14图的基本概念

合集下载

图论期末考试整理复习资料

图论期末考试整理复习资料

目录第一章图的基本概念 (1)二路和连通性 (3)第二章树 (3)第三章图的连通度 (4)第四章欧拉图与哈密尔顿图 (5)一,欧拉图 (5)二.哈密尔顿图 (6)第五章匹配与因子分解 (9)一.匹配 (9)二.偶图的覆盖于匹配 (10)三.因子分解 (11)第六章平面图 (14)二.对偶图 (16)三.平面图的判定 (17)四.平面性算法 (20)第七章图的着色 (24)一.边着色 (24)二.顶点着色 (25)第九章有向图 (30)二有向树 (30)第一章图的基本概念1.点集与边集均为有限集合的图称为有限图。

2.只有一个顶点而无边的图称为平凡图。

3.边集为空的图称为空图。

4.既没有环也没有重边的图称为简单图。

5.其他所有的图都称为复合图。

6.具有二分类(X, Y)的偶图(或二部图):是指该图的点集可以分解为两个(非空)子集X 和Y ,使得每条边的一个端点在X 中,另一个端点在Y 中。

7.完全偶图:是指具有二分类(X, Y)的简单偶图,其中X的每个顶点与Y 的每个顶点相连,若|X|=m,|Y|=n,则这样的偶图记为Km,n8. 定理1 若n 阶图G 是自补的(即),则n = 0, 1(mod 4)9. 图G 的顶点的最小度。

10. 图G 的顶点的最大度。

11. k-正则图: 每个点的度均为 k 的简单图。

例如,完全图和完全偶图Kn,n 均是正则图。

12. 推论1 任意图中,奇点的个数为偶数。

13.14. 频序列:定理4 一个简单图G 的n 个点的度数不能互不相同。

15. 定理5 一个n 阶图G 相和它的补图有相同的频序列。

16.17.18. 对称差:G1△G2 = (G1∪G2) - (G1∩G2) = (G1-G2)∪(G2-G1)19. 定义: 联图 在不相交的G1和G2的并图G1+G2中,把G1的每个顶点和G2的每个顶点连接起来所得到的图称为G1和G2的联图,记为G1∨G220. 积图:积图 设G1= (V1, E1),G2 = (V2, E2),对点集V = V1×V2中的任意两个点u =(u1,u2)和v = (v1,v2),当(u1 = v1和 u2 adj v2) 或 (u2 = v2 和 u1 adj v1) 时就把 u 和 v 连接起来所得到的图G 称为G1和G2积图。

图论第一章课后习题解答

图论第一章课后习题解答

bi 个 (i = 1,2,…,s),则有 列。 定理 7
bi = n。故非整数组(b ,b ,…, b )是 n 的一个划分,称为 G 的频序
1 2 s
s
i 1
一个 n 阶图 G 和它的补图 G 有相同的频序列。
§1.2 子图与图的运算
且 H 中边的重数不超过 G 中对应边的 定义 1 如果 V H V G ,E H E G , 重数,则称 H 是 G 的子图,记为 H G 。有时又称 G 是 H 的母图。 当 H G ,但 H G 时,则记为 H G ,且称 H 为 G 的真子图。G 的生成子图是 指满足 V(H) = V(G)的子图 H。 假设 V 是 V 的一个非空子集。以 V 为顶点集,以两端点均在 V 中的边的全体为边集 所组成的子图,称为 G 的由 V 导出的子图,记为 G[ V ];简称为 G 的导出子图,导出子图 G[V\ V ]记为 G V ; 它是 G 中删除 V 中的顶点以及与这些顶点相关联的边所得到的子图。 若 V = {v}, 则把 G-{v}简记为 G–v。 假设 E 是 E 的非空子集。以 E 为边集,以 E 中边的端点全体为顶点集所组成的子图 称为 G 的由 E 导出的子图,记为 G E ;简称为 G 的边导出子图,边集为 E \ E 的 G 的 导出子图简记为 G E 。若 E e ,则用 G–e 来代替 G-{e}。 定理 8 简单图 G 中所有不同的生成子图(包括 G 和空图)的个数是 2m 个。 定义 2 设 G1,G2 是 G 的子图。若 G1 和 G2 无公共顶点,则称它们是不相交的;若 G1 和 G2 无公共边,则称它们是边不重的。G1 和 G2 的并图 G1∪G2 是指 G 的一个子图,其顶点 集为 V(G1)∪V(G2),其边集为 E(G1)∪E(G2);如果 G1 和 G2 是不相交的,有时就记其并图为 G1+G2。类似地可定义 G1 和 G2 的交图 G1∩G2,但此时 G1 和 G2 至少要有一个公共顶点。

