中格栅和细格栅的设计

合集下载

一级水处理设计计算

一级水处理设计计算

第一章 污水的一级处理构筑物设计计算1.1格栅格栅是由一组平行的金属栅条或筛网制成,安装在污水渠道、泵房集水井的进口处或污水处理厂的端部,用以截留较大的悬浮物或漂浮物,如纤维、碎皮、毛发、果皮、蔬菜、塑料制品等,以便减轻后续处理构筑物的处理负荷,并使之正常进行。

被截留的物质称为栅渣。

设计中格栅的选择主要是决定栅条断面、栅条间隙、栅渣清除方式等。

格栅断面有圆形、矩形、正方形、半圆形等。

圆形水力条件好,但刚度差,故一般多采用矩形断面。

格栅按照栅条形式分为直棒式格栅、弧形格栅、辐流式格栅、转筒式格栅、活动格栅等;按照格栅栅条间距分为粗格栅和细格栅(1.5~10mm );按照格栅除渣方式分为人工除渣格栅和机械除渣格栅,目前,污水处理厂大多都采用机械格栅;按照安装方式分为单独设置的格栅和与水泵池合建一处的格栅。

1.1.1格栅的设计城市的排水系统采用分流制排水系统,城市污水主干管由西北方向流入污水处理厂厂区,主干管进水水量为s L Q 63.1504 ,污水进入污水处理厂处的管径为1250mm ,管道水面标高为80.0m 。

本设计中采用矩形断面并设置两道格栅(中格栅一道和细格栅一道),采用机械清渣。

其中,中格栅设在污水泵站前,细格栅设在污水泵站后。

中细两道格栅都设置三组即N=3组,每组的设计流量为0.502s m 3。

1.1.2设计参数1、格栅栅条间隙宽度,应符合下列要求:1) 粗格栅:机械清除时宜为16~25mm ;人工清除时宜为25~40mm 。

特殊情况下,最大间隙可为100mm 。

2) 细格栅:宜为1.5~10mm 。

3) 水泵前,应根据水泵要求确定。

2、 污水过栅流速宜采用0.6~1.Om /s 。

除转鼓式格栅除污机外,机械清除格栅的安装角度宜为60~90°。

人工清除格栅的安装角度宜为30°~60°。

3、当格栅间隙为16~25mm 时,栅渣量取0.10~0.0533310m m 污水;当格栅间隙为30~50mm 时,栅渣量取0.03~0.0133310m m 污水。

格栅

格栅
栅前槽高H1= h +h1 , 栅后槽高 H = H1 + h2
h1一般取0.3m
3. 栅槽总长度
架设格栅的渠道, 栅前和栅后应分别保持0.5m和1.0 m 以上的直线距离. 为了防止栅前渠道内水面出现阻 流回水现象, 架设格栅的渠段宽度由原来的b1放宽到 b, 渠前有扩大段L1, 展开角20度, 渠后有收缩段L2, 一 般取L2=L1/2 。
0.02 2 9.81
= 0.103m
3. 栅槽高度 栅前: H1=h+h2=0.3+0.4=0.7m 栅后: H2=H1+h2=0.7+0.103 ≈ 0.8m
4. 栅槽长度
L1
=
B B1 2tga
=
0.8 0.65 2tg20
?
0.21m
L2 = L1 /2 ? 0.11m
LL=L++12++
到使整个污水处理系统能正常运行,对处理设施或 管道等均不应产生堵塞作用。因此,可设置粗细两 道格栅,栅条间距一般采用16-25mm,最大不超过 40mm。
• 设置栅格的渠道,宽度要适当,应使水流 保持适当的流速,一方面泥砂不至于沉积 在沟渠底部,另一方面截留的污染物又不 至于冲过格栅。通常采用0.4-0.9m/s。
用式:k=3.36v-1.32求定。一般采用k=3。
• 为避免造成栅前涌水,故将栅后槽底下降h2
作为补偿
• 在实际采用时,城市污水一般取0.1-0.4m。 对工业污水,根据使用的格栅栅条间距以 及清理时间间隔等因素,应留有因部分堵 塞而必需的安全量。
1. 栅槽宽度
b=s(n-1)+d·n (m)
2)曲面格栅

