Petri网基本概念及介绍

合集下载

第七章Petri网基础

第七章Petri网基础

18
§7.2.1 共享资源模型6
p active1
p active 2
t request 1
prequesting 1
trequest2 pidle
p requesting 2
t start 1
pacces sin g 1
t start 2
pacces sin g 2 pbusy
事件之间的同步距离(synchronic distance)
公平性(fairness)
4
§7.1 Petri 网发展概述5
Petri网模型的主要分析方法依赖于: 可达树(reachability tree) 关联矩阵和状态方程(incidence matrix and state equation) 不变量(invariants) 分析化简规则 Petri网的的纵向扩展: 条件/事件(C/E)网
PetriNets-owner@daimi.au.dk]] PetriNets-request@daimi.au.dk]]
[[World Wide Web URL:
http://www.daimi.au.dk/PetriNets/pnl/]]
[[Read before posting:http://www.daimi.au.dk/PetriNets/pnl/faq.html]]
9
§7.2 Petri网模型简介1
直观理解什么是Petri网,它们如何应用。 一个PN的结构元素包括: 位置(place):描述可能的系统局部状态(条件或状 况),例如,队列、缓冲、资源等。 变迁(transition):描述修改系统状态的事件、动 作,例如,信息处理、发送、资源的存取等。 弧(arc):使用两种方法规定局部状态和事件之间 的关系:引述事件能够发生的局部条件状态;由 事件所引发的局部状态的转换。

petri网的原理及应用

petri网的原理及应用

Petri网的原理及应用1. 什么是Petri网Petri网是一种用于描述并发系统和并发性行为的图形化工具和形式化方法。

它由德国数学家Carl Adam Petri于1962年提出,被广泛应用于系统建模、并发系统分析、协议验证等领域。

Petri网可以模拟并发系统的并发行为、状态转换以及资源分配等关键方面,通过图形化的方式直观地展示系统的结构和行为,并支持形式化的数学分析。

2. Petri网的基本元素Petri网由以下基本元素组成:2.1. 位置(Place)位置表示系统中的状态或者条件,通常通过一个圆圈表示。

位置可以存储某种资源或者表示某种变量的取值。

2.2. 过渡(Transition)过渡表示系统中的某种事件或者操作,通常通过一个矩形表示。

过渡可以触发或消耗位置中的资源,改变系统的状态。

2.3. 弧(Arc)弧表示位置和过渡之间的联系,通常通过一条带箭头的线表示。

弧可以表示资源的流动或者触发条件的关系,连接位置和过渡。

2.4. 标识(Marking)标识是位置中的资源的数量,可以通过在位置内部的小圆圈中填写数字来表示。

标识表示系统的状态,在Petri网中可以不断变化。

3. Petri网的建模方法Petri网可以通过以下步骤完成建模:3.1. 确定系统的功能和行为首先,需要明确系统的功能和行为,清楚系统中的位置、过渡以及它们之间的关系。

例如,一个简单的交通信号灯系统中可以有位置表示红绿灯状态、过渡表示信号灯变换的事件或操作。

3.2. 绘制Petri网图根据系统的功能和行为,使用标识符绘制位置和过渡,并用弧表示它们之间的联系。

根据需要,可以使用不同的符号和颜色来表示不同类型的位置和过渡。

3.3. 设定初始标识确定初始状态下位置中的资源数量,填写在位置的小圆圈中。

这可以表示系统的初始状态,即Petri网的初始标识。

3.4. 定义触发条件和行为规则根据系统的功能和行为,定义位置和过渡之间的触发条件和行为规则。

Petri网详细介绍与学习

Petri网详细介绍与学习
随着技术的发展,Petri网模型也在不断演进和扩展,出 现了许多高级Petri网模型,如有色Petri网、时间Petri网 、概率Petri网等。这些模型在处理复杂系统方面具有更 强的表达能力和灵活性。
模型改进
针对传统Petri网的不足,研究者们不断尝试对其进行改 进和优化,以提高其适用性和性能。例如,通过引入新 的元素或规则,改进Petri网的表达能力;优化Petri网的 推理算法,提高其推理速度等。
有界性、安全性与死锁
01

