矿井通风设计(毕业设计用)

合集下载

毕业设计(矿井通风设计)

毕业设计(矿井通风设计)

第1章矿井概况1.1井田地理概况1.1.1矿井位置、范围**煤矿位于山东省莱芜市区东南5.5km,行政隶属莱芜市莱城区高庄街道办事处管辖,地理坐标东径117°40′06″~117°45′30″,北纬36°09′11″~36°12′29″。

东与西港煤矿(已关闭)、潘西煤矿为邻,西与鄂庄煤矿相接,矿区座落于高庄街道办事处南冶村附近,井田面积24.5km2。

井田东以413号钻孔和-180水平东大巷经16号联线与西港矿分界,西以18号勘探线和S33和169号钻孔与卾庄矿为界,上部至煤层露头,深部至F22号断层。

1.1.2交通位置**煤矿位于莱芜市南部郊区,地理位置优越(见图1-1),交通方便,磁莱铁路从矿区东北侧绕矿而过,矿区至颜庄火车站6.5km,矿井运输铁路在颜庄车站与磁莱线相接,莱芜市至淄博市高速公路从矿区深部通过,博(淄博)孙(孙村)公路从矿门前通过,加上市郊乡镇公路网,可谓四通八达,交通十分方便。

1.1.3气候条件莱芜市地处泰沂山区腹地,属大陆性气候,历年最高气温42.5℃(1955年8月11日),最低气温-22.5℃(1957年2月11),月平均气温13℃~36.8℃。

年总降雨量550.0~810.0mm,年平均降雨713.5mm,雨季为7、8、9三个月份,日最大降雨量306.0mm(1996年7月24日),最高洪水位+180.96m(1966年7月19日)。

年蒸发量1664~1927mm,平均1795.5mm。

结冰期为头年的11月初至来年3月,地温地下3m 处(4月)最低温度12.3℃,最高温度(9月)19.2℃。

总之,莱芜市气候温和,冬无严寒,夏无酷热,呈半湿润的北温带气候特色。

1.1.4地势地形井田位于泰山背斜的南翼,莲花山背斜的北翼,汶河两岸的低山丘岭地带,地面标高+180~210m。

1.1.5河流分布情况牟汶河(即大汶河)、新甫河、莲花河是构成井田地面的主要水系,牟汶河是大汶河上游三大源流的主流,流向北西,流经港里、南冶、安仙流至大汶口,最大流量1920m3/s;莲花河,又称安仙东河,源于莲花山,北流经安仙村东汇入汶河,全长15km,河宽150m,流量为0.58~0.72m3/s;新甫河又称安仙西河,源于新甫山麓,北流经安仙村西入汶河,全长15km,流量0.34~0.75m3/s。

毕业设计 第六章 矿井通风系统(专题设计)

毕业设计 第六章 矿井通风系统(专题设计)

第六章矿井通风系统(专题设计)矿井通风设计是矿床开采总体设计的一个不可缺少的组成部分。

它的主要任务是:根据矿床开采要求,基于开拓方案和采矿方法等生产条件,规划设计一个安全可靠、经济合理的矿井通风系统使通风网路-动力机械-调控设施密切配合,把新风送到井下并分配至每一个工作面,将有毒有害气体与粉尘稀释并排出矿井外,为矿井安全生产提供通风保障。

矿井通风设计必须符合高效率、低消耗、易管理的原则,做到经济上合理、技术上可行,有利于通风管理,有利于生产的发展。

有效的通风系统,应不断的向作业地点供给足够的新鲜空气,稀释和排出有毒、有害、放射性和爆炸性气体和粉尘、调节气候条件,确保作业面良好的空气质量。

6.1 国内外矿井通风评述6.1.1 我国金属矿山通风技术发展动态上世纪50年代前,我国金属矿山和其它非金属地下矿山多采用自然通风方式。

1953年华铜铜矿首次建立了我国第一个机械通风系统,至50年代中期,大部分矿山相继建立了机械通风系统,对促进矿山生产安全、保证工人身体健康起到了积极而深远的作用。

