太阳能光伏发电系统的组成

合集下载

简述光伏系统的组成

简述光伏系统的组成

简述光伏系统的组成
光伏系统主要由太阳能电池阵列、汇流箱、逆变器、电网外电源、接线箱以及环境保护装置组成:
(1)太阳能电池阵列:使用个体太阳能电池片组成的大规模微电网系统。

(2)汇流箱:用于将太阳能电池阵列中的电流进行汇总,并将太阳能电池阵列与逆变器之间的电流连接起来。

(3)逆变器:将太阳能电池阵列所产生的直流电能转换成高压、高频的交流电能,供市电家庭配用。

(4)电网外电源:用于将太阳能系统产生的交流电能输送至市电网,自身采用双向调节功能,使太阳能电池阵列的输出电流等参数保持在规定的范围内。

(5)接线箱:在太阳能电池阵列、汇流箱里存储保护开关,并对太阳能电池阵列及汇流箱进行检测及安全保护。

(6)环境保护装置:用于合理安置太阳能系统,采取有效的止水及降噪设施,合理保护太阳能系统设备,避免野外设备因过暑过冷等因素而受损耗。

太阳能光伏系统的组成

太阳能光伏系统的组成

太阳能光伏系统的组成以太阳能光伏系统的组成为标题,我们来详细介绍一下。

一、太阳能光伏系统的组成太阳能光伏系统由多个组件组成,包括太阳能电池板、并网逆变器、电池储能系统、电网连接、监控系统等。

1. 太阳能电池板太阳能电池板是太阳能光伏系统的核心组件之一,它能够将太阳光直接转化为电能。

太阳能电池板采用光伏效应,通过半导体材料吸收太阳光的能量,产生直流电。

一般情况下,太阳能电池板采用硅材料制成,具有较高的光电转换效率。

2. 并网逆变器并网逆变器是将太阳能电池板产生的直流电转换为交流电的设备。

它将直流电转换为与电网频率和电压相匹配的交流电,使得太阳能发电系统能够与电网连接并向电网输送电能。

并网逆变器具有稳定的输出功率、高效率和安全可靠的特点。

3. 电池储能系统电池储能系统是太阳能光伏系统中的重要组成部分,用于存储太阳能电池板产生的电能。

当太阳能电池板产生的电能超过负载需求时,多余的电能将被储存到电池中;当太阳能电池板产生的电能不足以满足负载需求时,电池将释放储存的电能供负载使用。

电池储能系统可以提高太阳能光伏系统的供电可靠性和稳定性。

4. 电网连接太阳能光伏系统与电网的连接是实现电能互补和双向流动的关键。

通过电网连接,太阳能光伏系统可以将多余的电能卖给电网,从而实现电能的销售和利润的获取;同时,太阳能光伏系统也可以从电网获取电能,满足负载需求。

电网连接需要符合相关的电力标准和规范,并且需要具备安全可靠的保护装置。

5. 监控系统监控系统是太阳能光伏系统的重要组成部分,用于实时监测和管理系统运行情况。

监控系统可以监测太阳能电池板的功率输出、电池储能系统的状态、并网逆变器的工作情况等。

通过监控系统,用户可以及时了解到系统的运行状况,及时发现并解决问题,提高系统的性能和可靠性。

二、太阳能光伏系统的工作原理太阳能光伏系统的工作原理是利用太阳能电池板将太阳光转换为电能。

当太阳光照射到太阳能电池板上时,太阳能电池板中的半导体材料吸收太阳光的能量,产生电子-空穴对。

太阳能光伏发电系统的组成部分

太阳能光伏发电系统的组成部分

太阳能光伏发电系统的组成部分太阳能光伏发电系统是一种利用太阳能将光能转化为电能的技术。

它由多个组成部分组成,每个部分都在不同程度上发挥着关键作用。

下面将介绍太阳能光伏发电系统常见的组成部分。

第一部分:太阳能光伏电池板太阳能光伏电池板是太阳能光伏发电系统中最关键的组件,它通过在光线下将太阳能转化为直流电能。

光伏电池板通常由硅材料制成,具有多个小型太阳能电池组成的芯片。

光伏电池板的性能直接影响到系统的整体发电效率。

第二部分:逆变器逆变器是太阳能光伏发电系统中不可或缺的组件之一。

逆变器负责将光伏电池板发出的直流电能转换成交流电能,以供家庭或工业用电。

逆变器还可以实现功率调整和电网连接功能,确保太阳能发电系统的稳定运行。

