相克”的基本事件是“火土,土金,土木,金水,水木”,共5种,则取出两种物质恰好是相克关系的概率为51102,选B.5.中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为,三角形的面积可由公式求得,其中为三角形周长的一半,这个公式也被称为海伦-秦九韶公式,现有一个三角形的边长满足,则此三角形面积的最大值为( ) A.B.C.D.【答案】C【解析】由题意,p=10,S8,∴此三角形面积的最大值为8.故选:C.6.《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,“九儿问甲歌” 就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.在这个问题中,记这位公公的第个儿子的年龄为,则( )A.23 B.32 C.35 D.38【答案】C【解析】由题意可得儿子的岁数成等差数列,设公差为,其中公差,,即,解得,故选C.7.我国古代数学名著《九章算术》中有如下问题:“今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺.问积几何”,羡除是一个五面体,其中三个面是梯形,另两个面是三角形,已知一个羡除的三视图如图粗线所示,其中小正方形网格的边长为1,则该羡除的表面中,三个梯形的面积之和为()A.40 B.43 C.46 D.47【答案】C【解析】由三视图可知,该几何体的直现图如图五面体,其中平面平面,,底面梯形是等腰梯形,高为3 ,梯形的高为4 ,等腰梯形的高为,三个梯形的面积之和为,故选C.8.九章算术给出求羡除体积的“术”是:“并三广,以深乘之,又以袤乘之,六而一”,其中的“广”指羡除的三条平行侧棱的长,“深”指一条侧棱到另两条侧棱所在平面的距离,“袤”指这两条侧棱所在平行线之间的距离,用现代语言描述:在羡除中,,,,,两条平行线与间的距离为h,直线到平面的距离为,则该羡除的体积为已知某羡除的三视图如图所示,则该羡除的体积为A.B.C.D.【答案】B【解析】由三视图还原原几何体知,羡除中,,底面ABCD是矩形,,,平面平面ABCD,AB,CD间的距离,如图,取AD中点G,连接EG,则平面ABCD,由侧视图知,直线EF到平面ABCD的距离为,该羡除的体积为.故选:B.9.《周髀算经》中一个问题:从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列,若冬至、立春、春分的日影子长的和是尺,芒种的日影子长为尺,则冬至的日影子长为:()A.尺B.尺C.尺D.尺【答案】A【解析】从冬至起,日影长依次记为,根据题意,有,根据等差数列的性质,有,而,设其公差为,则有,解得,所以冬至的日影子长为尺,故选A.10.我国古代名著《张丘建算经》中记载:“今有方锥下广二丈,高三丈,欲斩末为方亭,令上方六尺,问亭方几何?”大致意思是:有一个正四棱锥下底边长为二丈,高三丈,现从上面截去一段,使之成为正四棱台状方亭,且正四棱台的上底边长为六尺,则该正四棱台的体积是()(注:1丈=10尺)A.1946立方尺B.3892立方尺C.7784立方尺D.11676立方尺【答案】B【解析】由题意可知正四棱锥的高为30.所截得正四棱台的下底面棱长为20,上底面棱长为6,设棱台的高为,由可得,解得,可得正四棱台体积为,故选B.11.《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边分别为5步和12步,问其内切圆的直径为多少步?”现若向此三角形内随意投一粒豆子,则豆子落在其内切圆外的概率是()A.B.C.D.【答案】C【解析】直角三角形的斜边长为,设内切圆的半径为,则,解得,内切圆的面积为,豆子落在其内切圆外部的概率是,故选C.12.“勾股定理”在西方被称为“毕达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角,现在向该正方形区域内随机地投掷一枚飞镖,飞镖落在小正方形内的概率是()A.B.C.D.【答案】C【解析】观察这个图可知:大正方形的边长为2,总面积为4,而阴影区域的边长为1,面积为4﹣2故飞镖落在阴影区域的概率为1.故选:C.13.中国古代数学著作《算法统宗》巾有这样一个问题:“三百七十八里关,初行健步不为难日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”其大意为:“有人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”问此人第4天和第5天共走了A.60里B.48里C.36里D.24里【答案】D【解析】设每天行走的里程数为,则是公比为的等比数列,所以,故(里),所以(里),选C.14.