60年代初,不少矿山与大专院校合作,开展了广泛深入的通风专题研究,探索出许多适合矿体赋存特点和开采技术条件的矿井通风系统,如西华山钨矿的分区通风系统、锡矿山锑矿的棋盘式通风网络等。

1965年中国金属学会第一届矿井通风会议召开,会议总结了若干年来我国矿井通风技术的经验,促进了我国通风技术的发展与提高。

70年代中期,盘古山钨矿的梳式通风网络、大冶铁矿尖林山矿区采区的爆堆通风等经验在全国获得推广应用。

1977年,针对矿山通风中发展起来的众多技术进步与成果,召开了全国金属矿山通风系统经验交流会,重点对矿井通风系统、通风网络结构、主扇工作方式及安装地点,采场通风线路和通风方法以及通风系统鉴定技术指标等进行了全面的总结,初步形成和完善了我国金属矿山通风系统与方法。

80年代后,新型节能风机得到推广应用;多级机站通风系统初见成效;电子计算机在通风计算和管理中开始发挥作用,总之,我国矿山通风技术取得了长足的进步,呈现出欣欣向荣的喜人景象。

矿井通风毕业设计

矿井通风毕业设计

矿井通风毕业设计毕业设计题目郑煤集团复兴二矿矿井通风设计先生姓名AAA专业班级采矿工程07 学号000000000000000完成时间 2007 年6 月 30日目录摘要 (I)ABSTRACT (II)1矿井概略及井田地质特征 (1)1.1矿区概略 (1)1.1.1 天文位置 (1)1.1.2 主要自然灾祸 (2)1.1.3 小窑散布及开采状况 (3)1.1.4 矿区水源、电源及通讯状况 (3)1.2井田地质特征 (4)1.2.1 矿区地质 (4)1.2.2 地质结构 (5)1.2.3 煤层 (6)1.2.4 煤质 (6)1.2.5 瓦斯、煤尘、煤层自燃及地温、顶底板、煤与瓦斯突出 (6)1.2.6 水文地质 (8)2井田勘探水平 (11)2.1 以往地质任务 (11)2.2 对本次设计采用的储量核实报告评价 (11)2.3 存在的效果和建议 (12)3 矿井通风设计 (14)3.1 矿井通风系统的选择 (14)3.1.1 选择矿井通风系统的原那么 (14)3.1.2 选择矿井主要通风机的任务方法 (16)3.1.3 选择矿井通风方式 (17)3.2风量计算及风量分配 (19)3.2.1 风量计算的规范与原那么 (19)3.2.2 采煤任务面需风量的计算 (20)3.2.3 掘进任务面风量计算 (22)3.2.4 硐室实践需求风量 (23)3.2.5 其他用风硐室需风量计算 (24)3.2.6 矿井总风量计算 (24)3.2.7 风速验算 (25)3.2.8 风量分配 (27)3.2.9 规程规则 (27)3.3采区通风设计 (29)3.3.1 采区通风系统确实定 (29)3.3.2 采区进风上山与回风上山的选择 (30)3.3.3 回采任务面的通风系统 (31)3.4掘进任务面通风设计 (34)3.4.1 掘进通风方法 (34)3.4.2 掘进任务面所需风量及掘进面的设计 (35)3.4.3 掘进通风设备选择 (36)3.4.4 掘进通风技术管理和平安措施 (38)3.5全矿井通风总阻力的计算 (39)3.5.1 矿井通风总阻力的计算原那么 (39)3.5.2 矿井通风总阻力的计算 (39)3.5.3 选择主要通风机 (41)3.6概算矿井通风费用 (43)3.6.1 主要通风机的耗电量 (43)3.6.2 局部通风机的耗电量 (44)3.6.3 吨煤的通风电费计算 (44)3.7矿井反风措施 (45)3.7.1 矿井反风的目的意义 (45)3.7.2 反风方法及平安牢靠性剖析 (45)3.7.3 矿井通风系统综合析 (45)4 平安技术措施 (47)4.1矿井水患防治 (47)4.1.1 矿井水患防治详细措施 (47)4.2矿井火灾防治 (47)4.3矿井粉尘灾祸防治 (48)4.3.1 矿井粉尘灾祸防治详细措施 (48)4.4 瓦斯灾祸防治措施 (50)4.4.1 预防瓦斯积聚 (50)4.4.2 防止瓦斯爆炸 (51)4.5顶板灾祸防治 (51)4.5.1 顶板灾祸防治的详细措施 (51)5 矿山环保 (53)5.1矿山污染源概述 (53)5.1.1 大气污染 (53)5.1.2 水污染源 (53)5.1.3 固体废物 (54)5.1.4 噪声污染源 (54)结束语 (55)致谢 (56)参考文献 (57)附录一 (58)附录二 (59)郑煤集团复兴二矿通风设计摘要本设计是依据郑州煤业集团公司复兴二矿的实践状况停止的通风初步设计。