03
有界性
Petri网中的每个库所至多 包含有限个标记,且每个 变迁最多可以消耗和产生 有限个标记。
安全性
Petri网中不存在死锁状态 ,即对于任意一个状态, 总存在一个后继状态。
死锁
当Petri网中存在一个状态 ,从该状态无法通过任何 变迁到达其他状态时,称 该状态为死锁状态。
Petri网与其他建模方法的融合
融合方法
为了更好地描述和分析复杂系统,研究者们尝试将 Petri网与其他建模方法进行融合。例如,将Petri网与 流程图、状态图等图形化建模方法相结合,可以更直 观地描述系统的结构和行为。
融合优势
通过融合不同的建模方法,可以取长补短,提高对复 杂系统的描述和分析能力。同时,这种融合也有助于 推动不同领域之间的交叉和融合,促进多学科研究的 开展。
实例分析学习
案例分析
分析不同类型Petri网的特点和适用场景,如同步Petri 网、时间Petri网和有色Petri网等。
通过学习经典的Petri网实例,深入理解Petri网的实际 应用和建模技巧。
对比不同Petri网实例的建模效果,提高对Petri网的实 际操作能力和应用水平。
实践应用学习

8.4.1 Petri网基本知识简介

8.4.1 Petri网基本知识简介

8.4.1 Petri网基本知识简介Petri网库所 place 变迁 transistionPetri网由两类元素组成:库所(place)和变迁(transistion),前者表示状态,后者反映状态的变化。

变迁的作用是改变系统的状态,库所的作用则是决定变化能否发生。

两者的这种相互依赖关系用有向弧(流关系)表示。

网是系统的静态结构。

图8-22给出了一个Petri网和网系统的例子。

图中用圆圈表示库所,用短横表示变迁(也有用方框表示的)。

库所中的黑点称为托肯(token),用以表示某类资源,反映了系统的局部状态,托肯在库所中的分布,给出了各状态元素的初态,称为初始标识(initial marking),反映出系统初始情况下的全局状态。

如果库所中的托肯数不多于一个,与布尔型变量类似的库所只有两种状态:有托肯(成真)和无托肯(成假)。

我们把这样的网系统称为条件(condition)/事件(event)系统,简称C/E系统。

当网系统中的托肯在网中流动时,就反映了网的动态行为。

托肯是沿有向弧指示的方向流动的。

图8-22中,对于变迁e3来说,从库所b1有一条指向它的有向弧,用(b1,e3)表示,称为输入弧;同时还有另外两条输出弧,用(e3,b3)、(e3,b4)表示。

网论中将b1称为e3的输入库所,b3、b4称为它的输出库所,由输入库所组成的集合叫输入库所集,又称为前集,记为*e3={b1};由输出库所组成的集合叫做输出库所集,又称后集,记为e3*={b3,b4}。

同理,对于库所b1,它的输入变迁集(前集)为*b1={e2},输出变迁集(后集)为b1*={e1,e3}。

一个变迁,如果它的每一个输入库所都包含至少一个托肯时,则这个变迁有发生权,当这个变迁发生时,将导致在其每个输入库所中减少一个托肯,而在每个输出库所中增加一个托肯。

图8-22中,变迁e3的发生将“消耗”b1中的一个资源,同时产生b3类和b4类各一个资源,这就是变迁规则。

Petri网基本概念和分析方法

Petri网基本概念和分析方法

(b) t1, t2 是并发的, 且若 t2 在 t1 前点火,
则 t1 与 t3 冲突.
图 1.5. 对称与非对称
Petri 网的可达图是其可能状态和使能迁移关系的图表示.
(a) 一个 Petri 网
(b) 上述网的可达图 图 1.6. 可达图
3
北京师范大学信息科学学院
知识工程研究中心
二. Petri 网的行为
M(p) § M £(p). 对一个迁移 t, 用 Mt 记可以使能的最小状态. 定理. Petri 网(N, M0)中的迁移 t 是 L1-活性的 ‹ Mt 是可覆盖的.
5
北京师范大学信息科学学院
知识工程研究中心
2.6 持续性 Petri 网(N, M)称为持续的, 如果(N, M)中任何两个使能迁移 t1, t2, t1 的点火不 会改变 t2 的使能性. 例如, 所有标记图都是持续的, 但持续的网不一定都是标记图.
北京师范大学信息科学学院
知识工程研究中心
Petri 网: 基本概念和分析方法
记号: N = {0, 1, 2, … }, N+ = {0, 1, 2, … }.
一. 基本概念
一个 Petri 网由五个部分组成 PN = (P, T, F, W, M0), 其中: P 是位置(place)的有限集合; T 是迁移(transition)的有限集合; P … T = «, P » T ∫ «; F Œ (P ä T) » (P ä T)是有向弧的集合; w : F ö N+是弧的权函数; M0 : P ö N 是初始标记(初始状态). 注. 不带初始状态的 Petri 网记为 N = (P, T, F, W), 带有初始状态 M0 的 Petri 网则记为(N, M0). 若 PN 是一个 Petri 网, 则映射 M : P ö N 称为一个状态. 对 p œ P, 若 M(p) = k, 则称位置 p 标记有 k 个符号(token).