图论基础知识

图论基础知识

图论基本知识对于网络的研究,最早是从数学家开始的,其基本的理论就是图论,它也是目前组合数学领域最活跃的分支。

我们在复杂网络的研究中将要遇到的各种类型的网络,无向的、有向的、加权的……这些都可以用图论的语言和符号精确简洁地描述。

图论不仅为物理学家提供了描述网络的语言和研究的平台,而且其结论和技巧已经被广泛地移植到复杂网络的研究中。

图论,尤其是随机图论已经与统计物理并驾齐驱地成为研究复杂网络的两大解析方法之一。

考虑到物理学家对于图论这一领域比较陌生,我在此专辟一章介绍图论的基本知识,同时将在后面的章节中不加说明地使用本章定义过的符号。

进一步研究所需要的更深入的图论知识,请参考相关文献[1-5]。

本章只给出非平凡的定理的证明,过于简单直观的定理的证明将留给读者。

个别定理涉及到非常深入的数学知识和繁复的证明,我们将列出相关参考文献并略去证明过程。

对于图论知识比较熟悉的读者可以直接跳过此章,不影响整体阅读。

图的基本概念图G 是指两个集合(V ,E),其中集合E 是集合V×V 的一个子集。

集合V 称为图的顶点集,往往被用来代表实际系统中的个体,集合E 被称为图的边集,多用于表示实际系统中个体之间的关系或相互作用。

若{,}x y E ,就称图G 中有一条从x 到y 的弧(有向边),记为x→y ,其中顶点x 叫做弧的起点,顶点y 叫做弧的终点。

根据定义,从任意顶点x 到y 至多只有一条弧,这是因为如果两个顶点有多种需要区分的关系或相互作用,我们总是乐意在多个图中分别表示,从而不至于因为这种复杂的关系而给解析分析带来困难。

如果再假设图G 中不含自己到自己的弧,我们就称图G 为简单图,或者更精确地叫做有向简单图。

以后如果没有特殊的说明,所有出现的图都是简单图。

记G 中顶点数为()||G V ν=,边数为()||G E ε=,分别叫做图G 的阶和规模,显然有()()(()1)G G G ενν≤-。

图2.1a 给出了一个计算机分级网络的示意图,及其表示为顶点集和边集的形式。

几何中的立体图形基本概念

几何中的立体图形基本概念

几何中的立体图形基本概念一、立体图形的定义与分类1.定义:立体图形是三维空间中的图形,具有长度、宽度和高度。

a)立体几何图形的分类:锥体、柱体、球体、平面立体图形等。

b)根据表面特征分类:直纹立体图形、曲面立体图形等。

二、常见立体图形的基本性质与特征a)定义:底面为平面,顶点在底面上的图形。

i)圆锥:底面为圆,侧面为曲面。

ii)棱锥:底面为多边形,侧面为三角形。

iii)所有锥体的侧面积相等。

iv)锥体的体积与底面半径和高度有关。

b)定义:底面为平行四边形的立体图形。

c)分类:棱柱、圆柱等。

i)柱体的底面积相等。

ii)柱体的体积与底面积和高度有关。

d)定义:所有点与中心点距离相等的立体图形。

πR³。

i)球体的表面积和体积公式为:S=4πR²,V=43ii)球体的直径等于两倍的半径。

4.平面立体图形:a)定义:由平面图形旋转而成的立体图形。

b)分类:圆柱、圆锥、棱柱等。

c)性质:平面立体图形的表面积和体积与平面图形的性质有关。

三、立体图形的计算方法a)圆锥体积公式:V=1πR²h。

3b)棱锥体积公式:V=13Bh ,其中B 为底面积。

c)棱柱体积公式:V=Bh ,其中B 为底面积。

d)圆柱体积公式:V=πR²h 。

e)体积公式:V=43πR³。

f) 表面积公式:S=4πR²。

四、立体图形的实际应用a)应用:漏斗、沙堆等。

b)应用:柱子、烟囱等。

c)应用:球体、地球等。

4. 平面立体图形:a) 应用:各种容器、家具等。

通过以上知识点的学习,学生可以对几何中的立体图形有更深入的了解,并能够运用所学知识解决实际问题。

习题及方法:1.习题:计算一个底面半径为3cm ,高为4cm 的圆锥体的体积。

答案:V=13πR²h=13π×3²×4=12πcm³解题思路:根据圆锥体的体积公式V=13πR²h ,将给定的数值代入公式计算。

图的代数表示及其特征

图的代数表示及其特征

图 的 基 本 概 念
无向 v1 e1 e2 v2
0 2 A 1 0
e6

有向图 v1
e5
v3
e3 v4
1 1 1 0 0 1 0 0
e4
2 0 1 1
v2
0 2 A 1 0 2 0 1 1 1 1 2 0
v4
0 1 0 0
图 的 基 本 概 念
无向 v1 e1 e2 v2
5 1 A2 3 2
e6