矿井通风设计毕业论文

矿井通风设计毕业论文

矿井通风设计毕业论文目录第一章、矿井通风设计的内容与要求(一)矿井基建时期的通风 (6)(-)矿井生产时期的通风 (6)(三)矿井通风设计的内容 (7)(四)矿井通风设计的要求 (8)第二章、优选矿井通风系统(-)矿井通风系统的要求 (11)(-)确定矿井通风系统 (11)(三)采区通风系统优化布置 (11)(四)新型通风设施 (12)第三章、矿井风量计算(-)矿井风量计算原则 (13)(-)矿井需风量的计算 (13)第四章、矿井通风总阻力计算(-)矿井通风总阻力计算原则 (14)(二)矿井通风总阻力计算 (15)(三)通风设施及防止漏风和降低风阻的措施 (8)第五章、矿井通风设备的选择(-)矿井通风设备 (18)(二)主要通风机的选择 (18)第六章、概算矿井通风费用(-)吨煤通风成本 (22)(二)通风电费 (22)(三)矿井通风系统评价 (23)结束语.....25参考文献第一章矿井通风设计的内容与要求矿井通风设计的基本任务是建立一个安全可靠、技术先进经济的矿井通风系统。

矿井通风是指将空气输入矿井下,以增加矿井中氧气的浓度并排除矿井中有害的气体。

矿井通风的基本任务是:供给井下足够的新鲜空气,满足人员对氧气的需要;冲淡井下有毒有害气体和粉尘,保证安全生产;调节井下气候,创造良好的工作环境。

为了使井下风流沿指定路线流动分配,就必须在某些巷道内建筑引导控制风流的构筑物即通风设施,它分为引导风流和隔断风流的设施。

新建大型矿井通风系统以对角式、分区式为主,改扩建的生产矿井以混合式为主。

《矿井通风》共分为10个情境,内容包括矿井主要有害气体防治、矿井风流的能量及其变化规律、矿井通风阻力、矿井通风动力、掘进工作面通风、采煤工作面通风、矿井通风系统、矿井风量调节、矿井通风设计等。