Petri网学习报告

Petri网学习报告

Petri 网的基本理论1. 基本定义定义1.1 一个Petri 网(结构)N 是一个四元组),,,(W F T P ,P 和T 分别成为库所和变迁的集合,P 和T 非空、有限且不相交。

即φφφ≠≠T ,≠T P P ,。

φ≠⨯⨯⊆)()(P T T P F 称为流关系或有向弧的集合。

N →⨯⨯)()(:P T T P W 是一个映射,该映射为每一条弧分配一个权值,即若,F f ∈0)(>f W 若F f ∉,0)(=f W 。

称W 为Petri 网N 的权函数。

从图论上讲,Petri 网是一种双枝有向图,库所和变迁成为Petri 网的节点。

用图形表示Petri 网时,库所用圆圈表示,变迁用矩形或杠表示。

库所和变迁之间用有向弧连接,同一类型的节点间不能用有向弧连接。

定义1.2 若1)(,=∈∀f W F f ,Petri 网),,,(W F T P N =成为普通网。

否则N 称为一般网。

一个普通网可记作),,(F T P N =。

定义1.3 若1),(,),(=∈∀t p W F t p ,Petri 网称为PT-普通网。

定义1.4 Petri 网),,,(W F T P N =的标识M 是一个从P 到N 的映射。

),(0M N 称为网系统或标识网,0M 称为N 的初始标识。

在不引起混淆的情况下,简单称),(0M N 为Petri 网,),(0M N 有时也写成),,,,(0M W F T P 。

库所中的标识用称之为托肯的小黑点表示。

当托肯数较多时直接用数字表示。

定义1.5 令P p ∈是Petri 网),,,(W F T P N =的库所。

当且仅当0)(>p M 时称p 在M 下是被标记的。

当且仅当D 中至少有一个库所被标记时,称库所集P D ⊆在M 下是被标记的。

称∑∈=D p p M D M )()(为库所子集D 在M 下的托肯总和。

定义 1.6 令T P x ∈是Petri 网),,,(W F T P N =的节点。

第3章Petri网..

第3章Petri网..

(一) 基本定义
一个没有任何输入位置的迁移叫源迁 移,一个源迁移的使能是无条件的。 一个源迁移的引发只会产生令牌,而 不消耗任何令牌;一个没有任何输出 位置的迁移叫阱迁移,一个阱迁移的 引发只会消耗令牌,而不产生任何新 的令牌。
p2 t1 p3 t2 p4 t4
t3
p5
t5
位置/迁移Petri网---位置/迁移Petri网,简称为Petri网,形式上 定义为一个六元组PN=(P, T, F, K ,W, M0)= (N,K , W, M0), 其中, ① N =(P,T,F)是一个Petri网结构; ② K:P→Z +{}是位置上的容量函数(Z +是正整数集合), 规定了位置上可以包含的令牌的最大数目。对于任一位置p P, 以K(p)表示向量K中位置p所对应的分量,若K(p)= , 表示位置p 的容量为无穷;
9
在Petri网的图形表示中,对于弧f ∈F,当W(f)>1 时,将W(f)标注在弧上,当W(f)= 1时,省略 W(f)的标注;当一个位置的容量有限时,通常将 K(p)写在位置p的圆圈旁。当K(p)= ∞时,通 常省略K(p)的标注。 容量函数和权函数均为常量1的Petri网称为基本 Petri网(简称基本网)或条件/事件网。容量函数 恒为无穷和权函数恒为1的Petri网称为普通Petri网, 简称为普通网。显然,基本网和普通网都是Petri网 的特殊情形。基本网和普通网可以用四元组PN= (P,T,F,M)来表示。
③ W:F→Z+,是流关系上的权函数,规定 了令牌传递中的加权系数。对于任一弧f ∈F, 以W (f)表示向量W中弧f所对应的分量; ④ M:PZ(非负整数集合)是位置集合 上的标识向量。对于任一位置pP, 以M(p) 表示标识向量M中位置p所对应的分量,并 且必须满足M(p)K(p)。M0是初始标识向 量。

petri网课件第1章2

petri网课件第1章2

命题
权函数为1的P/T系统中两互补库所中的 托肯总数永远是一个常量。 •常量为M0(s)+M0(s) •即不会增加新的托肯(当网系统动态变化, 即t发生后) 证明
证明
证: s=s ∧s = s . . . . ⇒t∈ s⇔t∈s ∧t∈s ⇔t∈ s ⇒s获得一个托肯,则s失去一个托肯
s失去一个托肯,则s获得一个托肯 s— 资源数 s— 可用空间数
4.当∀s∈S,K(s)=∞时,只要考虑第一个条件