我们把叫“费马数”(费马是十七世纪法国数学家).设,,,,表示数列的前项之和,则使不等式成立的最小正整数的值是()A.B.C.D.【答案】B【解析】∵∴,∴,而∴,,即,当n=8时,左边=,右边=,显然不适合;当n=9时,左边=,右边=,显然适合,故最小正整数的值9故选:B15.我国古代《九章算术》将上、下两面为平行矩形的六面体称为刍童.右图是一个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和4,高为2,则该刍童的表面积为A. B.40 C. D.【答案】D【解析】由三视图可知,该刍童的直观图是如图所示的六面体,图中正方体棱长为,分别是所在正方体棱的四等分点,其表面由两个全等的矩形,与四个全等的等腰梯形组成,矩形面积为,梯形的上下底分别为,梯形的高为,梯形面积为,所以该刍童的表面积为,故选D.二、填空题16.我国古代数学算经十书之一的《九章算术》有一衰分问题:今有北乡八千一百人,西乡九千人,南乡五千四百人,凡三乡,发役五百,意思是用分层抽样的方法从这三个乡中抽出500人服役,则北乡比南乡多抽__________人.【答案】60【解析】由题意可得,三乡共有人,从中抽取500人,因此抽样比为,所以北乡共抽取人;南乡共抽取人,所以北乡比南乡多抽人.故答案为17.对于直角三角形的研究,中国早在商朝时期商高就提出了“勾三股四玄五”勾股定理的特例,而西方直到公元前6世纪,古希腊的毕达哥拉斯才提出并证明了勾股定理如果一个直角三角形的斜边长等于5,那么这个直角三角形面积的最大值等于______.【答案】【解析】设直角三角形的斜边为c,直角边分别为a,b,由题意知,则,则三角形的面积,,,则三角形的面积,当且仅当a=b=取等即这个直角三角形面积的最大值等于,故答案为:.18.在我国古代数学名著《九章算术》中,把两底面为直角三角形的直棱柱称为“堑堵”.已知三棱柱是一个“堑堵”,其中,点是的中点,则四棱锥的外接球的表面积为__________.【答案】【解析】由题意得四边形为正方形,设其中心为,取中点则,即为四棱锥的外接球球心,球半径为,球表面积为.19.我国南北朝时期的数学家张丘建是世界数学史上解决不定方程的第一人,他在张丘建算经中给出一个解不定方程的百鸡问题,问题如下:鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一百钱买百鸡,问鸡翁母雏各几何?用代数方法表述为:设鸡翁、鸡母、鸡雏的数量分别为x,y,z,则鸡翁、鸡母、鸡雏的数量即为方程组的解其解题过程可用框图表示如图所示,则框图中正整数m的值为______.【答案】4【解析】由得:y=25﹣x,故x必为4的倍数,当x=4t时,y=25﹣7t,由y=25﹣7t>0得:t的最大值为3,故判断框应填入的是t<4?,即m=4,故答案为:420.中国传统文化中很多内容体现了数学的对称美,如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的形式美、和谐美,给出定义:能够将圆O的周长和面积同时平分的函数称为这个圆的“优美函数”,给出下列命题:①对于任意一个圆O,其“优美函数”有无数个;②函数f(x)=ln()可以是某个圆的“优美函数”;③函数y=1+sin x可以同时是无数个圆的“优美函数”;④函数y=2x+1可以同时是无数个圆的“优美函数”;⑤函数y=f(x)是“优美函数”的充要条件为函数y=f(x)的图象是中心对称图形.其中正确的命题是_____.【答案】①③④【解析】①对于任意一个圆,其过圆心的对称轴由无数条,所以其“优美函数”有无数个,故①正确;②函数的定义域为,在上单调递减,在上单调递增且图象为曲线,故不可以是某个圆的“优美函数”,故②不正确;③当圆经过函数的对称中心时,根据的图象可知可以将圆分成优美函数,图象可以延伸,所以可以同时是无数个圆的“优美函数”;④函数只要过圆心,即可以同时是无数个圆的“优美函数”;⑤函数是“优美函数”的充要条件为函数的图象是中心对称图形,不对,有些中心对称图形不一定是“优美函数”,比如“双曲线”;故答案为①③④.。
新高考题型:数学文化(精选100题)-数学附答案

“ 4 − 78 ”,1周角等于 6000 密位,记作1周角= 60 − 00 ,1直角= 15 − 00 .如果一个
半径为 2 的扇形,它的面积为 7 π ,则其圆心角用密位制表示为( ) 6
A.12 − 50
B.17 − 50
C. 21− 00
D. 35 − 00
2.天干地支纪年法源于中国,中国自古便有十天干与十二地支,十天干即甲、乙、
10
5
15
过剩近似值,即 27 < e < 41 ,若每次都取最简分数,那么第二次用“调日法”后可得 e 10 15
的近似分数为( )
68
A.