格栅设计说明书最终版

格栅设计说明书最终版

格栅一、作用:在污水处理系统(包括水泵)前,均需设置格栅,以拦截较大的呈悬浮或漂浮状态的固体污染物。

二、分类:按形状,可分为平面格栅和曲面格栅两种;按栅条净间隙,可分为粗格栅(50—100mm)、中格栅(16—40mm)、细格栅(3—10mm)三种;按清渣方式,可分为人工清除格栅和机械清除格栅两种。

三、设计数据:1.水泵前格栅栅条间隙,应根据水泵要求确定。

2.污水处理系统前格栅栅条净间隙,应符合下列要求:人工清除:25——100mm;机械清除:16——100mm;最大间隙:100mm。

污水处理厂可设置中、细两道格栅,大型污水处理厂亦可设置粗、中、细三道格栅。

3.栅渣量与地区的特点、格栅的间隙大小、污水流量以及下水道系统的类型等因素有关。

在无当地运行资料时,可采用:格栅间隙16——25mm:0.10——0.05m³栅渣/103m³污水;格栅间隙30——50mm:0.03——0.01m³栅渣/103m³污水。

、栅渣的含水率一般为80%,密度约为960kg/m³。

4.在大型污水处理厂或泵站前的大型格栅(每日栅渣量大于0.2m³),一般采用机械清渣。

小型污水处理厂也可采用机械清渣。

5.机械格栅不宜少于2台。

如为1台时,应设人工清除格栅备用。

6.过栅流速一般采用0.6——1.0m/s。

7.栅前流速,一般采用0.4——0.9m/s。

8.格栅倾角,一般采用45°——75°。

人工清除的格栅倾角小时,较省力,但占地多。

9.通过格栅的水头损失,一般采用0.08——0.15m。

10.格栅间必须设置工作台,台面应高出栅前最高设计水位0.5m。

工作台上应有安全和冲洗设施。

11.格栅间工作台两侧过道宽度不应小于0.7m。

工作台正面过道宽度:人工清除:不应小于1.2m;机械清除:不应小于1.5m。

12.机械格栅的动力装置一般宜设在室内,或采取其他保护设备的措施。

粗、细格栅简介

粗、细格栅简介

粗、细格栅简介
格栅用以去除污水中较大的悬浮物、漂浮物、纤维物质和固体颗粒物质,以保证后续处理单元和水泵的正常运行,减轻后续处理单元的处理负荷,防止阻塞排泥管道。

根据栅条间隙分为粗格栅、中格栅、细格栅,一般污水处理厂设粗、细两道格栅,粗格栅设于箱体总进水管道后,去除大尺寸的漂浮物和悬浮物,尽量去掉那些不利于后续处理过程的杂物;细格栅用于进一步去除污水中较小颗粒的悬浮、漂浮物,格栅截留物经螺旋输送机送入螺旋压榨机,压榨后外运出厂。

粗格栅常用形式为钢丝绳式格栅除污机和回转式格栅除污机。

钢丝绳式格栅除污机国内外早期使用较多,结构简单,运转效果较好,特别适用于深水使用。

回转式固液分离机近年在国内使用较多,运转效果较好,运行稳定,该设备由动力装置、机架、清洗机构及电控箱组成,动力装置采用悬挂式涡轮减速机,结构紧凑,调整维修方便,耙齿结构设计合理,耐腐蚀性好。

格栅的设计计算

格栅的设计计算

格栅的设计计算 Document number:PBGCG-0857-BTDO-0089-PTT1998格栅的设计计算(1)栅条的间隙数nmax Q n ehv =式中 Qmax ——最大设计流量,m 3/sα——格栅倾角,度,取α=600h ——栅前水深,m ,取h=0.4me ——栅条间隙,m ,取e=0.02mn ——栅条间隙数,个v ——过栅流速,m/s ,取v=1.0m/s格栅设两组,按两组同时工作设计,一格停用,一格工作校核。

