偏微分方程教程特征理论与方程的分类讲解
偏微分方程理论的归纳与总结

偏微分方程基本理论的归纳与总结偏微分方程是储存自然信息的载体,自然现象的深层次性质可以通过数学手段从方程中推导出来.最为一种语言,微分方程在表达自然定律方面比文字具有更强的优越性.微分方程是一个庞大的体系,它的基本问题就是解的存在性和唯一性.该学科的主要特征是不存在一种可以统一处理大多数偏微分方程的适定性问题的普适的方法和理论.这是与常微分方程有显著差异的地方.这种特性使得我们将方程分为许多种不同类型,这种分类的依据主要来自数学与自然现象这两个方面.从数学的角度,方程的类型一般总是对应于一些普遍的理论和工具.换句话讲,如果能建立一个普遍性的方法统一处理一大类方程问题,那么这个类型就被划分出来.而从自然现象的角度,我们又可以根据不同的运动类型以及性质将方程进行分类.当然这两种方式常常不能截然区分,通常它们是相互关联的,这就造成方程的概念有许多重叠现象.根据数学的特征,偏微分方程主要被分为五大类,它们是:(1)线性与拟微分方程,研究这类方程的主要工具是Fourier分析方法;(2)椭圆型方程,它的方法是先验估计+泛函分析手段;(3)抛物型方程,主要是Galerkin方法,算子半群,及正则性估计;(4)双曲型方程,对应于Galerkin方法;(5)一阶偏微分方程,主要工具是数学分析方法.从自然界的运动类型出发,偏微分方程可分为如下几大类:(1)稳态方程(非时间演化方程);(2)耗散型演化方程,这类方程描述了时间演化过程中伴有能量损耗与补充的自然运动.相变与混沌是它们的主要内容;(3)保守系统,如具有势能的波方程.该系统控制的运动是与外界隔离的,及无能量输入,也无能量损耗.行波现象与周期运动是它们的主要特征;(4)守恒律系统,这类方程是一阶偏微分方程组,它们与保守系统具有类似的性质,可视为物质流的守恒.激波行为是由守恒律系统来控制.下面具体来介绍三类经典方程:三类典型方程:椭圆型方程,抛物型方程,双曲型方程,即偏微分方程模型的建立,解问题的解法以及三类典型方程的基本理论.关于三类典型方程定解问题的解题方法,它们主要是分离变量法、积分变换法、特征线法、球面平均法、降维法和Green 函数方法.关于三类典型方程的基本理论——极值原理和能量估计,并由此给出了解的唯一性和稳定性的相关结论.具体来说,关于二阶线性椭圆形方程,我们研究它的古典解和弱解.前者主要介绍了基本解、调和函数的基本性质、Green 函数、极值原理、最大模估计、能量方法和变分原理;而后者的研究则需要知道Sobolev空间的相关知识再加以研究;关于二阶线性抛物型方程,主要研究它的Fourier 变换、特殊的求解方法、基本解、方程式和方程组的最大值原理以及最大模估计、带有非经典边界条件和非局部项的方程式的最大值原理及能量方法;关于二阶线性双曲型方程,主要研究初值问题的求解方法、初值问题的能量不等式与解的适定性、以及混合问题的能量模估计与解的适定性.椭圆、抛物和双曲这三类线性偏微分方程解的适定性问题,它们分别以拉普拉斯方程、热传导方程和波动方程作为代表.具体地说,对于某些规则的求解区域试图求出满足特定线性偏微分方程和定解条件的具体解,这就决定了存在性问题;再利用方程本身所具有的特殊性质,将证明所求解是唯一的,也就解决了唯一性问题;关于连续依赖性问题,需要在不同函数空间中考虑,我们将在连续函数空间和平方可积函数空间中分别讨论解关于输入数据的连续依赖性问题学习偏微分方程理论以及偏微分方程分析是研究其它一切的基础.首先有必要解释一下解的适定性.简单地说,一个偏微分方程是适定性的,若它有解(存在性)解唯一(唯一性)且对输入数据的微小改变的响应也是很小的改变(连续依赖性).前两个准则是一个有意义的物理模型所要求的,第三个准则是实验观察的基础.考虑适定性时,还应记得对有实际意义的问题通常不可能求得显示解,从而可考虑逼近格式,特别是数值解在应用中就具有特别的重要性.