第三部分:电池储能系统(可选)虽然光伏电池板可以将太阳能直接转化为电能,但太阳能并不是一种持续不断的能源源泉。

在夜间或阴天,光伏发电系统无法正常发电。

为了解决这个问题,一些光伏发电系统会安装电池储能系统,将白天获得的电能储存起来,在需要时供电使用。

第四部分:电网连接装置太阳能光伏发电系统可以通过电网连接装置将多余的电能输送到电网中。

当太阳能发电系统产生的电能超过使用需求时,电网连接装置可以将多余的电能供应给周围的电网。

反之,当太阳能发电系统无法满足需求时,电网连接装置可以从电网中获取所需的电能。

第五部分:监控系统为了确保太阳能光伏发电系统的正常运行,监控系统是必不可少的。

监控系统可以实时监测光伏电池板的发电情况、逆变器的工作状态、电池储能系统的电量等重要参数。

一旦出现故障或异常,监控系统将及时发出警报,以便及时进行维修和优化。

总结:太阳能光伏发电系统的组成部分包括太阳能光伏电池板、逆变器、电池储能系统、电网连接装置和监控系统等。

这些部分相互配合,使得太阳能光伏发电系统能够高效地将太阳能转化为电能,并满足家庭或工业用电需求。

随着科技的进步和创新,太阳能光伏发电系统的各个组成部分也在不断发展和完善,为可持续能源的利用提供了更广阔的前景。

太阳能光伏系统组成

太阳能光伏系统组成

太阳能光伏系统组成太阳能光伏系统是一种以太阳能光伏电池为核心组件的能源转换系统。

充分利用太阳能资源,将太阳辐射能转换为电能,实现可再生能源的利用。

太阳能光伏系统主要由太阳能光伏电池组件、支架系统、逆变器、电池储能装置以及配电系统等组成。

1. 太阳能光伏电池组件太阳能光伏电池是太阳能光伏系统的核心部件,负责将太阳能辐射能转化为直流电能。

太阳能光伏电池一般由多个光伏电池片组成,光伏电池片利用光生电效应将太阳光转换为电能。

常见的光伏电池技术有单晶硅、多晶硅和薄膜太阳能电池等。

2. 支架系统支架系统是用于安装太阳能光伏电池组件的支架结构,可以将光伏电池组件固定在地面或屋顶等合适的位置。

支架系统需要具备抗风、抗震、防腐等特性,以确保太阳能光伏系统在各种环境条件下的稳定运行。

3. 逆变器逆变器是太阳能光伏系统中的重要组成部分,主要功能是将直流电能转换为交流电能。

太阳能光伏电池产生的电能为直流电,而家庭和工业用电通常是交流电。

逆变器不仅可以实现电能转换,还能够对电能进行调节和控制,确保太阳能光伏系统的稳定输出。

4. 电池储能装置电池储能装置是太阳能光伏系统的重要配件之一,用于储存光伏电池产生的电能。

通过储能装置,太阳能光伏系统可以在夜间或天气不好时继续供电。

目前常用的电池储能装置有铅酸电池、锂离子电池等,其容量和类型需根据实际需求进行选择。

5. 配电系统配电系统是太阳能光伏系统的配套设施,用于将发电产生的电能输送到需要使用的地方。

配电系统包括电缆、接线盒、断路器等组件,确保电能在不同设备之间的流通畅通,并提供过载保护等功能。

太阳能光伏系统的组成部分相互配合,共同完成电能的转化和输送。

其工作原理是,太阳能光伏电池组件吸收太阳光辐射,产生电能,并通过支架系统固定在合适的位置。

光伏电池组件的直流电能经过逆变器转换为交流电能,再通过电池储能装置进行储存,最后通过配电系统输送到需要使用的地方。

这样,人们就可以利用太阳能光伏系统提供的电能,实现对可再生能源的有效利用。

简述太阳能光伏系统的组成,并对各部件的作用和原理等进行说明。

简述太阳能光伏系统的组成,并对各部件的作用和原理等进行说明。

简述太阳能光伏系统的组成,并对各部件的作用和原理等进行说明。

太阳能光伏系统是一种将太阳能转化为电能的设备,主要由以下几个部分组成:
1. 太阳能电池板:这是太阳能光伏系统中最关键的部分,它使用半导体材料(如硅)制成,当太阳光照射到电池板上时,半导体材料会吸收光能,并转化为电能。