矿井通风设计一般分为两个时期,即基建时期与生产时期,分别进行设计计算。

矿井基建时期的通风矿井基建时期的通风指建井过程中掘进井巷时的通风,即开凿井筒(或平碉二井底车场、井下碉室、第一水平的运输巷道和通风巷道时的通风。

矿井通风设计-毕业论文

矿井通风设计-毕业论文

矿井通风设计-毕业论文矿井基建时期的通风设计是指在矿井建设初期,根据矿井的地质条件、矿井规模和生产能力等因素,确定矿井通风系统的基本结构和布局。

在设计过程中,要充分考虑通风系统的可靠性、经济性和适用性,确保通风系统的稳定运行和生产安全。

第二节矿井生产时期的通风矿井生产时期的通风设计是指在矿井正式投产后,根据矿井生产的实际情况,对通风系统进行调整和改造,以满足矿井生产的需要。

在设计过程中,要考虑矿井生产的特点和变化,及时调整通风系统,确保通风系统的稳定运行和生产安全。

第三节矿井通风设计的内容矿井通风设计的内容包括通风系统的布局、通风设备的选择、通风风量的计算、通风总阻力的计算等。

在设计过程中,要充分考虑矿井的地质条件、矿井规模和生产能力等因素,确保通风系统的合理性和可行性。

第四节矿井通风设计的要求矿井通风设计的要求包括通风系统的稳定性、可靠性、经济性和适用性等。

在设计过程中,要充分考虑矿井的实际情况和变化,及时调整通风系统,确保通风系统的稳定运行和生产安全。

第二章优选矿井通风系统第一节矿井通风系统的要求矿井通风系统的要求包括通风系统的稳定性、可靠性、经济性和适用性等。

在选择通风设备和布局通风系统时,要充分考虑矿井的地质条件、矿井规模和生产能力等因素,确保通风系统的合理性和可行性。

第二节确定矿井通风系统确定矿井通风系统是指根据矿井的实际情况和要求,选择合适的通风设备和布局通风系统。

在确定通风系统时,要充分考虑通风系统的稳定性、可靠性、经济性和适用性等因素,确保通风系统的合理性和可行性。

第三章矿井风量计算第一节矿井风量计算原则矿井风量计算的原则是根据矿井的地质条件、矿井规模和生产能力等因素,确定矿井所需的通风风量。

在计算过程中,要充分考虑矿井的实际情况和变化,确保通风系统的稳定运行和生产安全。

第二节矿井需风量的计算1.采煤工作面需风量的计算采煤工作面需风量的计算是指根据采煤工作面的长度、工作面采高、采煤机功率等因素,确定采煤工作面所需的通风风量。

矿井通风与安全专业毕业设计

矿井通风与安全专业毕业设计

矿井通风与安全专业毕业设计1. 引言矿井通风与安全是矿工生命安全和矿山生产的重要保障,毕业设计的主要目标是研究并设计一套高效可靠的矿井通风系统,确保矿井内部的空气质量和瓦斯浓度处于安全范围内。

2. 毕业设计背景矿山作为重要的资源开发和能源供应基地,对于矿井通风与安全的要求越来越高。

近年来,矿井灾害事故频发,严重威胁到矿工的生命安全和矿山生产的持续性。

因此,设计一套高效可靠的矿井通风系统成为矿井通风与安全专业毕业设计的重要课题。

3. 设计目标本毕业设计的主要目标是设计并实现一套高效可靠的矿井通风系统。

具体的设计目标如下:•提高矿井内部空气质量,确保矿工的健康与安全;•控制矿井内的瓦斯浓度,预防瓦斯爆炸事故的发生;•优化通风系统的运行效率,降低能耗并提高矿山生产效率。

4. 设计方案4.1 矿井通风系统结构矿井通风系统主要包括风机、风管、进风口、排风口、防治装置等组成部分。

本设计采用集中控制的方式,通过自动化系统实现对整个通风系统的监控和控制。

4.2.1 风机选择和布置合理选择风机类型和布置位置,确保通风系统能够有效地实现矿井内部空气的循环和更新。

4.2.2 风管设计根据矿井的结构和布置情况,确定风管的数量、直径和布局方式,降低风阻,提高通风效果。

4.2.3 进排风口设计合理布置进排风口,实现矿井内空气的均匀分布和有序流通。

4.2.4 防治装置设计设计并安装瓦斯浓度监测装置、防爆设备等,及时预警并采取措施防止瓦斯爆炸事故的发生。

本设计采用PLC控制系统和传感器技术实现对通风系统的自动化控制。

通过监测矿井内部的空气质量和瓦斯浓度,调整风机的转速和风量,实现矿井通风系统的智能控制,提高通风系统的运行效率。

5. 设计实施方案5.1 设计流程本毕业设计主要分为以下几个步骤:1.调研矿井通风与安全的相关技术和现状;2.确定设计目标和技术要求;3.进行系统结构设计和关键技术的选取;4.进行通风系统的仿真模拟和性能测试;5.设计通风系统的自动化控制方案;6.进行系统的实际搭建和调试;7.进行系统性能测试和评估。