有向图 v1
e5
v3
e3 v4
3 3 3 1 2 0 1 1
e4
1 6 3 0
v2
5 1 A2 4 2 1 6 4 0 4 4 6
图 的 基 本 概 念
推广的邻接矩阵(复合图) 无环图
v1
e2 v2 e5
e1 e3 e4
v3 v4
0 2 A 1 0
2 0 1 1
1 1 0 0
0 1 0 0
每一行、 列之和 为该顶 点的度
对称矩阵
图 的 基 本 概 念
An 中元素的含义 边数为n的途径数 v1 e1 5 1 2 2 v3 1 6 2 0 e5 e3 e2 A2 v2
对称矩阵每一行列之和不一定念念邻接矩阵的进一步推广有向图每一行之和为该顶点每一列之和为该顶点的念念推论
图 的 基 本 概 念
§1.5 图的代数表示及其特征 邻接矩阵 简单图 v1 e1 e2 v2 e3 e4 v4 点与点的关系
0 1 A 1 0 1 0 1 1 1 1 0 0 0 1 0 0
图 的 基 本 概 念
推广的邻接矩阵(复合图)续。。。 有环图

第14章-图基本概念

第14章-图基本概念
环(长为1的圈)的长度为1,两条平行边构成的圈长度为 2,无向简单图中,圈长3,有向简单图中圈的长度2.
不同的圈(以长度3的为例) ① 定义意义下 无向图:图中长度为l(l3)的圈,定义意义下为2l个 有向图:图中长度为l(l3)的圈,定义意义下为l个 ② 同构意义下:长度相同的圈均为1个
试讨论l=3和l=4的情况
v 的关联集 I( v ) { e |e E ( G ) e 与 v 关 } 联 ② vV(D) (D为有向图)
v的后继D 元 (v)集 {u|uV(D)v,u E(D)uv} v的先驱D 元 (v)集 {u|uV(D)u,v E(D)uv} v的邻域ND(v)D (v)D (v) v的闭邻N域 D(v)ND(v){v}
2 m d (v) d (v) d (v)
v V
v V 1
v V 2
由于2m, d(v) 均为偶数,所以 d(v) 为偶数,但因为V1中
vV2
vV1
顶点度数为奇数,所以|V1|必为偶数.
12
握手定理应用
补例1 无向图G有16条边,3个4度顶点,4个3度顶点,其 余顶点度数均小于3,问G的阶数n为几? 解 本题的关键是应用握手定理. 设除3度与4度顶点外,还有x个顶点v1, v2, …, vx, 则
8
多重图与简单图
定义14.3 (1) 无向图中的平行边及重数:如果关联一对顶点的无向边多
于1条,则称这些边为平行边,平行边的条数称为重数。 (2) 有向图中的平行边及重数(注意方向性) 如果关联一对顶点的有向边多于1条,并且这些边的始点与
终点相同,则称这些边为平行边,平行边的条数称为重数。 (3) 多重图:含平行边的图称为多重图。 (4) 简单图:既不含平行边也不含有环的图。 在定义14.3中定义的简单图是极其重要的概念

图论讲义第1章-图的概念

图论讲义第1章-图的概念

图论与网络流理论(Graph Theory and Network Flow Theory)高随祥中科院研究生院专业基础课学时/学分:60/3本课程适合基础数学、应用数学、计算数学、运筹学与控制论、概率论与数理统计各专业的硕士学位研究生作为专业基础课,也可供物理学、化学、天文学、地学、生物科学、计算机科学与技术、计算机软件、管理科学与工程以及通信、信号等学科专业的硕士研究生选修。

