开关电源实验指导

合集下载

开关电源实验报告

开关电源实验报告

开关电源实验报告一开关电源原理如下图30W开关电源电路图所示,市电先经过由电容CX1和滤波电感LF1A组成的滤波电路后,再经过型号为KBP210的整流桥BD1和C1组成的整流电路,输出直流电。

直流电又经过由UC3842和2N60等元器件组成的高频逆变电路后,变成高频的交流电,经高频变压器输出为低电压的高频交流电。

高频交流经肖基特二极管SR1060后变为脉动的直流电,最后经滤波电容和滤波电感变为我们想要的直流电输出。

MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。

当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。

(2)输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。

因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。

(3)整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。

若C5容量变小,输出的交流纹波将增大。

1.2功率变换电路(1)MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。

也称为表面场效应器件。

由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。

(2)常见的原理图:(3)工作原理R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。

在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。

开关电源作业指导书

开关电源作业指导书

开关电源规范指导文件编号WI-QD-064版本号A0
编制审核核准页次
生效日期
1.目的
正确使用开关电源,保证测试结果精准、可靠、有效。

2.适用范围
可根据产品测试要求是否满足。

3.职责
实验室人员对设备进行使用,保养。

4.操作方法
4.1把外电路接到稳压电源接线柱上时,注意红“+”、黑“-”极性不要接反;
4.2 将电源打开;调节电压(VOLTAGE)和电流(CURRENT)到所需的电压和电流值:粗调(COARSE)微调(FINE);
4.3 外电路试验时,应在输出电源接线中串接一个电源开关,以便于接通和断开外电路电源。

禁止频繁地关闭和开启直
流稳压稳流电源,否则,直流稳压稳流电源可能导致内部元器件的损坏;
4.4 仪器使用完毕后,应将输出调节旋钮旋到最左端零输出位置,再将电源关闭;
5.5当开机调节无输出时,按红色保护。

开关电源测试指导书

开关电源测试指导书

开关电源测试指导书1. POWER FACTOR & EFFICIENCY TEST / 功率因素和效率测试一、目的:测试S.M.P.S. 的功率因素POWER FACTOR, 效率EFFICIENCY(规格依客户要求设计).二. 使用仪器设备:(1). AC SOURCE / 交流电源;(2). ELECTRONIC LOAD / 电子负载;(3). DIGITAL VOLTAGE METER (DVM) / 数字式电压表;(4). AC POWER METER / 功率表;三. 测试条件:依规格书所提要求。

四、测试方法:(1). 依规格设定测试条件: 输入电压, 频率和输出负载.(2). 从POWER METER 读取Pin and PF 值, 并读取输出电压, 计算Pout.(3). 功率因素=PIN / (Vin*Iin), 效率=Pout / Pin*100%;2. ENERGY EFFICIENCY TEST / 能效测试一、目的:测试S.M.P.S. 能效值是否满足相应的各国能效等级标准要求(规格依各国标准要求定义).二. 使用仪器设备:(1). AC SOURCE / 交流电源;(2). ELECTRONIC LOAD / 电子负载;(3). AC POWER METER / 功率表;三. 测试条件:依规格书所提要求。

四、测试方法:(1).在测试前将产品在在其标称输出负载条件下预热30分钟.(2). 按负载由大到小顺序分别记录115Vac/60Hz与230Vac/50Hz输入时的输入功率(Pin),输入电流(Iin),输出电压(V o), 功率因素(PF),然后计算各条件负载的效率.(3). 在空载时仅需记录输入功率(Pin)与输入电流(Iin).(4).计算115Vac/60Hz与230Vac/50Hz时的四种负载的平均效率,该值为能效的效率值五、标准定义:CEC / 美国EPA / 澳大利亚及新西兰的能效规格值标准(IV等级);(1). IV等级效率的规格是: 1).Po<1W, Average Eff.≥0.5*Po; 2).1≤Po≤51W,Average Eff.≥0.09*Ln(Po)+0.5; 3).Po>51,Average Eff.≥0.85.(2). 输入空载功率的规格是:1).0<Po≤250W, Pin≤0.3W;(3). Po为铭牌标示的额定输出电压与额定输出电流的乘积;(4) .实际测试的平均效率值和输入空载功率值需同时满足规格要求才可符合标准要求.六、计算方法举例:(1).12V/1A的能效效率=(0.09*ln12+0.5 )*100%= (0.09*2.4849+0.5)*100%=72.36%;(2). 输入功率≤0.5W;3. AC I / P CURRENT TEST / 输入电流测试一、目的:测试S.M.P.S. 之输入电流有效值INPUT CURRENT(规格依客户要求设计)..二. 使用仪器设备:(1). AC SOURCE / 交流电源;(2). ELECTRONIC LOAD / 电子负载;(3). AC POWER METER / 功率表;三. 测试条件:依规格书所提要求。