矿井通风设计毕业设计论文

矿井通风设计毕业设计论文

目录一概述 (1)二矿井通风系统选择 (1)(一)设计原则及步骤 (1)三风量计算及风量分配 (3)(一)矿井需风量计算 (3)(二)风量分配与风速验算 (8)四矿井通风阻力计算 (10)(一)计算原则 (10)(二)计算方法 (11)五主要通风机选型 (12)(一)自然风压的计算 (12)(二)选择主要通风机 (13)(三)选择电动机 (15)六概算矿井通风费用 (16)七矿井等积孔计算 (17)参考文献 (18)附录一矿井井巷通风总阻力附表 (19)附录二困难时期通风网络图 (21)附录三容易时期通风网络图 (22)一概述某煤矿井田范围走向长7.42km,倾斜宽0.66—1.47km,井田面积约8.53 km2。

位于背斜南翼,为一般平缓的单斜构造,地层产状走向近东西向,倾向南,倾角10-25。

,一般为16。

左右。

矿井生产能力为90万t/a。

矿井采用中央竖井,煤层分组采区上山布置的开拓方式,单翼对角式通风。

矿井通风难易时期的系统示意图见后。

井田设三个井筒:主井、副井、风井。

地面标高+200m。

全矿井划分为两个水平,第一水平标高-150m,第二水平标高-350m,回风水平标高+45~+50m。

第一水平东西运输大巷布置在煤层的底板岩石中,距煤层30m,通过水平大巷开拓煤层的全部上山采区。

矿井采用走向长壁开采方式。

该矿是高瓦斯矿井,瓦斯涌出量较大,为安全起见,用“品”字形布置三条上山。

采用综合机械化放顶煤采煤。

采煤工作面的平均断面积8.1 m2,回采工作面温度一般在21°,回风巷风流中瓦斯(或二氧化碳)的平均绝对涌出量为5.65m3/min,三四班交接时人数最多66人;掘进工作面平均绝对瓦斯涌出量3.75m3/min,掘进工作面同时工作的最多人数18人,一次爆破炸药用量4.3kg。

二矿井通风系统选择选择合理的局部通风方法、风筒类型与直径,计算局部通风阻力、选择局部通风机及掘进通风安全技术措施、装备。

矿井通风设计论文毕设论文

矿井通风设计论文毕设论文

目录前言 (1)第一章设计依据 (2)一、矿井概况 (2)二、井巷尺寸及支护参数 (3)第二章矿井及采区通风系统 (4)一、采区通风方式 (4)二、采煤工作面的通风方式 (4)三、主扇的工作方法 (5)第三章矿井总风量和各用风地点风量 (7)一、矿井总风量计算 (7)第四章矿井通风阻力的计算 (14)一、矿井通风阻力计算原则 (14)第五章矿井主扇风机的选型 (18)一、选型依据 (18)二、主要通风机的选择 (18)第六章参考文献及感想 (20)一、参考文献 (20)二、感想 (20)附图1:通风容易时期通风系统图 (21)附图2:通风容易时期通风 (22)附图3:通风困难时期通风系统 (23)附图4:通风困难时期通风网络图 (24)前言矿井通风课程设计是本课程学习的最后一个实践教学环节。

通过课程设计,学生对所学的理论知识经行一个系统的总结,并结合实际条件加以运用,以巩固和扩大所学的理论知识,巩固和发展学生的运算和绘图的工程能力,培养和提高大学生分析和理解的能力,丰富学生的安全生产实际知识,并进一步培养和锻炼学生热爱劳动、善于理论联系实际、尊重科学和实践的良好思想作风。

课程设计的目的包括:(1)巩固和加深专业知识的理解,提高综合运用所学知识的能力。

(2)根据需要选学参考书籍,查阅相关文献资料,学会分析和解决问题的方法。

(3)了解与本课程有关的工程技术规范,能按照设计任务书的要求,编写设计说明书,绘制技术图表等。

(4)培养严肃,认真的工作学风和科学态度。

(5)应使学生了解课程设计工作的基本步骤和流程,初步具备运用所学知识解决实际问题的能力,重点掌握设计工作的基本程序和实施方法。

第一章设计依据一、矿井概况煤层地质概况:单一煤层,倾角25˚,煤层厚2.5m,属于瓦斯矿井,二氧化碳涌出量很小,煤尘有爆炸危险,涌水量不大。

井田范围:设计第一水平深度380m,走向长度7200m,双翼开采,每翼长3600m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿井通风设计(河南理工大学)矿井通风设计是整个矿井设计内容的重要组成部分,是保证安全生产的重要环节。