因此,适定性问题与偏微分方程科学计算的如下中心问题有密切联系:对一个问题给定一定精度的数据,数值解计算输出有多少精度?正因为这个问题对现代定量科学的重要性,适定性成为偏微分方程理论的核心内容.因此,偏微分方程的学习应以三类线性偏微分方程的适定性问题为主要研究对象.同时,考虑到偏微分方程理论的两个特点:一是与应用、与物理的紧密联系;二是与数学其它分支的联系.以下,我们具体来说一下其两个具有应用价值的特点.针对特点一:首先,数学物理方程是自然科学和工程技术的各门分支中出现的偏微分方程,这些方程给出了所考察的物理量关于自变量(时间变量和空间变量)的偏导数的关系.例如连续介质力学、电磁学、量子力学等方面的基本方程都属于数学物理的范畴,数学物理方程侧重于模型的建立和定解问题的解题方法,而偏微分方程则侧重于其自身的数学理论,所以偏微分方程理论的研究是能够更好地将其运用于物理当中.针对特点二:偏微分方程理论与其他数学分支如泛函分析、数论、拓扑学、代数、复分析等紧密联系.偏微分方程理论广泛应用数学这些领域中的基本概念,基础思想和基本方法,并且它本身也给这些学科分支的研究问题的范围与方向以影响.鉴于此,对于应用数学而言,掌握和研究偏微分方程的目的主要应该放在以下几个方面:(1)建立模型.在经典物理中,具有普遍意义的自然定律不仅可以用实验手段获得,而且根据这些定律很容易对相应的自然现象建立数学模型.如天体力学,连续介质力学,流体动力学以及经典电磁学中的物理定律就属于这种情况.在近代物理中,情况有一些变化.咋爱量子力学与广义相对论中,一些自然规则与物理定律是隐而不见的,此时数学物理方程是依靠部分物理原则与实验数据猜测出来的.然而,到了现代数学阶段,大多数面临的问题仅依靠物理或数学的单一学科知识和直觉建立模型已变得非常困难,必须具备多学科交叉能力才行.因此,只有系统全面地掌握偏微分方程的理论与方法,才能训练出从方程解的性质反推出模型的形式的能力,这里方程解的性质是由实验数据与观测资料所提供.这种模型反推能力再结物理直觉就是现在建立数学模型的基本要求;(2)从已知的方程和模型推导出新的发现和预言.这个方面可以说是科学发展最重要的环节之一;(3)从控制自然现象的微分方程中得到问题的机理和解释;(4)最后一个方面就是从数学模型获得与实验和观测相吻合的性质和结论.虽然这类工作不能提供新的科学结果,但能使我们加深对问题的理解,体现自然美与数学美的有机结合.在总结了偏微分方程理论所研究的内容及其特点以后,我们该怎样学习基本理论呢?首先,对于每一类方程,我们要了解它的物理背景及其意义,否则,我们根本不知道它在说什么.事实上,同一个方程有许多不同的来源,这一方面是偏微分方程理论具有广泛应用的原因之一.同时对于不同的来源进行类比研究可以更好地解释物理过程的某些特性,因为某个具体物理特性在某个物理过程还没有被观察到或没有引起注意,而在另外某个物理过程已经被观察注意到了,如果这两个物理过程服从同一个偏微分方程,则在原来的物理过程中应该也具有这个特性.其次,在对数学模型研究之后,需要有意识地讲数学解带回原来的物理意义中,去理解,解释物理现象.这一方面可以验证数学模型的有效性,另一方面可以更好地理解已知的物理现象,从而更加深刻地了解其在现实中的意义.然后,要善于去思考,总结,归纳.逐步提高分析、解决实际问题的能力.至于与数学其他学科的联系,比如,求解过程中将会用到许多微积分或数学分析的概念,思想,和定理,解的表达形式也是有积分形式的或级数形式的,解空间的结构则用到许多线性代数的知识.最后,学好泛函分析也是同等重要的,因为偏微分方程解的唯一性和连续依赖性需要许多实变和泛函分析的理论和方法.所以在重视偏微分方程基本理论时(实变函数和泛函分析的许多思想方法都是来源于偏微分程理论研究),也要同样学好泛函分析.参考文献(1)王明新,偏微分方程基本理论;(2)马天,偏微分方程理论与方法;(3)王明新,数学物理方程.。
偏微分方程的分类与性质