则:max 230.02*0.4*1.0Q n ehv ==≈个(2)栅槽宽度B栅槽宽度一般比格栅宽米,取米。

设栅条宽度S=10mm则栅槽宽度(1)B S n bn =-+0.01*(231)0.02*230.68m =-+≈(3)通过格栅的水头损失h10h h k =20sin 2v h g ξα= 43()s b ξβ=式中 1h ——过栅水头损失,m0h ——计算水头损失,mg ——重力加速度,2/m sk ——系数,格栅受污物堵塞后,水头损失增大的倍数,一般采用k=3ξ——阻力系数,与栅条断面形状有关,43()s eξβ=,当为矩形断面时,β=。

24103()sin 2s v h h k k b gβα== 20430.01 1.02.42*()sin 60*30.022*9.8= 0.13m =(4)栅后槽总高度H设栅前渠道超高20.3h m =120.40.130.30.83H h h h m =++=++=(5)栅槽总长度L进水渠道渐宽部分的长度L 1,设进水渠宽B 1=,其渐宽部分展开角度α1=200,进水渠道内的流速为s 。

11010.680.450.362tan 2tan 20B B L m α--==≈ 栅槽与出水渠道连接处的渐窄部分长度2L120.360.1822L L m ==≈ 112 1.00.5tan H L L L α=++++ 式中 1H 为栅前渠道深,12H h h =+00.40.30.360.180.5 1.0tan 60L +=++++2.44m =(6)每日栅渣量W max 1864001000ZQ W W K =式中 W ——每日栅渣量3/m d 1W ——栅渣量(333/10m m 污水)取,粗格栅用小值,细格栅用大值,中格栅用中值Z K ——生活污水流量总变化系数 386400*0.2*0.050.6/1000*1.5W m d ==。

某城市污水处理厂课程设计

某城市污水处理厂课程设计

目录1绪论 (2)1.1项目概述 (2)1.2设计原则 (2)1.3设计依据 (2)1.4设计参数 (3)1.4。

1污水水量 (3)1。

4。

2处理程度 (3)2处理方案的确定 (5)2。

1 A2/O工艺 (5)2.2 氧化沟 (6)2.3 SBR工艺 (6)2。

4工艺流程的确定 (8)3处理系统的计算和选择 (8)3.1进水格栅的计算 (8)3。

1。

1中格栅 (8)3。

1。

2细格栅 (12)3。

2沉砂池的计算、 (14)3.2。

1设计原则【1】【5】 (15)3。

2.2设计计算【1】 (15)3。

2。

3刮砂机的选用 (17)3。

3氧化沟的计算 (17)3。

3.1 已知条件 (17)3.3.2设计参数 (18)3。

3.3 氧化沟设计计算【4】 (18)3.3.4曝气机的选用 (23)3.4二沉池的计算 (23)3.4。

1设计要求【1】【5】 (23)3.4。

2设计计算 (24)3.4。

3刮泥机的选用 (26)3.5污泥浓缩池的计算 (27)3。

5.1设计原则【5】 (27)3.5。

2设计计算 (27)3。

5.3压滤机的选用 (28)4。

设计成果汇总 (30)致谢.................................................. 错误!未定义书签。

参考文献. (31)1绪论1.1项目概述本次水处理工程的课程设计任务是为某城市设计一个污水处理厂,其污水的类别为城市生活污水,在已知进水水质的情况下,要求设计的污水处理系统能够使出水水质满足相关的要求。

这次课程设计的主要设计内容包括:(1)在已知进水水质水文各项指标、出水水质的排放要求及城市规划和相关排放标准的前提下,为污水处理厂确定污水处理方案和处理工艺流程,并详细介绍所选择的流程在处理该城市污水方面的原理以及特点。