因此,必须周密考虑,精心设计,力求实现预期效果。

一、矿井通风设计的内容与要求矿井通风设计的基本任务是建立一个安全可靠、技术先进经济的矿井通风系统。

矿井通风设计分为新建或扩建矿井通风设计。

对于新建矿井的通风设计,既要考虑当前的需要,又要考虑长远发展的可能。

对于改建或扩建矿井的通风设计,必须对矿井原有的生产与通风情况做出详细的调查,分析通风存在的问题,考虑矿井生产的特点和发展规划,充分利用原有的井巷与通风设备,在原有基础上提出更完善、更切合实际的通风设计。

无论新建、改建或扩建矿井的通风设计,都必须贯彻党的技术经济政策,遵照国家颁布的矿山安全规程、技术规程、设计规范和有关的规定。

矿井通风设计一般分为两个时期,即基建时期与生产时期,分别进行设计计算。

(一)矿井基建时期的通风矿井基建时期的通风指建井过程中掘进井巷时的通风,即开凿井筒(或平硐)、井底车场、井下硐室、第一水平的运输巷道和通风巷道时的通风。

此时期多用局部通风机对独头巷道进行局部通风。

当两个井筒贯通后,主要通风机安装完毕,便可用主要通风机对已开凿的井巷实行全压通风,从而可缩短其余井巷与硐室掘进时局部通风的距离。

(二)矿井生产时期的通风矿井生产时期的通风是指矿井投产后,包括全矿开拓、采准和采煤工作面以及其他井巷的通风。

这时期的通风设计,根据矿井生产年限的长短,又可分为两种情况:(1)矿井服务年限不长时(大约15至20年),只做一次通风设计。

矿井达产后通风阻力最小时为矿井通风容易时期;矿井通风阻力最大时为困难时期。

依据这两个时期的生产情况进行设计计算,并选出对此两个时期的通风皆为适宜的通风设备。

(2)矿井服务年限较长时,考虑到通风机设备选型,矿井所需风量和风压的变化等因素,又需分为两个时期进行通风设计。

第一水平为第一期,对该时期内通风容易和困难两种情况详细地进行设计计算。

第二期的通风设计只做一般的原则规划,但对矿井通风系统,应根据矿井整个生产时期的技术经济因素,作出全面的考虑,以使确定的通风系统既可适应现实生产的要求,又能照顾长远的生产发展与变化情况。

矿井通风设计所需要的基础资料如下:矿井地形地质图;矿岩游离二氧化硅(矽)、硫、放射性物质及瓦斯和有害气体的含量;煤岩自然发火倾向性;煤尘爆炸性;矿区气候条件,包括年最高、最低、平均气温、地温、地热增深率及常年主导风向等;矿岩容重、块度、松散系数、含泥量及粘结性;矿区有无老窑旧巷及其所在地点和存在情形;矿井年产量、服务年限、开拓系统、回采顺序、开采方法;产量分配和作业布置,同时作业的工作面数及备用工作面个数;同时开动的各种型号的凿岩机台数及其分布;同时爆破的最多炸药量;同时工作的最多人数等。

(三)矿井通风设计的内容(1)确定矿井通风系统(2)矿井通风计算和风量分配(3)矿井通风阻力计算(4)选择通风设备(5)概算矿井通风费用此外,根据不同地区或矿井的特殊条件,还需警醒矿井空气温度调节的计算(具体内容见第八章)(四)矿井通风设计的要求(1)将足够的新鲜空气有效地送到井下工作场所,保证生产和创造良好的劳动条件;(2)通风系统简单,风流稳定,易于管理,具有抗灾能力;(3)发生事故时,风流易于控制,人员便于撤出;(4)有符合规定的井下环境及安全检测系统或检测措施;(5)通风系统的基建投资省,营运费用低,综合经济效益好。