开关电源实验具体内容、方法及步骤

开关电源实验具体内容、方法及步骤

三、 产品定型/交收/例行检验的内容
1 一般性能 1.1 产品外观、结构、工作噪声测试实验 1.2 综合电气性能测试实验 2 产品机械性能实验 2.1 产品振动实验 2.2 产品跌落实验 2.3 产品撞击实验 3 产品环境可靠性实验 第 2 页 共 66 页
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8
ቤተ መጻሕፍቲ ባይዱ
6.3 产品谐波电流实验 Harmonics ............................................. 6.4 产品静电抗扰度实验 ESD ................................................. 6.5 产品浪涌抗扰度实验 Surge ............................................... 6.6 产品电压跌落/短时中断抗扰度实验 DIP/i ................................. 6.6 产品电快速瞬变脉冲群抗扰度实验 EFT/B .................................. 五、产品定型/交收/例行检验规则 ................................................... a 定型检验规则 ................................................................ b 交收检验 .................................................................... C 例行检验 .................................................................... d 产品定型/交收/例行检验抽样表 ................................................ 附录一 元件裕度基准一览表 ........................................................ 附录二 抗电强度试验的试验电压表 .................................................. 附录三 设备的零部件的允许温升表 .................................................. 六.

开关电源测试指导书

开关电源测试指导书

开关电源测试指导书1. POWER FACTOR & EFFICIENCY TEST / 功率因素和效率测试一、目的:测试S.M.P.S. 的功率因素POWER FACTOR, 效率EFFICIENCY(规格依客户要求设计).二. 使用仪器设备:(1). AC SOURCE / 交流电源;(2). ELECTRONIC LOAD / 电子负载;(3). DIGITAL VOLTAGE METER (DVM) / 数字式电压表;(4). AC POWER METER / 功率表;三. 测试条件:依规格书所提要求。

四、测试方法:(1). 依规格设定测试条件: 输入电压, 频率和输出负载.(2). 从POWER METER 读取Pin and PF 值, 并读取输出电压, 计算Pout.(3). 功率因素=PIN / (Vin*Iin), 效率=Pout / Pin*100%;2. ENERGY EFFICIENCY TEST / 能效测试一、目的:测试S.M.P.S. 能效值是否满足相应的各国能效等级标准要求(规格依各国标准要求定义).二. 使用仪器设备:(1). AC SOURCE / 交流电源;(2). ELECTRONIC LOAD / 电子负载;(3). AC POWER METER / 功率表;三. 测试条件:依规格书所提要求。

四、测试方法:(1).在测试前将产品在在其标称输出负载条件下预热30分钟.(2). 按负载由大到小顺序分别记录115Vac/60Hz与230Vac/50Hz输入时的输入功率(Pin),输入电流(Iin),输出电压(V o), 功率因素(PF),然后计算各条件负载的效率.(3). 在空载时仅需记录输入功率(Pin)与输入电流(Iin).(4).计算115Vac/60Hz与230Vac/50Hz时的四种负载的平均效率,该值为能效的效率值五、标准定义:CEC / 美国EPA / 澳大利亚及新西兰的能效规格值标准(IV等级);(1). IV等级效率的规格是: 1).Po<1W, Average Eff.≥0.5*Po; 2).1≤Po≤51W,Average Eff.≥0.09*Ln(Po)+0.5; 3).Po>51,Average Eff.≥0.85.(2). 输入空载功率的规格是:1).0<Po≤250W, Pin≤0.3W;(3). Po为铭牌标示的额定输出电压与额定输出电流的乘积;(4) .实际测试的平均效率值和输入空载功率值需同时满足规格要求才可符合标准要求.六、计算方法举例:(1).12V/1A的能效效率=(0.09*ln12+0.5 )*100%= (0.09*2.4849+0.5)*100%=72.36%;(2). 输入功率≤0.5W;3. AC I / P CURRENT TEST / 输入电流测试一、目的:测试S.M.P.S. 之输入电流有效值INPUT CURRENT(规格依客户要求设计)..二. 使用仪器设备:(1). AC SOURCE / 交流电源;(2). ELECTRONIC LOAD / 电子负载;(3). AC POWER METER / 功率表;三. 测试条件:依规格书所提要求。