(2)污水处理厂处理系统主要构筑物的规格尺寸等相关参数的计算,污水处理工艺流程相关参数的计算。

(3)给出相关构筑物的设计工程图以及说明。

污水处理厂课程设计

污水处理厂课程设计

某市城市污水处理厂课程设计姓名 ****学号**0713112指导老师赵群英11污水处理课程设计指导书一、课程设计的目的通过城市污水处理厂的课程设计,巩固学习成果,加深对污水处理课程内容的学习和理解,掌握污水处理厂设计的方法,培养和提高计算能力、设计和绘图水平。

在教师指导下,基本能独立完成一个中、小型污水处理厂的工艺设计,锻炼和提高分析及解决工程问题的能力。

二、课程设计的要求基本要求:完成设计说明书一份,工艺扩初设计图纸两张(1#),其中污水处理厂平面布置图一张,污水和污泥处理工艺高程布置图一张。

三、课程设计的内容1、根据水质、水量、地区条件、施工条件和一些污水处理厂运转情况选定处理方案和确定处理工艺流程。

2、通过对比选定具体的构筑物。

3、拟定各种构筑物的设计流量及工艺参数。

4、计算的构筑物的有关尺寸,数目。

(设计时要考虑到构筑物及其构造、施工上的可能性。

5、根据各构筑物的确切尺寸,确定个构筑物在平面布置上的确切位置,结合附属构筑物、厂区道路、绿化,最后完成平面图布置。

6、根据平面布置,计算确定各个主要构筑物水面及管线的高程。

最后完成工艺高程图布置。

7、绘制本设计任务书中指定的水厂平面,工艺高程图纸两张(1#图)。

8、写出设计说明书。

四、参考资料1、《排水工程》(第四版)教材(下册)2《给水排水设计手册》第一、五、十一册。

五、进度要求课程设计要求在两周内完成。

下发设计任务日期:2014年6月2日提交设计成果日期:2014年6月14日污水处理厂课程设计任务书一、设计原始资料a 设计题目:某市城市污水处理厂课程设计b 题目背景1)城市概况:该市地处东南沿海,北回归线横贯市区中部,该市在经济发展的同时,城市基础设施的建设未能与经济协同发展,城市污水处理率仅为3.4%,大量的污水未经处理直接排入河流,使该城市的生态环境受到严重的破坏。

为了把该城市建设成为经济繁荣、环境优美的现代化城市,筹建该市的污水处理厂已迫在眉睫。

污水处理厂初步设计说明书

污水处理厂初步设计说明书

污⽔处理⼚初步设计说明书设计任务书⼀、设计项⽬某污⽔⼚初步设计⼆、设计资料1.基本资料⑴设计流量:Q=30000+ n×1000 m3/d(n学号,1~30号)⑵污⽔⽔质:COD=380mg/L,BOD5=250 mg/L,SS=200mg/L pH=6~9 。

夏季⽔温25℃,冬季⽔温15℃,常年平均⽔温20℃。

⑶纳污河流:位于城市的东侧⾃南向北,20年⼀遇洪⽔⽔位标⾼322.5m,常⽔位标⾼320.3m。

⑷根据城市总体规划,污⽔⼚拟建于该城市下游河流岸边,地势平坦,拟建处的地⾯标⾼326.30m。

该城市污⽔主⼲管终点(污⽔⼚进⽔⼝)的管内底标⾼321.00m。

⑸⽓象资料:该地区全年主导风向为西南风。

地势平坦,地质情况良好,满⾜⼯程地质要求,平均⽓温13℃,冬季最低⽓温-12℃,最⼤冰冻深度0.85m,夏季最⾼⽓温37℃,年平均降⾬量1010mm,蒸发量1524mm。