例:
M0=(1,1,0,3,0,1,3) → (0,1,1,0,0,1,3) → (0,2,0,3,0,1,3)
t4
t2
t3
→ (0,2,0,2,1,0,3) →… …
三、网系统分类
根据K及W分成三类: 1 .基本网系统(EN系统) 2 .库所/变迁网(P/T网) 3 .库所/变迁系统(P/T系统)
2,4 — — 机器
3— — 工人
显然,网系统越高级,节点(库所或变迁)也就越 少。Σ4 还可对应更简单的Pr/T系统。
解决节点爆炸
1 .高级网系统 2 .分层模拟方法 3 .辅助工具
F-1={(x, y)|(y, x)∈ F}
定义1.4
•|X|<∞, N称为有限网 我们主要讨论有限网 •若(X, F)是个连通图,则N称为连通网 ↓ 表示N=(S, T; F)相应的有向图
定义1.5
N=(S, T; F) 设s∈S, 若有s′∈ S, 使得
1. s′ =s ∩s′ = s, 则s′和s是 互补库所 常用s表示s的互补库所
. .
变迁规则
M(s)-W(s,t) M(s)+W(t,s) M(s)-W(s,t)+W(t,s) M(s) 若s∈ t-t 若s∈t.-.t . . 若s∈ t∩t 若s∉.t∪t.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Petri网基本性能
• 有界性 通常,库所表示制造系统中的工件、工具、 托盘以及AGV的存放,还用于表示资源的可 利用情况,有界性是检查被Petri所描述的系 统是否存在溢出的有效尺度,防止确保不 会重复启动某一正在进行的操作。
Petri网基本性能
• 活性 • 对于一个变迁T,在任意标识m下,若存在 某一变迁序列Sr,该变迁序列的激发使得此 变迁T使能,责成该变迁是活的(Live)
Petri网基本概念及介绍
201512145
Petri网基本概念
• Petri网是一种网状模型,包括事件和条件两 个节点类型,在这样的图形中,分布着表 示状态资源或信息的托肯(Token),按照触 发规则进行状态的演化,从而反映系统运 行的全部过程。事件一般用“变迁”表示, 条件用“库所”表示,托肯用库所内的小 黑点表示,库所和变迁之间用有向弧连接。
Petri网基本性能
• 可达性具体应用:
①系统按照一定轨迹运行,系统能否实现一 定状态,典型问题是生产调度计划的验证;
②要求达到一定状态,如何确定系统运行轨 迹; 第一个问题可描述为:给定Sr初始标识以及 期望达到标识Mr,验证之;
给定m0和mr,寻找sr使得m0[Sr>mr.
Petri网基本性能
• 有界性 有界性反映系统运行过程中对资源变量的 需求,它意味着,Petri网艺在其所有可能的 状态标识下,网的各位置节点中的托肯数 必为有界的。在理论分析时常可假定位置 容量为无穷,但在实际系统设计中,必须 使网络中的每个位置在任何状态下的标志 数小于位置的容量,这样才能保证系统的 正常运行,不至于产生溢出现象。
这是一个状态机
Petri网基本概念
Petri网基本概念
T2、T3 并发并且该网为一个标记图
Petri网基本概念
Petri网的可达图是其可能状 态和使能迁移关系的图表示。
Petri网基本性能
• 可达性 如果Petri网的一个初始标识M0通过不断激 发变迁,最终得到一个新的标识Mn,那么 则认为Mn是从M0可达的; 若从M0开始只需要激发一个变迁即可达, 则称Mn是从M0立即可达的;
Petri网基本概念
Petri网基本概念
Petri网基本概念
讨论Petri网系统时,容量函数K为给定的
Petri网基本概念
Petri网基本概念
Petri网基本概念
Petri网基本概念
• 若一个 Petri 网中的每个迁移都只有一个输入位置和一个 输出位置, 则称该网是确定的或称为一个状态机. 若每个位 置恰好有一条进入弧和一条发出弧, 则称该网是一个标记 图。
Petri网基本性能
• 活性 死变迁: 若存在m,不存在从m开始的变迁序列,该 序列的激发使得m使能,则该变迁是死变迁; 锁死: 若存在一个m,在此状态下,无任何变迁使 能,则称Petri包含一个锁死;
Petri网基本性能
• 活性
• 出现锁死的情况,是因为不合理的资源分 配策略或者某些或全部资源的耗尽。实际 生产系统中,许多资源被共享,比如提升 机;
• 谢谢观看!!!
相关文档
最新文档