开关电源 实验报告

开关电源 实验报告

开关电源实验报告开关电源实验报告引言:开关电源是一种常见的电源供应器件,其工作原理是通过开关管的开关动作,将输入电压转换为高频脉冲信号,再经过滤波和稳压电路得到稳定的输出电压。

本实验旨在通过搭建开关电源电路并进行测试,探究其工作原理和性能特点。

一、实验目的本实验旨在:1. 理解开关电源的工作原理;2. 掌握开关电源电路的搭建方法;3. 测试开关电源的输出电压、效率等性能指标。

二、实验器材与原理1. 实验器材:- 开关电源模块- 电压表- 电流表- 变压器- 电阻、电容等元件2. 实验原理:开关电源的核心是开关管,其工作原理是通过开关管的开关动作,将输入电压转换为高频脉冲信号,再经过滤波和稳压电路得到稳定的输出电压。

开关电源的主要特点是高效率、体积小、重量轻、稳定性好等。

三、实验步骤与结果1. 搭建开关电源电路:根据实验器材提供的原理图,搭建开关电源电路。

连接好输入电源和输出负载后,确保电路连接正确。

2. 测试输出电压:将电压表接在开关电源的输出端,调节输入电压,记录不同输入电压下的输出电压。

根据记录的数据,绘制输入电压与输出电压的关系曲线。

3. 测试效率:将电流表接在开关电源的输入端,记录输入电压和输入电流。

根据输入功率和输出功率的关系,计算开关电源的效率。

通过多次测试,得出不同输入电压下的效率曲线。

4. 分析实验结果:根据实验数据和曲线图,分析开关电源的输出电压与输入电压的关系,以及效率与输入电压的关系。

讨论开关电源的性能特点和应用范围。

四、实验结论通过本实验,我们得出以下结论:1. 开关电源能够将输入电压转换为稳定的输出电压,具有较高的效率和稳定性;2. 开关电源的输出电压与输入电压呈线性关系,可以通过调节输入电压来控制输出电压;3. 开关电源的效率随着输入电压的增加而增加,但过高的输入电压可能导致效率下降。

五、实验总结通过本实验,我们深入了解了开关电源的工作原理和性能特点。

开关电源作为一种常见的电源供应器件,在电子设备中得到广泛应用。

开关电源的设计实验报告

开关电源的设计实验报告

河西学院物理与机电工程学院综合设计实验开关电源的设计实验报告学院:物理与机电工程学院专业:电子信息科学与技术:侯涛日期:2016年4月12日绪论开关电源是近年来应用非常广泛的一种新式电源,它具有体积小、重量轻、耗能低、使用方便等优点,在邮电通信、航空航天、仪器仪表、工业设备、医疗器械、家用电器等领域应用效果显著。

一、开关电源的概念和分类电源是将各种能源转换成为用电设备所需电能的装置,是所有靠电能工作的装置的动力源泉。

1.开关电源的概念电是工业的动力,是人类生活的源泉。

电源是产生电的装置,表示电源特性的参数有功率、电压、电流、频率等;在同一参数要求下,又有重量、体积、效率和可靠性等指标。

我们用的电,一般都需要经过转换才能适合使用的需求,例如交流转换成直流,高电压变成低电压,大功率变换为小功率等。

按照电子理论,所谓AC/DC就是交流转换为直流;AC/AC称为交流转换为交流,即为改变频率;DC/AC称为逆变;DC/DC为直流变交流后再变直流。

为了达到转换的目的,电源变换的方法是多样的。

自20世纪60年代,人们研发出了二极管、三极管半导体器件后,就用半导体器件进行转换。

所以,凡是用半导体功率器件作开关,将一种电源形态转换成另一种形态的电路,叫做开关变换电路。

在转换时,以自动控制稳定输出并有各种保护环节的电路,称为开关电源。

开关电源在转换过程中,用高频变压器隔离称之为离线式开关变换器,常用的AC/DC 变换器就是离线式变换器。

开关电源通常由六大部分组成,如图所示。

第一部分是输入电路,它包含有低通滤波和一次整流环节。

220V交流电直接经低通滤波和桥式整流后得到未稳压的直流电压Vi,此电压送到第二部分进行功率因数校正,其目的是提高功率因数,它的形式是保持输入电流与输入电压同相。