偏微分方程的分类与性质偏微分方程是数学中一个非常重要的分支,它广泛应用于自然科学、工程技术和经济管理等领域。
偏微分方程的分类与性质是深入研究偏微分方程、解决实际问题的前提和基础。
本文将介绍偏微分方程的分类方法和相关性质。
一、偏微分方程的分类方法根据方程中未知函数的个数和自变量的个数,可以将偏微分方程分为一维偏微分方程和多维偏微分方程。
一维偏微分方程中只有一个自变量,多维偏微分方程中有多个自变量。
1. 一维偏微分方程一维偏微分方程比较简单,可以按照方程中阶数的不同进行分类。
一般来说,可以将一维偏微分方程分为以下三种类型:(1)线性偏微分方程当一维偏微分方程的未知函数u及其偏导数的系数A(x)、B(x)等都是关于自变量x的线性函数时,就称其为线性偏微分方程。
线性偏微分方程多数可以通过常数变易法求解。
例如:$au_x+bu_{xx}+c=0$(2)半线性偏微分方程当一维偏微分方程的未知函数u是关于自变量x的线性函数,而其偏导数项中含有u关于自变量的非线性函数时,就称其为半线性偏微分方程。
这类方程的求解利用抛物型偏微分方程理论,例如:$u_t = \frac{1}{2}u_{xx} + u^2$(3)非线性偏微分方程当一维偏微分方程的未知函数u及其偏导数的系数A(x)、B(x)等都是关于自变量x的非线性函数时,就称其为非线性偏微分方程。
非线性偏微分方程的求解相对较难,很少能用解析法求解。
例如:$u_x+uu_{xx}=0$2. 多维偏微分方程多维偏微分方程具有更广泛的应用,包括流体力学、弹性力学、电磁场理论、热传导等方面。
多维偏微分方程的分类方法比较复杂,可以按照方程的形式、变量的类型、方程的类型等多个方面进行分类。
本文只介绍比较常用的分类方法:(1)仿射型偏微分方程多维偏微分方程中,如果只涉及到变量的一次多项式和常数的线性组合,就称为仿射型偏微分方程。
例如:$a_{11}\frac{\partial^2u}{\partialx^2}+2a_{12}\frac{\partial^2u}{\partial x \partialy}+a_{22}\frac{\partial^2u}{\partial y^2}+b_1\frac{\partialu}{\partial x}+b_2\frac{\partial u}{\partial y}+cu=0$(2)椭圆型偏微分方程多维偏微分方程中,如果方程的解在变量取值范围内无界或呈指数增长,则该方程就称为椭圆型偏微分方程。
特征理论----偏微分方程组省公开课一等奖全国示范课微课金奖PPT课件

第18页
第7章 特征理论 偏微分方程组
于是,C-K 定理 7.4.1可等价地叙述为
C-K型定理证实用是强函数方法,即用一个显著可解出问题与所考虑问题 相比较,故须要介绍强函数概念。
第19页
第7章 特征理论 偏微分方程组
7.4.3 强函数
第20页
第7章 特征理论 偏微分方程组
7.4.4 C-K 定理证实
(1) 唯一性(幂级数解法)。 (2) 存在性(强函数方法)。
附注 1 该定理断言解析解局部存在唯一性,并没有确保整体解存在性。
附注 2 由证实知,若方程右端及Cauchy数据是各自变量解析函数,则在初始
平面
上任意点领域内都存在一个解析解。再由解唯一性知,把这些解
第7章 特征理论 偏微分方程组
7.1ห้องสมุดไป่ตู้1 弱间断解与弱间断面
第1页
第7章 特征理论 偏微分方程组
例子
考虑弦振动方程
则
不是古典解,但它是弱间断解。
第2页
第7章 特征理论 偏微分方程组
7.1.2 特征方程与特征曲面
设光滑曲面
是方程(7.1.1)弱间断面。
能够推出它应满足条件为下式在 上处处成立。
7.2.2 狭义双曲型方程组标准型
第9页
第7章 特征理论 偏微分方程组
将狭义双曲型方程化为标准型方法:
1.
求向量方程 2.
解。
令,
用T 左乘(7.2.2)式得:
第10页
第7章 特征理论 偏微分方程组
3.