25
41
B.
15
27
C.
10
14
D.
5
6.如图,洛书(古称龟书),是阴阳五行术数之源.在古代传说中有神龟出于洛水,其 甲壳上有此图像,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五 方白圈皆阳数,四角黑点为阴数.若从四个阴数和五个阳数中随机选取 3 个数,则选取 的 3 个数之和为奇数的方法数为( )
半球时取正值,直射南半球时取负值).设第 x 天时太阳直射点的纬度值为 y, 该科研小 组通过对数据的整理和分析.得到 y 与 x 近似满足 y = 23.4392911sin0.01720279x .则
每 400 年中,要使这 400 年与 400 个回归年所含的天数最为接近.应设定闰年的个数为
(精确到1)( )
A.30
B.40
C.44
D.70
7.《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子
在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017全国各地高三最新数学文化题1.我国古代着名的思想家庄子在《庄子·天下篇》中说:“一尺之棰,日取其半,万世不竭.”用现代语言叙述为:一尺长的木棒,每日取其一半,永远也取不完. 这样,每日剩下的部分都是前一日的一半. 如果把“一尺之棰”看成单位“1”,那么剩下的部分所成的数列的通项公式为( ) A.12n a n = B. 12n a n = C. 12nn a ⎛⎫= ⎪⎝⎭ D. 2n n a = 解:C .2.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式为:弧田面积=1/2(弦⨯矢+矢2).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为32π,弦长等于4米的弧田.按照上述方法计算出弧田的面积约为( ) A. 6平方米 B. 9平方米 C. 12平方米 D. 15平方米 3.,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,胜的概率为( )A .13 B .14 C .15 D .16解:A .4.中国古代数学着作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”则该人最后一天走的路程为( )A .24里B .12里C .6里D .3里解:C .5.《张丘建算经》卷上第22题为“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多织相同量的布,第1天织了5尺布,现在一月(按30天计算)共织390尺布,记该女子一月中的第n 天所织布的尺数为a n ,则a 14+a 15+a 16+a 17的值为( ) A .55 B .52 C .39 D .26解:B .6.吴敬《九章算法比类大全》中描述:远望巍巍塔七层,红灯向下成培增,共灯三百八十一,请问塔顶几盏灯?( )A .5B .4C .3D .2解:C .7.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹进行一场比赛,则田忌马获胜的概率为( )A .13B .14C .15D .16解:A . 8.公元263年左右,我国数学家刘徽发现,当圆内接多边形的边数无限增加时,多边形面积可无限逼近圆的面积,由此创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是着名的徽率.如图是利用刘徽的割圆术设计的程序框图,则输出的n 值为 (参考数据:3 1.732=,sin150.2588︒≈,sin7.50.1305︒≈)A .12B .24C .48D .96解:B .9.远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.下图所示的是一位母亲记录的孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满七进一,根据图示可知,孩子已经出生的天数是( )A .336B .510C .1326D .3603解:B .10.中国古代数学名着《九章算术》中记载了公元前344年商鞅督造一种标准量器———商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(立方寸),则图中的x 为( )A .1.2B .1.6C .1.8D .2.4解:B .11.欧拉公式e ix =cosx +isinx (i 为虚数单位)是由瑞士着名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,2i e 表示的复数在复平面中位于( )A .第一象限 B .第二象限 C .第三象限 D .第四象限解:B .12.《九章算术》是我国古代的数学巨着,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈。