二、优选矿井通风系统(一)矿井通风系统的要求(1)每一矿井必须有完整的独立通风系统。

(2)进风井口应按全年风向频率,必须布置在不受粉尘、煤尘、灰尘、有害气体和高温气体侵入的地方。

(3)箕斗提升井或装有胶带运送机的井筒不应兼做进风井,如果兼做进风井使用,必须采取措施,满足安全的需要。

(4)多风机通风系统,在满足风量按需分配的前提下,各主要通风机的工作风压应接近,当通风机之间的风压相差较大时,应减小共用风路的风压,使其不超过任何一个通风机风压的30%。

(5)每一个生产水平和每一采区,都必须布置回风巷,实行分区通风。

(6)井下爆破材料库必须有单独的新鲜风流,回风风流必须直接引入矿井的总回风巷或主要回风巷中。

(7)井下充电室必须用单独的新鲜风流通风,回风风流应引入回风巷。

(二)确定矿井通风系统根据矿井瓦斯涌出量、矿井设计生产能力、煤层赋存条件、表土层厚度、井田面积、地温、煤层自燃倾向性及兼顾中后期生产需要等条件,提出多个技术上可行的方案,通过优化或技术经济比较后确定矿井通风系统。

矿井通风系统应具有较强的抗灾能力,当井下一旦发生灾害性事故后所选择的通风系统能将灾害控制在最小范围,并能迅速恢复正常生产。

三、矿井风量计算(一)矿井风量计算原则矿井需风量,按下列要求分别计算,并采取其中最大值。

(1)按井下同时工作最多人数计算,每人每分钟共计风量不得少于4m³;(2)按采煤、掘进、硐室及其他实际需要风量的总和进行计算。

(二)矿井需风量的计算1.采煤工作面需风量的计算采煤工作面的风量应该按下列因素分别计算,取得最大值。

1)按瓦Qwi=100⨯Qgwi⨯Kgwi式中 Qwi——第i个采煤工作面需要风量,m³/minQgwi——第i个采煤工作面瓦斯绝对涌出量,m³/minKgwi——第i个采煤工作面因瓦斯涌出不均匀的备用风量系数,它是该工作面瓦斯绝对涌出量的最大值和平均值之比。

生产矿井可根据各个工作面正常生产条件时,至少进行5昼夜的观测,得出5个比值,取其最大值。

通常机采工作面取Kgwi=1.2~1.6;炮采工作面取Kgwi=1.4~2.0;水采工作面取Kgwi=2.0~3.0。

2)按工作面进风流温度计算采煤工作面应有良好的气候条件。

其进风流温度可根据风流温度预测方法进行计算。

其气温与风速应符合表7-4-1的要求。

表7-4-1 采煤工作面空气温度与风速对应表采煤工作面的需要风量计算:Qwi=60⨯Vwi⨯S wi⨯Kwi式中Vwi——第i个采煤工作面的风速,按其进风流温度从表7-4-1中选取,m/s;S wi——第i个采煤工作面有效通风断面,取最大和最小控顶时有效断面的平均值,m2Kwi——第i个工作面的长度系数,可按表7-4-2选取。

表7-4-2 采煤工作面长度风量系数表3) 按使用炸药量计算Qwi=25³Awi式中 25——每使用1kg炸药的供风量,m3/min;Awi——第i个工作面一次爆破使用的最大炸药量,kg;4)按工作人员数量计算Qwi=4³nwi式中 4——每人每分钟应供给的最低风量,m3/min;nwi——第i个采煤工作面同时工作的最多人数,个。

5)按风速进行验算按最低风速验算各个采煤工作面的最小风量:Qwi≥60³0.25³Swi按最高风速验算各个采煤工作面的最大风量:Qwi≤60³0.25³Swi采煤工作面有串联通风时,按其中一个最大需风量计算。