第11页
第7章 特征理论 偏微分方程组
7.3 双曲型方程组Cauchy 问题
偏微分方程的分类与求解方法

偏微分方程的分类与求解方法引言:偏微分方程(Partial Differential Equations,简称PDE)是数学中重要的研究对象之一,广泛应用于物理学、工程学、经济学等领域。
本文将探讨偏微分方程的分类与求解方法,以加深对这一领域的理解。
一、偏微分方程的分类偏微分方程可以根据方程中未知函数的个数、阶数以及系数的性质进行分类。
常见的分类包括:1. 偏微分方程的个数:- 单一偏微分方程:方程中只包含一个未知函数,如波动方程、热传导方程等;- 耦合偏微分方程:方程中包含多个未知函数,它们相互耦合,如Navier-Stokes方程、Maxwell方程等。
2. 偏微分方程的阶数:- 一阶偏微分方程:方程中包含一阶导数,如线性传热方程;- 二阶偏微分方程:方程中包含二阶导数,如波动方程、扩散方程等;- 更高阶的偏微分方程:方程中包含更高阶的导数,如椭圆型方程、双曲型方程等。
3. 偏微分方程的系数性质:- 线性偏微分方程:方程中的未知函数及其导数出现的系数是线性的,如线性传热方程;- 非线性偏微分方程:方程中的未知函数及其导数出现的系数是非线性的,如Burgers方程、Navier-Stokes方程等。
二、偏微分方程的求解方法解偏微分方程是数学中的重要课题,有许多不同的求解方法。
下面介绍几种常见的方法:1. 分离变量法:分离变量法是一种常用的求解偏微分方程的方法,适用于一些特殊的方程。
它的基本思想是将多元函数表示为各个变量的乘积,然后将方程分离为多个常微分方程,再通过求解常微分方程得到最终的解。
2. 特征线法:特征线法适用于一些特殊的偏微分方程,如一阶线性偏微分方程、双曲型方程等。
它的基本思想是通过引入新的变量,将偏微分方程转化为常微分方程,然后通过求解常微分方程得到原方程的解。
3. 变换法:变换法是一种通过变换将原方程转化为更简单的形式,从而求解的方法。
常见的变换包括拉普拉斯变换、傅里叶变换等。
这些变换可以将原方程转化为代数方程或常微分方程,进而求解得到解析解。
大学数学易考知识点偏微分方程的基本理论和解法

大学数学易考知识点偏微分方程的基本理论和解法大学数学易考知识点:偏微分方程的基本理论和解法一、引言数学作为一门基础学科,广泛应用于各行各业。
在大学数学课程中,偏微分方程是一个重要的知识点。
本文将介绍偏微分方程的基本理论和解法,帮助大家更好地掌握这一知识点。
二、偏微分方程的基本概念1. 偏微分方程的定义偏微分方程是含有未知函数及其偏导数的方程。
它与常微分方程不同之处在于,偏微分方程中的未知函数不仅依赖于自变量,还依赖于各个自变量的偏导数。
2. 偏微分方程的分类偏微分方程根据方程中出现的未知函数的偏导数的阶数和个数,可以分为常系数偏微分方程和变系数偏微分方程;根据方程类型,可以分为椭圆型、双曲型和抛物型等不同类型的方程。
三、偏微分方程的基本理论1. 解的存在性和唯一性对于线性偏微分方程,满足一定的初值条件和边值条件时,解的存在性和唯一性可以得到保证。
这一结论对于求解实际问题具有重要的意义。
2. 偏微分方程的解的性质偏微分方程解的性质包括可微性、连续性以及一定的物理意义。
解的性质可以通过数学推导和物理分析得到。
四、偏微分方程的解法1. 常系数偏微分方程的解法常系数偏微分方程包括常系数线性偏微分方程和常系数非线性偏微分方程。
对于常系数线性偏微分方程,可以使用特征线法、分离变量法等方法求解;对于常系数非线性偏微分方程,可以使用变量分离法等方法求解。
2. 变系数偏微分方程的解法对于变系数偏微分方程,一般的解法是利用变换法将其转化为常系数偏微分方程。
常用的变换方法包括相似变量法、积分因子法等。
五、应用实例1. 热传导方程的求解热传导方程是一个典型的偏微分方程,描述了物体内部温度随时间和空间的变化规律。
采用分离变量法或者变量分离法可以求解该方程,从而得到物体内部的温度分布。
2. 波动方程的求解波动方程描述了波动现象的传播规律。