⑹处理要求:处理⽔⽔质满⾜: BOD5≤20mg/L;COD≤60 mg/L;SS≤20mg/L。

处理后的污⽔纳⼊河流,对污泥进⾏稳定化处理、脱⽔后泥饼外运填埋或作农肥。

⑺其他资料:⼚区附近⽆⼤⽚农⽥,各种建筑材料均能供应,电⼒供应充⾜。

三、设计内容:1、根据给定的原始资料,确定污⽔⼚的规模和污⽔设计⽔量。

2、按照原始资料数据进⾏处理⽅案的确定,拟定处理⼯艺流程,选择污⽔、污泥的处理构筑物,并⽤⽅框图表⽰。

进⾏⼯艺流程中各处理单元的处理原理说明。

3、进⾏各构筑物的尺⼨计算,各构筑物的设计参数应根据同类型污⽔的实际运⾏参数或参考有关⼿册选⽤。

4. 设备选型计算。

5.平⾯和⾼程布置根据构筑物的尺⼨,合理进⾏平⾯布置;⾼程布置应在完成各构筑物计算及平⾯布置草图后进⾏。

各处理构筑物应尽⼒采⽤重⼒流,各处理构筑物的⽔头损失可直接查相关资料,但各构筑物之间的连接管的⽔头损失则需计算确定。

6. 编写设计说明书、计算书四、设计成果1. 污⽔处理⼚总平⾯布置图1张2. ⾼程布置图1张3. 设计说明书、计算书⼀份五、课程设计进度计划序号时间内容备注1 第1天课程设计说明,下达课程设计任务2 第2天图书馆借阅资料、熟悉设计资料和规范3 第3-7天确定⽅案、进⾏设计计算4 第8-13天绘图,整理设计说明书5 第14天成果整理并上交六、设计参考资料1.《⽔质⼯程学》教材2.《排⽔⼯程》下册,张⾃杰等主编,中国建筑⼯程出版社。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、进水闸井的设计
1、污水厂进水管
1.设计依据:
(1)进水流速在0.9—1.1m/s;
(2)进水管管材为钢筋混凝土管;
(3)进水管按非满流设计,n=0.014。

2.设计计算
(1)取进水管径为D=800mm,流速v=1.00 m/s,设计坡度I=0.5%。

(2)已知最大日污水量Q max=0.6481m3/s;
(3)初定充满度h/D=0.75,则有效水深h=1000×0.75=750mm;
(4)已知管内底标高为67.1m,则水面标高为:67.1+0.75=67.85m;
(5)管顶标高为:67.1 +1.0=68.1m;
(6)进水管水面距地面距离72.4-67.85=4.55m。

2、进水闸井工艺设计
进水闸井的作用是汇集各种来水以改变进水方向,保证进水稳定性。

进水闸
井前设跨越管,跨越管的作用是当污水厂发生故障或维修时,可使污水直接排入水体,跨越管的管径比进水管略大,取为1200mm。

其设计要求如下:
设在进水闸、格栅、集水池前;
形式为圆形、矩形或梯形;
尺寸可根据来水管渠的断面和数量确定,但直径不得小于1.0m 或
1.2×1.0m;
井底高程不得高于最低来水管管底,水面不得淹没来水官管顶。

考虑施工方便以及水力条件,进水闸井尺寸取3×6m,井深5.3m,井内水深0.75m,闸井井底标高为67.1 m,进水闸井水面标高为67.85m,超越管位于进水管顶1m 处,即超越管管底标高为69.1m。

采用ZMQF 型明杆式铸铁方闸门:尺寸为
L×B=1.6×1.6m;重量=2992kg。

一、中格栅的工艺设计
格栅计算草图
1.中格栅设计参数
(1)栅前水深h=0.75m ;
(2)过栅流速v=0.9m/s ;
(3)格栅间隙b 中=0.019m ;
(4)栅条宽度 s=10mm ;
(5)格栅安装倾角0
75=α。

2.中格栅的设计计算
本设计选用两道中格栅,为了减少格栅磨损,格栅全部使用。

总变化系数k=1.4 s m d m Q 33max 6481.04.140000=⨯=
1)栅条间隙数:
bhv Q n α
sin max =
式中:n 中——中格栅间隙数;
Q max ——最大设计流量,
s m 36481.0; b 中——栅条间隙,0.019m ;
h ——栅前水深,取0.75m ;
v ——过栅流速,取0.9m/s ;
α——格栅倾角,取0
75;
m ——设计使用的格栅数量,本设计中格栅取使用2 道。

8.2429.075.0019.075sin 6481.00
=⨯⨯⨯⨯=中n 取25
2)栅槽宽度B :
栅槽宽度一般比格栅宽0.2-0.3m ,取0.2m 。