问积几何?”意思为:“今有底面为矩形的屋脊形状的多面体(如下右图)”,下底面宽3=AD 丈,长4=AB 丈,上棱2=EF 丈,平面EF ABCD P .EF 与平面ABCD 的距离为1丈,问它的体积是 ( )A .4立方丈B .5立方丈C .6立方丈D .8立方丈解:B .13.若正整数N 除以正整数m 后的余数为n ,则记为(mod )N n m ≡,例如102(mod 4)≡.下面程序框图的算法源于我国古代闻名中外的《中国剩余定理》.执行该程序框图,则输出的i 等于( )A . 4B .8 C. 16 D .32解:C .14.《九章算术》中的“两鼠穿墙题”是我国数学的古典名题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺.大鼠日自倍,小鼠日自半.问何日相逢,各穿几何题意是:有两只老鼠从墙的两边打洞穿墙.大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半”如果墙足够厚,n S 为前n 天两只老鼠打洞长度之和,则5S =( )A. 153116 B. 153216 C. 153316D. 1262解:B .15.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式2136V L h ≈,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么近似公式2275V L h ≈,相当于将圆锥体积公式中的π近似取为( ) A .227 B .258 C .15750 D .355113解:B .16.中国有个名句“运筹帷幄之中,决胜千里之外.”其中的“筹”愿意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如图,表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推.例如6613用算筹表示就是,则9117用算筹可表示为( ) A. B .C. D .解:A .17.《九章算术》中,将底面是直角形的直三棱柱称之为“堑堵” ,已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,则该 “堑堵”的侧面积为( ) A. 2 B. 224+ C. 244+ D. 246+解:C .18 “勾股定理”在西方被称为“华达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用形数结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角6πα=,现在向该正方形区域内随机地投掷一枚飞镖,飞镖落在小正方形内的概率是( )A.312- B. 32 C. 434- D.34解:A .19.我国古代数学着作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现在有一根金箠,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤,问依次每一尺各重多少斤?”根据上题的已知条件,若金箠由粗到细是均匀变化的,中间3尺的重量为( )A .6斤B .9斤C .10斤D .12斤解:B .20.A .2nB .()21n - C .()1n n - D .()1n n + 解:C .21.南北朝时期的数学古籍《张邱建算经》有如下一道题:“今有十等人,每等一人,宫赐金以等次差(即等差)降之,上三人,得金四斤,持出:下四人后入得三斤,持出:中间三人未到者,亦依等次更给,问:每等人比下等人多得几斤?”( )A .439B .778C .776D .581解:B .22.《九章算术》是我国古代的数学名着,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( )A .45 钱B .34钱C .23钱D .35钱 解:B .23.“珠算之父”程大位是我国明代伟大数学家,他的应用数学巨着《算法统综》的问世,标志着我国的算法由筹算到珠算转变的完成.程大位在《算法统综》中常以诗歌的形式呈现数学问题,其中有一首“竹筒容米”问题:“家有九节竹一茎,为因盛米不均平,下头三节三升九,上梢四节贮三升,唯有中间两节竹,要将米数次第盛,若有先生能算法,也教算得到天明.”([注释]三升九:3.9升.次第盛:盛米容积依次相差同一数量.)用你所学的数学知识求得中间两节的容积为( )A.1.9解:要按依次盛米容积相差同一数量的方式盛米,设相差的同一数量为d 升,下端第一节盛米1a 升,由题意得319511323 3.929854(9)(5)322S a d S S a d a d ⨯⎧=+=⎪⎪⎨⨯⨯⎪-=+-+=⎪⎩,解得1 1.4,0.1a d ==-,所以中间两节盛米的容积为:45111(3)(4)27 2.80.7 2.1a a a d a d a d +=+++=+=-=(升),故选B.24.《九章算术》是我国数学史上堪与欧几里得《几何原本》相媲美的数学名着.其第五卷《商功》中有如下问题:“今有圆堡,周四丈八尺,高一丈一尺,问积几何?”这里所说的圆堡就是圆柱体,其底面周长是4丈8尺,高1丈1尺,问它的体积是多少若π取3,估算该圆堡的体积为(1丈=10尺)( )A .1998立方尺B .2012立方尺 C.2112立方尺 D .2324立方尺解:C .25.《九章九术》是我国古代数学名着,它在几何学中的研究比西方早一千多年.例如堑堵指底面为直角三角形,且侧棱垂直于底面的三棱柱;阳马指底面为矩形,一侧棱垂直于底面的四棱锥.如图,在堑堵111ABC A B C -中,AC BC ⊥,若12A A AB ==,当阳马11B A ACC -体积最大时,则堑堵111ABC A B C -的体积为( )A .83B 2 C.2 D .22解:C26.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论。