功率因数校正的方法有无源功率因数校正和有源功率因数校正两种。

所谓有源功率因数校正,是指电源在校正过程中常采用三极管和集成电路。

开关电源电路常采用有源功率因数校正。

开关电源检验作业指导书

开关电源检验作业指导书
厂家保证

11
电源适应能力
在电压187-242 V、频率50±1Hz的条件下正常工作
厂家保证

12
电磁兼容性
无线电骚扰限值应符合GB 9254、抗扰度限值应符合GB/T 17618、谐波电流应符合GB 17625.1规定的要求
厂家保证

13
噪声
工作时噪声应低于45dB
厂家保证

14
工作温度
在0-55℃条件下正常工作
7.
7.1.XXX-QR-ZJ004《主要部件检验记录》
厂家保证

15
工作湿度
在20%-90%条件下正常工作
厂家保证

16
可靠性
平均故障间隔时间≥4000h
厂家保证

17
标志
电压输出标识和认证检验标志清晰
目测

18
包装
纸盒塑封包装,无破损
目测

6.
6.1XXX-WI-ZJ012《原材料检验作业指导书》
6.2.XXX-WI-ZJ007《主要部件检验作业指导书》
WI作业指导书
主题:开关电源检验作业指导书
编号
版本/修改状态
B/1
制/修订日期
页数
编制人
审核人
批准人
1.
1.1.规范检验流程,保证产品质量
2.
2.1.本作业指导书适用于开关电源的检验工作
3.
3.1开关电源
4.
4.1.耐压仪、万用表
5.
5.1开关电源检验标准
序号
检验项目
验收标准
验收方法
A
B
C
1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关电源技术实验指导书信息工程学院电气及自动化教研室2009.04.18实验一电流控制型脉宽调制开关稳压电源研究一.实验目的1.掌握电流控制型脉宽调制开关电源的工作原理,特点与构成。

2.熟悉电流控制型脉宽调制芯片UC3842的工作原理与使用方法。

3.掌握开关电源的调试方法与参数测试方法。

二.实验内容1.利用芯片UC3842,连接实验线路,构成一个实用的开关稳压电源电路。

2.芯片UC3842的波形与性能测试(1)开启与关闭阀值电压。

(2)锯齿波,包括周期、占空比、幅值等,并与理论值相比较。

(3)不同负载以及不同交流输入电压时的输出PWM波形,并与正确波形相对比。

(4)反馈电压端(即UC38422号脚)与电源端(即7号脚)波形。

(5)输出PWM脉冲封锁方法测试。

3.开关电源波形测试(1)GTR集电极电流与集-射极电压波形。

(2)变压器原边绕组两端波形。

(3)输出电压V O波形。

4.开关电源性能测试(1)电压调整率(抗电压波动能力)测试。

(2)负载调整率(抗负载波动能力)测试。

(3)缓冲电路性能测试。

三.实验系统组成及工作原理电源装置是电力电子技术应用的一个重要领域。

其中高频开关式直流稳压电源由于具有效率高,体积小和重量轻等突出优点,获得了广泛的应用。

开关电源的控制电路可分为电压控制型和电流控制型。

前者是一个单闭环电压控制系统,后者是一个电压、电流双闭环控制系统,电流控制型较电压控制型有不可比拟的优点。

具体实验原理可参见附录。

具体线路见图5—4。

四.实验设备和仪器1.MCL-08直流斩波及开关电源实验挂箱2.双踪示波器3.万用表五.实验方法电位器RP1和RP3都左旋到底。

合上电源后,用示波器观察“7”与“16”(锯齿波)及“10”与“16”(UC3842电源电压)波形,将RP2顺时针慢慢旋转,直到锯齿波刚产生为止,用万用表测出“10”与“16”之间电压,该电压即为开启阀值电压U T。

U T=3.芯片UC3842的波形与性能测试(1)测试7p-p(2)不同直流输入电压时的输出PWM 波形。

开关电源工作后,用万用表测“1”与“16”端间电压,该电压即为直流输入电压V d ,用示波器观察“12”与“16”及“7”与“16”之间波形,然后将RP1顺时针慢慢旋转,边旋转边观察,并记录输出PWM 波形的变化情况,一直观察到V d 约减小20%时止,同时测量V d 变化前后的“8”与“16”及“10”与“16”(3)不同负载变化时的输出PWM 波形RP3左旋到底,观察波形同上。