这个过程被称为光电转换。

2. 逆变器:逆变器的作用是将直流电(DC)转化为交流电(AC)。

因为我们的电力系统通常使用的是交流电,所以逆变器是太阳能光伏系统中的重要组成部分。

3. 电池组:电池组的作用是储存从太阳能电池板和逆变器产生的电能。

当没有太阳光的时候,储存的电能可以供应给负载使用。

4. 支架和角度器:支架的作用是支撑太阳能电池板,使其能够最大限度地接收到太阳光。

角度器的作用是调整太阳能电池板的角度,使其能够最大限度地接收到太阳光。

5. 电气配件和保护设备:包括电线、接头、开关、保险丝等,用于连接和保护系统的各个部分。

保护设备如防雷器、断路器等,用于保护系统免受损害。

以上就是太阳能光伏系统的组成,以及各部件的作用和原理。

太阳能光伏发电系统的研究报告

太阳能光伏发电系统的研究报告

太阳能光伏发电系统的研究报告太阳能光伏发电系统的研究报告太阳能光伏发电是一项可持续发展的绿色能源,其使用价值不断得到认可,并且在全球范围内得到了广泛的应用。

本报告旨在介绍太阳能光伏发电系统的组成、原理、优点和应用,并探讨其未来的发展方向。

一、太阳能光伏发电系统的组成太阳能光伏发电系统由太阳能电池板、组串控制器、逆变器、蓄电池组和负载设备组成。

其中,太阳能电池板是发电系统的核心,负责捕获太阳能并将其转换成电能。

组串控制器可以调节太阳能电池板的输出电压和电流,确保其与逆变器稳定匹配。

逆变器能将直流电能转换成交流电能,并提供适宜的电压和频率。

蓄电池组用于存储电能,以便在夜晚或阴天时提供电源。

负载设备可以是家庭、企业或工业用电设备,以满足各种需求。

二、太阳能光伏发电系统的原理太阳能光伏发电是利用光子进入半导体材料的光伏效应产生电能的过程。

当太阳光射入太阳能电池板时,光子将被吸收并导致电子与电子空穴的产生。

电子会在半导体材料中流动并形成电流,而电子空穴则被留下。

太阳能电池板通常由硅、镓和铜等材料制成。

三、太阳能光伏发电系统的优点太阳能光伏发电是一种无噪音、零污染、无需燃料的清洁能源,它的持续性和稳定性使其成为人们绿色生活的选择。

通过光伏发电,用户可以减少对油气燃料的需求,降低能源成本,并为环境保护做出贡献。

此外,太阳能光伏发电系统的安装、运行和维护成本相对较低,因此可以为用户节省大量的资金。

四、太阳能光伏发电系统的应用太阳能光伏发电可以应用于不同领域和场所,为工业、家庭、学校、公共和政府建筑等提供清洁、可持续的电力。

在某些地区或情况下,太阳能光伏发电系统甚至可以实现自给自足,满足家庭或企业的所有能源需求。

五、太阳能光伏发电系统的未来发展方向随着太阳能技术的不断发展和升级,太阳能光伏发电系统的未来将更加明亮。

研究人员正在致力于提高太阳能电池板的效率、减少制造成本,并探索新的太阳能材料和技术。

预计未来几年,太阳能光伏发电将得到更广泛的应用,为可持续能源的发展和环境保护做出更大的贡献。

光伏发电系统的组成及工作原理

光伏发电系统的组成及工作原理

光伏发电系统的组成及工作原理光伏电池板是光伏发电系统的核心组件之一,它是将太阳能转化为电能的关键部分。

光伏电池板由许多个光电二极管组成,每个光电二极管都有一个带正电荷的半导体和一个带负电荷的半导体,当光线照射到光伏电池板上时,光伏电池板中的光电二极管会产生电荷,从而形成电流。

支架是光伏发电系统的支撑结构,它起到固定和支持光伏电池板的作用。

支架一般采用金属材料制成,如铁、铝等,具有良好的强度和稳定性,以确保光伏电池板能够在不同的环境条件下正常运行。

逆变器是光伏发电系统的另一个重要组成部分,它将光伏电池板产生的直流电转换为可供交流电网使用的交流电。

逆变器具有一个变压器,它可以将直流电通过变压器的转换作用,输出符合电网要求的交流电。

光伏发电系统还可以连接到电网上。

当光伏电池板产生的电能多于消耗的电能时,多余的电能可以通过逆变器输入电网,从而实现向电网供电;当光伏电池板产生的电能少于消耗的电能时,电网将向光伏发电系统提供所需的电能,从而实现从电网获取电能。