B=s(n 1-1)+bn+0.2
式中:B ——栅槽宽度,m ;
S ——格条宽度,取0.01m 。

B=0.01×(25-1)+0.019×25+0.2=0.92m
栅槽之间墙宽度为0.5m ,所以格栅总宽度=0.92×2+0.5=2.34m
3)中格栅栅前进水渠道渐宽部分长L1,若进水渠宽B1=0.7,其渐宽部分展开角020=α
进水渠道流速V1=0.7m/s
m B B L 30.020tan 27.092.020tan 20011=-=-= 4)中格栅与提升泵房连接处渐窄部分长度L2
m L L 15.0230.0212===
5)中格栅过栅水头损失
K 取3
42.2=β
m g v b s k h 12.075sin 6.199.0019.001.042.23sin 2)(0234234=⨯⨯⨯==)(中αβ
6)栅前槽总高度,取栅前渠道超高h2=5m
栅前槽总高度H1=h+h2=0.75+5=5.75m
7)栅后槽总高度
m h h h H 87.512.0575.02=++=++=中
8)栅槽总长度
m 49.375tan 75.50.15.015.03.0tan750.15.000121=++++=++++=H L L L
9)每日栅渣量:
33333301009
.0,1001.0-1.0w m m m m 中格栅取一般为
d m >d m Qw 3302.06.3100009.0400001000w =⨯== 故采用机械清渣
二、 细格栅的工艺设计
1.细格栅设计参数
(1)栅前水深h=0.75m ;
(2)过栅流速v=0.8m/s ;
(3)格栅间隙b 细=0.008m ;
(4)栅条宽度 s=0.01m ;
(5)格栅安装倾角0
75=α。

2.细格栅的设计计算
本设计选用三道细格栅,两用一备。

1)栅条间隙数: bhv Q n α
sin max =
式中:n 中——中格栅间隙数;
Q max ——最大设计流量,
s m 36481.0; b 中——栅条间隙,0.008m ;
h ——栅前水深,取0.75m ;
v ——过栅流速,取0.8m/s ;
α——格栅倾角,取0
75;
m ——设计使用的格栅数量,本设计中格栅取使用2 道。

67,3.6628.075.0008.075sin 6481.00
取细=⨯⨯⨯=n 2)栅槽宽度:
B=s(n 1-1)+bn
式中:B ——栅槽宽度,m ;
S ——格条宽度,取0.01m 。

B=0.01×(67-1)+0.008×67=1.216m ,取1.22m
栅槽之间墙宽度为0.5m ,所以格栅总宽度=1.22×3+0.5×2=4.66m
3)细格栅的栅前进水渠道渐宽部分长度L 1:
若进水渠宽 B 1=0.8m ,渐宽部分展开角α1 =20。

,则此进水渠道内的流速 v 1=0.7m/s ,则 m B B L 58.020tan 28.022.120tan 20011=-=-= 4)细格栅与旋流沉砂池连接处渐窄部分长度L 2:
m L L 29.0258.0212=== 5)细格栅的过栅水头损失:
K 取3
42.2=β
m g v b s k h 31.075sin 6.198.0008.001.042.23sin 2)(0234234=⨯⨯⨯==)(细αβ
6)栅前槽总高度:
取栅前渠道超高 h 2=0.5m
栅前槽高H 1=h+h 2=0.75+0.5=1.25m
7)栅后槽总高度:
m h h h H 56.131.05.075.02=++=++=细
8)栅槽总长度:
m 7.275tan 25.10.15.029.058.0tan750.15.000121=++++=++++=H L L L
9)每日栅渣量: 333333
01010.0,1001.0-1.0w m m m m 细格栅取一般为
d m >d m Qw 3302.00.41000
10.0400001000w =⨯==
故采用机械清渣
格栅除污机的选择
经计算本工程均采用机械清渣,格栅的相关数据如下表:
表 3-2 中,细格栅除污机的性能参数表。

相关文档
最新文档