通过变量分离法或者特征线法可以求解波动方程,得到波动的传播速度和波形。
六、总结通过对偏微分方程的基本理论和解法的介绍,我们可以看到偏微分方程是数学中一个重要且广泛应用的知识点。
偏微分方程理论的归纳与总结

偏微分方程理论的归纳与总结一、偏微分方程的分类:1.齐次与非齐次:一个偏微分方程中,如果所有出现的偏导数项的次数相同,且不含常数项,则称其为齐次方程;如果存在常数项,则称其为非齐次方程。
2.线性与非线性:一个偏微分方程中若只包含未知函数及其偏导数的一次项,并且未知函数的系数不依赖于未知函数自身及其偏导数,则称其为线性方程;反之,则是非线性方程。
3.定常与非定常:一个偏微分方程中,如果未知函数及其偏导数的系数不依赖于自变量,则称其为定常方程;反之,则是非定常方程。
4.高阶与低阶:一个偏微分方程中,若最高阶偏导数的阶数大于1,则称其为高阶方程;若最高阶偏导数的阶数为1,则称其为一阶方程。
二、偏微分方程的求解方法:1.分离变量法:对于一些特殊的偏微分方程,可以通过分离变量的方式将其转化为一阶常微分方程进行求解。
2.特征线法:对于一些具有特殊形式的偏微分方程,可以通过特征线法来求解。
该方法将方程中的自变量替换为新的变量,使得方程在新的变量系综下变得简单。
3.变换法:通过适当的变量代换,将原方程转化为形式简单的方程或标准的数学物理方程进行求解。
5.数值解法:对于一些复杂的偏微分方程,可以采用数值解法进行近似求解,如有限差分法、有限元法、谱方法等。
三、偏微分方程的应用:1.物理学:偏微分方程在物理学中有着广泛的应用,如热传导方程、波动方程、扩散方程等。
2.工程学:偏微分方程在工程学中也有重要应用,如电磁场方程、流体力学方程、固体力学方程等。
3. 经济学:偏微分方程在经济学中的应用主要用于建模和分析经济系统的动态变化,如Black-Scholes方程、Hamilton-Jacobi-Bellman方程等。
4. 生物学:偏微分方程在生物学中的应用主要用于描述群体的扩散、生物图像处理和生物电传导等问题,如Fisher方程、Gray-Scott方程等。
综上所述,偏微分方程理论是数学中的重要分支之一、通过对偏微分方程的分类、求解方法及其应用的归纳与总结,不仅可以帮助我们更好地理解偏微分方程的本质与特点,还能够为我们解决实际问题提供一个有效的数学工具。
偏微分方程的基本理论与解法

偏微分方程的基本理论与解法偏微分方程(Partial Differential Equations,简称PDE)是数学中非常重要的一个分支。
它描述了自然界中各种物理现象和工程问题中的变化和传播过程。
本文将介绍偏微分方程的基本理论和一些常见的解法。
一、偏微分方程的定义与分类偏微分方程是包含多个未知函数及其偏导数的方程。
它的一般形式可以表示为F(x1, x2, ..., xn, u, ∂u/∂x1, ∂u/∂x2, ..., ∂u/∂xn) = 0,其中u是未知函数,而∂u/∂xi表示对变量xi的偏导数。
根据方程中涉及的未知函数的个数以及偏导数的阶数,偏微分方程可以分为以下几类:1. 一阶偏微分方程:方程中包含一阶偏导数。
2. 二阶偏微分方程:方程中包含二阶偏导数。
3. 高阶偏微分方程:方程中包含高于二阶的偏导数。
4. 线性偏微分方程:方程中的未知函数及其偏导数之间的关系是线性的。
5. 非线性偏微分方程:方程中的未知函数及其偏导数之间的关系是非线性的。
二、偏微分方程的基本理论1. 解的存在性和唯一性:对于一些特定类型的偏微分方程,可以证明在一定的条件下,方程存在唯一的解。
这对于物理和工程问题的建模和求解非常重要。
2. 奇性理论:奇性现象是指当某些参数取特定值时,偏微分方程的解会发生突变。
奇性理论研究了这些特殊情况下方程解的行为。
3. 变分原理:变分原理是一种通过极小化能量泛函来求解偏微分方程的方法。
它是最优控制、计算物理等领域中的重要工具。
三、常见的偏微分方程解法1. 分离变量法:这是一种常见的求解线性偏微分方程的方法。