RP3顺时针慢慢旋转,边旋转边观察,并记录输出PWM 波形的变化情况,一直观察到该电位器顺时针旋转到底为止,这时候负载增大了约25%,同时测量负载变化前后的“8”与“16”及“10(4)不同直流输入电压时的反馈电压端(8端)与电源端(10端)波形减小直流输入电压V d ,同时观察并记录8与16及10与16间波形,直到V d 约减小20%时止,测试结束后,将RP1左旋到底。

(5)输出PWM 脉冲封锁方法测试a.改变3脚电压封锁输出脉冲,将“14”与“15”断开,“5”与“14”相连,电位器RP4左旋到底,用示波器观察“7”端锯齿波。

将RP4顺时针慢慢旋转,直到锯齿波完全消失时止,测出“5”与“16”间电压,该电压即为3脚的输出脉冲封锁电压。

U 3=b .改变1脚电平封锁输出脉冲“5”与“14”、“6”与“9”断开,“14”与“15”、“5”与“9”相连,RP4右旋到底。

观察波形同上,将RP4逆时针慢慢旋转,直到锯齿波完全消失时止,测出“5”与“16”间电压,该电压即为1脚的输出脉冲封锁电压。

U 1=4.开关电源波形测试将“5”与“9”断开,“6”与“9”相连(1)用示波器观察“15”与“16”及“2”与“16”间波形。

(2)用示波器观察“1”与“2”间波形。

(3)用示波器观察输出电压V O 波形。

5.开关电源性能测试(1)电压调整率(抗电压波动能力)测试调节RP1使V d 减小20%,用万用表测量V d 改变前后的输出电压V O1和V O2,则电压调整率为%100121⨯-O O O V V V 。

(2)负载调整率(抗负载波动能力)测试将RP3左旋到底,用万用表测量输出电压(设为V O1),再将RP3右旋到底(负载增加约25%),测量输出电压(设为V O2),则负载调整率为%10021⨯-O O V V V 。

(3)缓冲电路性能测试在开关S 1合上(C 1+C 7=0.101μF )与断开(C 1=1000P )条件下,观察“2”与“16”间波形变化。

六.实验报告1.列出开启阀值电压值以及3脚与1脚的脉冲封锁电压值。

2.画出UC3842的4脚的锯齿波,并注明周期、幅值,占空比等。

3.画出所测的各点波形。

4.根据实际测量值,计算出电压调整率与负载调整率,并就这两个指标对实验系统这种类型的开关电源所适用的场合作出评价。

5.试分析直流输入电压V d 与负载变化时,开关电源的稳压调节过程。

6.你对实验中一些感兴趣现象的分析。

7.实验收获、体会和意见。

七.思考题1.缓冲电路中的电阻R=2.2k Ω,您能否根据不同缓冲电容所观察的GTR 集-射极波形,分析如何合理地选用缓冲电阻与电容值。

2.有人为了简化电路,不用反馈绕组,而是将电容C 6增大,这时候系统能否稳定工作,为什么?实验二直流斩波电路(Buck—Boost变换器)研究一.实验目的1.掌握Buck—Boost变换器的工作原理、特点与电路组成。

2.熟悉Buck—Boost变换器连续与不连续工作模式的工作波形图。

3.掌握Buck—Boost变换器的调试方法。

二.实验内容1.连接实验线路,构成一个实用的Buck—Boost变换器。

2.调节占空比,测出电感电流i L处于连续与不连续临界状态时的占空比D,并与理论值相比较。

3.将电感L增大一倍,测出i L处于连续与不连续临界状态时的占空比D,并与理论值相比较。

4.测出连续与不连续工作状态时的V be、V ce、V D、V L、i L、i C、i D等波形。

5.测出直流电压增益M=V O/V S与占空比D的函数关系。

6.测试输入、输出滤波环节分别对输入电流i S与输出电流i O影响。

三.实验线路见图5—5。

四.实验设备和仪器1.MCL-08直流斩波及开关电源实验挂箱2.万用表3.双踪示波器五.实验方法1.检查PWM信号发生器与驱动电路工作是否正常连接有关线路,观察信号发生器输出与驱动电路的输出波形是否正常,如有异常现象,则先设法排除故障。