备用工作面也按上述要求,并满足瓦斯、二氧化碳、风流温度和风速等规定计算需风量,且不得低于其回采时需风量的50%。

2.掘进工作面需风量的计算煤巷、半煤岩和岩巷掘进工作面的风量,应按下列因素分别计算,取其最大值。

1)按瓦斯涌出量计算Qhi=100³Qghi³Kghi式中 Qhi——第i个掘进工作面的需风量,m3/min;Qghi——第i个掘进工作面的绝对瓦斯涌出量,m3/min;Kghi——第i个掘进工作面的瓦斯涌出不均匀和备用风量系数,一般可取1.5~2.0。

2)按炸药量计算Qhi=25³Ahi 式中 25——使用1kg炸药的供风量,m3/min;Ahi——第i个掘进工作面一次爆破使用的最大炸药量,kg。

3)按局部通风机吸风量计算Qhi= ∑Qhfi³Khfi式中∑Qhfi——第i个掘进工作面同时运转的局部通风机额定风量的和。

各种通风机的额定风量可按表7-4-3选取。

Khfi——为防止局部通风机吸循环风的风量备用系数,一般取1.2~1.3。

进风巷道中无瓦斯涌出时取1.2,有瓦斯涌出时去1.3。

表7-4-3 各种局部通风机的额定风量4)按工作人员数量计算Qhi=4³n hi式中n hi ——第i个掘进工作面同时工作的最多人数,人。

5)按风速进行验算按最小风速验算,各个岩巷绝境工作面最小风量:Q hi≥60³0.15³S hi 各个煤巷或半煤巷掘进工作面的最小风量:Q hi≥60³0.25³S di 按最高风速验算,各个掘进工作面的最大风量:Q hi≤60³4³S hi式中S hi——第i个掘进工作面巷道的净断面积,m2。

3.硐室需风量计算各个独立通风硐室的供风量,应根据不同类型的硐室分别进行计算:1)机电硐室发热量大的机电硐室,按硐室中运行的机电设备发热量分别进行计算:Q ri= 3600³∑N³θρ³Cp³60³Δt式中Q hi——第i个机电硐室的需风量,m3/min;∑N—机电硐室中运转的电动机(变压器)总功率,kw;θ—机电硐室的发热系数,可根据实际考察由机电硐室内机械设备运转时的实际热量转换为相当于电器设备容量做无用功的系数确定,也可按表7-4-4选取;ρ—空气密度,一般取1.2kg/ m3;Cp—空气的定压比热,一般可取1kJ/(kg²K);Δt—机电硐室进、回风流的温度差,℃。

表7-4-4机电硐室发热系数(θ)表采区变电所及变电硐室,可按经验值确定需风量:Q ri=60~80 m3/min 2)爆破材料库Q ri=4³V/60式中 V—库房容积,m3但大型爆破材料库不得小于100 m3/min,中小型爆破材料库不得小于60m3/min。

3)充电硐室按其回风流中氢气浓度小于0.5%计算Q ri=200³q rhi式中q rhi ——第i个充电硐室在充电时产生的氢气量,m3/min。

4.其他用风巷道的需风量计算机各个其他巷道的需风量,应根据瓦斯涌出量和风速分别进行计算,采用其最大值。

1)按瓦斯涌出量计算Q oi=133³Q goi³k goi式中Q goi——第i个其他用风巷道的瓦斯绝对涌出量,m3/min;k oi ——第i个其他用风巷道瓦斯涌出不均匀的风量备用系数,一般可取k goi=1.2~1.3.2)按最低风速验算Q oi≥60³0.15³S oi式中S oi——第i个其他井巷净断面积,m2。

5.矿井总风量计算矿井的总进风量,应按采煤、掘进、硐室及其他地点实际需要风量的总和计算:Q m=(∑Q wt+∑Q ht+∑Q rt+∑Q ot)³k m式中∑Q wt——采煤工作面和备用工作面所需风量之和,m3/min;∑Q ht——掘进工作面所需风量之和,m3/min;∑Q rt——硐室所需风量之和,m3/min;∑Q ot——其他用风地点所需风量之和,m3/min。

相关文档
最新文档