主要讲授图论与网络流理论的基本概念、方法和定理,介绍该领域重要的问题以及典型的算法,展示图论与网络流模型及方法的广泛应用。

为学习者将来从事有关方面的理论研究打下基础,也为进行应用性研究提供一种有力的工具。

内容提要第一章 图的基本概念图的基本概念;二部图及其性质;图的同构;关联矩阵与邻接矩阵。

路、圈与连通图;最短路问题。

树及其基本性质;生成树;最小生成树。

第二章 图的连通性割点、割边和块;边连通与点连通;连通度;Whitney定理;可靠通信网络的设计。

第三章 匹配问题匹配与最大匹配;完美匹配;二部图的最大匹配;指派问题与最大权匹配。

第四章 欧拉图与哈密尔顿图欧拉图;中国邮递员问题;哈密尔顿图;旅行商问题。

第五章 支配集、独立集、覆盖集与团支配集、点独立集、点覆盖集、边覆盖集与团的概念及其求法。

第六章图的着色问题点着色;边着色;平面图;四色猜想;色多项式;色数的应用。

第七章网络流理论有向图;网络与网络流的基本概念;最大流最小割定理;求最大流的标号算法;最小费用流问题;最小费用最大流;网络流理论的应用。

主要参考书[1] J.A. Bondy and U.S. Murty, Graph theory with applications, 1976, 有中译本(吴望名等译)。