2.电感L=1.6mH,电感电流i L处于连续与不连续临界状态时的占空比D测试将“16”与“18”、“21”与“4”、“22”与“5”、“19”与“6”、“1”与“4”、“9”与“12”D4.L=1.6mH,测出连续工作状态时的V be、V ce、V D、i L、i C、i D等波形调节RP1,使i L处于连续工作状态,用双踪示波器观察上述波形。

5.L=1.6mH,测出不连续工作状态时的V be、V ce、V D、i L、i C、i D等波形调节RP1,使i L处于不连续工作状态,用双踪示波器观察上述波形。

6.L=1.6mH,i L处于连续与不连续临界状态时的占空比D测试将开关S2断开,观察i L波形,调节RP1,使i L处于连续与不连续的临界状态,记录这时候的占空比D 与工作周期T。

7.L=3.2mH,测出连续工作状态时的V be、V ce、V D、i L、i C、i D等波形调节RP1,使i L处于连续工作状态,测试方法同前。

8.L=3.2mH,测出不连续工作状态时的V be、V ce、V D、i L、i C、i D等波形9.测出M=V O/V S与占空比D的函数关系(1)V O。

(2)9.输入滤波器功能测试有与没有输入滤波器时,电源电流(即15~14两端)波形测试。

10.输出滤波器功能测试有与没有输出滤波器时,输出电流纹波测试。

五.实验报告1.分别在L=1.6mH与3.2mH条件下,列出i L连续与不连续临界状态时的占空比D,并与理论值相比较。

理论上i L连续与断续的临界条件为τLC=(1-D)2/2,式中τLC=L/RT为连续与断续临界状态时的临界时间常数,负载电阻R=300Ω,工作周期T按实测数据。

2.画出不同L,连续与断续时的V be、V ce、V D、i L、i C、i D等波形,并与理论上的正确波形相比较。

3.根据不同的L值,按所测的D,V O值计算出M值,列出表格,并画出曲线。

连续工作状态时的直流电压增益表达式为M=D/(1-D),请在同一图上画出该曲线,并在图上注明连续工作与断续工作区间。

4.试对Buck-Boost变换器的优缺点作一评述。

5.试说明输入、输出滤波器在该变换中起何作用?6.实验的收获、体会与改进意见。

六.思考题试分析连续工作状态时,输出电压V O由哪个参数决定?当断续工作状态时,V O又由哪些参数决定?实验三移相控制全桥零电压开关PWM变换器研究一.实验目的1.掌握移相控制全桥零电压开关PWM变换器(简称PS-FB-ZVS-PWM变换器)的组成,工作原理与波形。

2.熟悉移相控制零电压开关(ZVS)专用集成芯片UC3875的工作原理与使用方法。

3.掌握PS-FB-ZVS-PWM变换器的调试方法,主要参数变化对实现ZVS的影响。

二.实验内容1.熟悉实验系统面板布置并连接实验线路,构成一个实用的PS-FB-ZVS-PWM变换器。

2.芯片UC3875的波形与性能测试:(1)谐振频率与锯齿波的周期与幅值。

(2)输出脉冲的相位与死区时间。

(3)管脚2,3(10端),4,5的电压值。

3.变换器波形测试:(1)两个桥臂开关管的驱动波形与其漏源电压波形。

(2)逆变桥输出电压U AB与输出变压器原边电压波形。

(3)输出变压器副边整流后的电压与输出直流电压波形。

(4)输出变压器原边电流波形。

4.电路参数变化对实现零电压开关性能影响的测试:(1)当谐振电感、主电路电压以及负载变化时对实现零电压开关的影响。

(2)当谐振电感、主电路电压以及负载变化时对占空比丢失的影响。

三.实验系统组成及工作原理电力电子技术的发展方向之一是高频化,其实现的途径,其一是发展高频化的开关器件与配套元件;其二是高频电力电子变换器电路拓扑的发展。

后者主要指软开关技术的发展。

应用软开关技术可以大幅度降低开关损耗和开关噪声,可使开关频率获得大幅度提高,从而可使电力变换器具有更高的效率、更高的功率密度、更高的可靠性以及可有效地减小电力变换器所引起的电磁污染和环境污染,为大力发展绿色电力电子产品提供了有效的途径和方法。

正因为软开关技术具有诸多的显著优点,因此该理论从80年代提出后受到了国内外科技界的极大重视,已成为当前电力电子变换器领域的热门研究技术。

相关文档
最新文档