通过假设解可分离变量的形式,将方程转化为一系列常微分方程。
2. 特征线法:特征线法适用于一些特殊的偏微分方程,通过引入一组参数,将方程转化为关于参数的常微分方程组。
3. 变换法:变换法通过引入适当的变换,将原方程转化为简单形式的偏微分方程,进而求解。
总结:本文简单介绍了偏微分方程的基本理论与解法。
大学数学偏微分方程

大学数学偏微分方程在大学数学学科中,偏微分方程是一个重要的研究领域。
它是数学领域中研究描述多变量函数与其偏导数之间关系的方程。
偏微分方程广泛应用于物理学、工程学以及其他科学领域,并且在现代科学研究和技术应用中扮演着重要角色。
本文将介绍偏微分方程的基本概念、分类以及一些经典的偏微分方程模型。
1. 偏微分方程的基本概念偏微分方程描述了多个变量之间的关系,其中包括未知函数、偏导数以及自变量之间的关系。
偏微分方程可以分为线性和非线性两类,它们分别具有不同的性质和求解方法。
2. 偏微分方程的分类根据方程中未知函数的阶数以及变量的个数,偏微分方程可以分为常微分方程、偏微分方程以及它们的组合。
常见的偏微分方程包括椭圆型、双曲型和抛物型方程,它们分别对应于不同的物理问题和数学模型。
3. 椭圆型偏微分方程椭圆型偏微分方程在自变量的各个方向上具有平衡性,常用于描述稳态问题和静态现象。
其中最著名的方程是拉普拉斯方程和泊松方程,它们在电场、热传导等领域中有着广泛的应用。
4. 双曲型偏微分方程双曲型偏微分方程在自变量的某些方向上具有超越性,常用于描述波动传播和传输问题。
典型的双曲型偏微分方程包括波动方程和传输方程,它们在声波传播、电磁波传输等领域中具有重要意义。
5. 抛物型偏微分方程抛物型偏微分方程在自变量的某些方向上具有光滑性,常用于描述动态演化和扩散现象。
常见的抛物型偏微分方程有热传导方程和扩散方程,它们在热传导、扩散以及化学反应等问题中有着广泛应用。
6. 经典的偏微分方程模型偏微分方程在实际问题中的应用非常广泛,其中一些经典的模型具有重要的科学和工程意义。
比如,热传导方程可以描述物体的温度分布和热平衡状态;波动方程可用于描述机械波的传播和振动现象;扩散方程可以描述溶质在溶液中的传输和浓度分布。
综上所述,大学数学中的偏微分方程是一门重要的数学学科,它用于描述多变量函数与其偏导数之间的关系。
偏微分方程具有广泛的应用领域,包括物理学、工程学等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
§2 二阶方程的分类
【知识点提示】 二阶方程的特征和分类,化方程为标准型。
【重、难点提示】 辨别方程的类型并化为标准型 。
【教学. 目的】 主要介绍二阶方程的特征和分类,并将一般方程化为 标准型。初步了解如何辨别椭圆型偏微分方程,双 曲型偏微分方程和抛物型偏微分方程。 。
注3 根据连续性,由 在一点大于零或小于零可推得 在该点
的某邻域中也是如此. 所以方程为双曲型或椭圆型的性质总是在一 个区域中成立的,即若方程(2.1)在点 (x0 y0 ) 是双曲型或椭圆型的,
则它必在(x0 y0 )的某邻域内是双曲型或椭圆型的.反之,在一点
等于零并不能告诉我们它在这一点的邻域中的符号.因此,我们又有:
2
y2
u
2
y2
代入方程(2.1),得
A
2u
2
2B
2u
C
2u
2
L
F
7
其中
A() ax2 2bxy cy2
B() ax x b(x y y x ) cy y
C()
a
2 x
2b
x
y
c
2 y
通过简单的计算,我们知道(2.5)成立.
注1 关系式(2.5)表明在可逆自变量变换(2.3)下, 即 时,J方 0
11
定义3.2 若方程(2.1)在 区域的一个子区域上为双曲型的,
在 的另一个子区域上为椭圆型的,则称方程(2.1)在区域 中为 混合型方程;若方程(2.1)在区域 的一个子区域上为双曲型的,在
的其余点(不一定构成子区域)上为抛物型的,则称方程(2.1)在区
域 中为退化双曲型方程; 若方程(2.1)在区域 的一个子区域上为
程的判别式的符号保持不变.