[2] B.Bollobas, Modern graph theory (现代图论),科学出版社,2001。

[3] 蒋长浩,图论与网络流,中国林业出版社,2001。

离散数学平面图

离散数学平面图
则满足欧拉公式 v – e + r = 2 即:6-9+r=2,解得r=5
又因为任取K3,3中三个结点,至少有两个点不邻接, 所以不能组成一个面,即K3,3中任何 一个面至少由四条边围成,即:所有面 的次数之和deg(r) >=4r=20 又由定理1知:deg(r)=2|E|=18 即18>=20矛盾不。论怎所么以画,K总3,有3不交是叉点平面图。
❖ 平面图基本性质
设G是一个有v个结点e条边的连通简单平面图,若v3, 则:e<=3v-6。等价于: 若不满足e<=3v-6,则G不是连通平面图。
例题:证明k5图不是平面图。
K5图中,v=5,e=10,10 3*v-6=35-6=9
但定理的条件只是必要条件。
如K3,3中v= 6,e =9, e<3v-6=12 满足条件,但K3,3不是平面图。
离散数学
❖ 图论
1 图的基本概念 2 路与回路 3 图的矩阵表示 4 欧拉图与汉密尔顿图 5 平面图 6 对偶图与着色 7 树与生成树
❖ 平面图基本概念
定义1:设G=<V,E>是一个无向图,如果能把G的所有结点和
边画在平面上,且使得任何两条边除了端点外没有其他的交点, 就称G是一个平面图。
(1)
G为k条边,再添加一条边,只有下述两种情况:
面数不变 点树加1 边数加1
点数不变 面数加1 边数加1
(Vk+1)-(ek+1)+rk=2成立
(Vk)-(ek+1)+(rk+1)=2成立
通过上述归纳法证明欧拉公式v-e+r=2成立。
❖ 平面图基本性质
例1:证明K3,3不是平面图
证:假设K3,3是平面图,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
称度数为1的顶点为悬挂顶点,与它关联的边称为悬挂边。 度为偶数(奇数)的顶点称为偶度(奇度)顶点。
图的度数举例
d(v1)=4(注意,环提供2度), △=4,δ=1, v4是悬挂顶点,e7是悬挂边。
d+(a)=4,d-(a)=1 (环e1提供出度1,提供入度1), d(a)=4+1=5。△=5,δ=3, △+=4 (在a点达到) δ+=0(在b点达到) △-=3(在b点达到) δ-=1(在a和c点达到)
为n阶零图,记作Nn,特别地,称N1为平凡图。 在图的定义中规定顶点集V为非空集,但在图的运算中可能产
生顶点集为空集的运算结果,为此规定顶点集为空集的图为 空图,并将空图记为。
标定图与非标定图、基图
将图的集合定义转化成图形表示之后,常用ek表示无向边 (vi,vj)(或有向边<vi,vj>),并称顶点或边用字母标定 的图为标定图,否则称为非标定图。
握手定理
定理14.1 设G=<V,E>为任意无向图,V={v1,v2,…,vn},
|E|=m,则
n
d(vi ) 2m
i1
说明 证明
任何无向图中,各顶点度数之和等于边数的两倍。 G中每条边(包括环)均有两个端点, 所以在计算G中各顶点度数之和时, 每条边均提供2度,当然,m条边,共提供2m度。
定理14.2 设D=<V,E>为任意有向图,V={v1,v2,…,vn},
设D=<V,E>为有向图,ek=<vi,vj>∈E, 称vi,vj为ek的端点。 若vi=vj,则称ek为D中的环。
无论在无向图中还是在有向图中,无边关联的顶点均称为孤 立点。
相邻与邻接
设无向图G=<V,E>,vi,vj∈V,ek,el∈E。 若et∈E,使得et=(vi,vj),则称vi与vj是相邻的。 若ek与el至少有一个公共端点,则称ek与el是相邻的。
图的度数的相关概念
在无向图G中, 最大度 △(G)=max{d(v)|v∈V(G)} 最小度 δ(G)=min{d(v)|v∈V(G)}
在有向图D中, 最大出度 △+(D)=max{d+(v)|v∈V(D)} 最小出度 δ+(D)=min{d+(v)|v∈V(D)} 最大入度 △-(D)=max{d-(v)|v∈V(D)} 最小入度 δ-(D)=min{d-(v)|v∈V(D)}
例如:在图14.1中, (a)中e5与e6是平行边, (b)中e2与e3是平行边,但e6与e7不是平行边。 (a)和(b)两个图都不是简单图。
顶点的度数
定义14.4 设G=<V,E>为一无向图,v∈V,称v作为边的端点 次数之和为v的度数,简称为度,记做 dG(v)。 在不发生混淆时,简记为d(v)。 设D=<V,E>为有向图,v∈V, 称v作为边的始点次数之和为v的出度,记做d+D(v),简记作 d+(v)。 称v作为边的终点次数之和为v的入度,记做d -D(v),简记作 d-(v)。 称d+(v)+d-(v)为v的度数,记做d(v)。
设有向图D=<V,E>,vi,vj∈V,ek,el∈E。 若et∈E,使得et=<vi,vj>,则称vi为et的始点,vj为et的终 点,并称vi邻接到vj,vj邻接于vi。 若ek的终点为el的始点,则称ek与el相邻。
邻域
设无向图G=<V,E>,v∈V, 称{u|u∈V∧(u,v)∈E∧u≠v}为v的邻域,记做NG(v)。 称NG(v)∪{v}为v的闭邻域,记做NG(v)。 称{e|e∈E∧e与v相关联}为v的关联集,记做IG(v)。
2md(v) d(v)d(v)
vV
vV1
vV2
由于2m和 d (v) ,所以 d (v) 为偶数,
vV2
vV1
但因V1中顶点度数为奇数, 所以|V1|必为偶数。
设有向图D=<V,E>,v∈V, 称{u|u∈V∧<v,u>∈E∧u≠v}为v的后继元集,记做Г+D(v)。 称{u|u∈V∧<u,v>∈E∧u≠v}为v的先驱元集,记做Г-D(v)。 称Г+D(v)∪Г-D(v)为v的邻域,记做ND(v)。 称ND(v)∪{v}为v的闭邻域,记做ND(v)。
举例
图的一些概念和规定
G表示无向图,但有时用G泛指图(无向的或有向的)。 D只能表示有向图。 V(G),E(G)分别表示G的顶点集和边集。 若|V(G)|=n,则称G为n阶图。 若|V(G)|与|E(G)|均为有限数,则称G为有限图。 若边集E(G)=,则称G为零图,此时,又若G为n阶图,则称G
|E|=m,则
n
n
n
d(vi)2 m ,且d(vi) d(vi) m
i 1
i 1
i 1
握手定理的推论
推论 任何图(无向的或有向的)中,奇度顶点的个数是偶数。
证明 设G=<V,E>为任意一图,令
V1={v|v∈V∧d(v)为奇数} V2={v|v∈V∧d(v)为偶数} 则V1∪V2=V,V1∩V2= ,由握手定理可知
将有向图各有向边均改成无向边后的无向图称为原来图 的基图。
易知标定图与非标定图是可以相互转化的,任何无向图G 的各边均加上箭头就可以得到以G为基图的有向图。
关联与关联次数、环、孤立点
设G=<V,E>为无向图,ek=(vi,vj)∈E, 称vi,vj为ek的端点,ek与vi或ek与vj是彼此相关联的。 若vi≠vj,则称ek与vi或ek与vj的关联次数为1。 若vi=vj,则称ek与vi的关联次数为2,并称ek为环。 任意的vl∈V,若vl≠vi且vl≠vj,则称ek与vl的关联次数为0。
NG(v1) = {v2,v5} NG(v1) = {v1,v2,v5} IG(v1) = {e1,e2,e3}
Г+D(d ) = {c} Г-D(d ) = {a,c} ND(d ) = {a,c} ND(d ) = {a,c,d}
Байду номын сангаас单图与多重图
定义14.3 在无向图中,关联一对顶点的无向边如果多于1条, 则称这些边为平行边,平行边的条数称为重数。 在有向图中,关联一对顶点的有向边如果多于1条,并且这些 边的始点和终点相同(也就是它们的方向相同),则称这些边 为平行边。 含平行边的图称为多重图。 既不含平行边也不含环的图称为简单图。
相关文档
最新文档