8
注2 在可逆自变量变换(2.3)下, 线性二阶偏微分方程(2.1)仍化 为线性二阶偏微分方程(2.4). 事实上, 由
2 x
x x
2 x
2xy x y y x
2 x y
2 y
y y J 3 0
2 y
知 A(), B(), C() 不同时为零.
利用判别式的符号在可逆自变量变换下的不变性这一性质, 我 们来对方程(2.1)进行分类.
下面我们分别给出双曲型、 抛物型和椭圆型偏微分方程的标 准型.
13
为了简便起见, 我们不妨假设方程(2.1)的系数都是常数, 即
auxx 2buxy cuyy dux euy gu f (x y)
(2.6)
其中 a b c d e g 都是常数, 由于判别式 b2 ac是常数,
所以方程(2.6)在区域中所有点处都是同一类型的.
设在点 P(x0 y0 )的邻域内, 这时(2.1)的特征方程可写为
dy b dy b (2.2)
dx
a dx
a
其中 b2 ac 通常称为方程(2.1)的判别式,作自变量变换
4
(x y) (x y)
则方程(2.1)变为如下形式:
2u
2u
2u
A 2B C L F
2
与方程的最高阶导数项有关, 即与其二阶导数项的系数有关, 换句话
说, 方程(2.1)的特征概念仅与它的主部有关.
3
在讨论二阶偏微分方程的分类过程中, 常包含有化方程为标准形 式的问题, 这种通过变换使方程得到简化是研究偏微分方程常用的 手段,也就是说在我们研究一个方程的求解问题时, 先运用自变量变 换或函数变换将方程的形式尽量化简, 使其具有典型性.
(i)当 0 时, 其特征线是两族不同的实曲线
(x (x
y) y)
y y
1x 2 x
c1 c2
其中 1
b a
2
b a
且
c1 c2
为任意常数.
14
利用这两族实特征线, 作可逆自变量变换
(x (x
y) y)
y y
1x 2 x
9
定义3.1 设 R2是一个区域, (x0 y0 ) (i) 若 (x0 y0 ) 0 ,则称方程(2.1)在点 (x0 y0 ) 处为双曲型 偏微分方程, 若在 内的每一点处, 方程(2.1)都是双曲型的,则 称(2.1)在 内为双曲型偏微分方程;
(ii)若 (x0 y0 ) 0, 则称方程(2.1)在点 ( x0 y0 )处为抛物型
椭圆型的,在 的其余点(不一定构成子区域)上为抛物型的,则称 方程(2.1)在区域 中为退化椭圆型方程.
12
由(2.5)我们知道, 在可逆自变量变换(2.3)下, 方程的类型保持不 变, 即可逆自变量变换(2.3)将双曲型偏微分方程(抛物型偏微分方程, 椭圆型偏微分方程)仍变为双曲型偏微分方程(抛物型偏微分方程, 椭圆型偏微分方程). 因此, 为了求解方程(2.1), 我们常常需要找一个 可逆的自变量变换, 将方程(2.1)化成简单形式, 即标准型.
2
(2.3) (2.4)
在自变量变换(2.3)下,方程(2.1)的判别式 与(2.4)的判别式
B2 AC 之间有如下关系:
J 2
(2.5)
其中 J表示变换(2.3)的Jacobi行列式:
5
J x y x y
事实上, 由复合函数的微分法, 我们有
u u u x x x
u u u y y y
2u x2
2u 2
x
2
2
2u
x
x
2u 2
x
2
u
2 x2
u
2 x2
6
2u 2u 2u 2u u 2 u 2
xy
2
x
y
x
y
y
x
2
x
y
xy
xy
2u y2
2u
2
y
2
2
2u
y
y
2u
y
2
u
偏微分方程, 若在内 在内的每一点处,方程(2.1)抛物型的,则称 (2.1)在 内为抛物型偏微分方程;
10
(iii) 若 (x0 y0 ) 0 , 则称方程(2.1)在点 (x0 y0 ) 处为椭圆型 偏微分方程, 若在 内的每一点处,方程(2.1)都是椭圆型的,则称 (2.1)在 内为椭圆型偏微分方程.
2
我们先考虑两个自变量的线性偏微分方程
auxx 2buxy cuyy dux euy gu f
(2.1)
其中 a b c d和 e都g是 f 的已知x函数y, 且在 平面上的某区xo域y
内具有二阶连续偏导数. 假设在 内的每一点处,
a b c都不同时为零.
现在利用特征的性质对方程(2.1)进行分类. 我们知道特征概念仅