光伏发电系统的工作原理如下:当太阳光照射到光伏电池板上时,光能被光伏电池板吸收,并激发光伏电池板中的光电二极管,产生电流。

这个电流经过逆变器的转换,由直流电转换为交流电,并通过电网传输或供电给相关设备使用。

光伏电池板的工作原理是基于光伏效应。

光伏效应是指当光照射到半导体材料上时,使半导体中的电荷发生运动,从而产生电流的现象。

光伏电池板中的光电二极管是由P型和N型半导体材料构成的,当光照射到光伏电池板上时,会使P型半导体带正电荷的电子向N型半导体迁移,同时会使N型半导体带负电荷的电子向P型半导体迁移,由此形成电流。

光伏发电系统由哪些部分构成?其作用分别是什么?

光伏发电系统由哪些部分构成?其作用分别是什么?

光伏发电系统由哪些部分构成?其作用分别是什么?光伏发电系统由哪些部分构成,其作用分别是什么,离网型光伏发电系统组成:典型的光伏发电系统主要由光伏阵列、充放电控制器、储能装备或逆变器、负载等组成。

其构成如图所示。

光照射到光伏阵列上,光能转变成电能,光伏阵列的输出电流由于受环境影响,因此是不稳定的,需要经过DC-DC转换器将其转变成稳定的电流后,才能加载到蓄电池上,对蓄电池充电,蓄电池再对负载供电。

如果是并网售电,则不需要蓄电池,而是通过并网逆变器,将直流电流转换成交流电流,并到电网上进行出售。

也就是说,离网型光伏发电系统必须使用到蓄电池储能,而并网型则不一定需要。

控制系统对光伏阵列的输出电压和电流进行实时采样,判断光伏发电系统是否工作在最大功率点上,然后根据跟踪算法,改变PWM信号的占空比,进而控制光伏阵列的输出电压使其工作点向最大功率点逼近。

在蓄电池过充过放控制模块中,当蓄电池电压充电或放电到一定的设定值后,就会自动关闭或打开。

光伏阵列组件光伏发电系统利用以光电效应原理制成的光伏阵列组件将太阳能直接转换为电能。

光伏电池单体是用于光电转换的最小单元,一个单体产生的电压大约为0.45V,工作电流约为20~25mA/cm2,将光伏电池单体进行串、并联封装后,就成了光伏电池阵列组件。

当受到光线照射的太阳能电池接上负载时,光生电流流经负载,并在负载两端建立起端电压,这时太阳能电池的工作情况可以用下图所示的太阳能电池负载特性曲线来表示。

它表明在确定的日照强度和温度下,光伏电池的输出电压和输出电流以及输出功率之间的关系,简称I-V特性和P-V特性。

从图中可以看出,光伏发电系统的特性曲线具有强烈的非线性,既非恒压源也非恒流源。

从其P-V特性曲线可以看出,在日照强度一定的前提下,其输出功率近似于一个开口向下的抛物线。

该抛物线顶点对应的功率即为该日照强度下的P-V曲线的最大功率点,对应的电压称为最大功率点电压。

为了提高光伏发电系统的转化效率,就必须使系统保持运行在P-V曲线最大功率点附近。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

太阳能光伏发电系统的组成太阳能光伏发电系统的组成太阳能光伏发电系统是利用太阳能电池的光伏效应,将太阳光辐射能直接转换成电能的一种新型发电系统。

一套基本的光伏发电系统一般是由太阳能电池板、太阳能控制器、逆变器和蓄电池(组)构成。

太阳能电池板:太阳能电池板是太阳能光伏发电系统中的核心部分,其作用是将太阳能直接转换成电能,供负载使用或存贮于蓄电池内备用。

太阳能控制器:太阳能控制器的基本作用是为蓄电池提供最佳的充电电流和电压,快速、平稳、高效的为蓄电池充电,并在充电过程中减少损耗,尽量延长蓄电池的使用寿命;同时保护蓄电池,避免过充电和过放电现象的发生。

如果用户使用的是直流负载,通过太阳能控制器可以为负载提供稳定的直流电(由于天气的原因,太阳电池方阵发出的直流电的电压和电流不是很稳定)。

逆变器:逆变器的作用就是将太阳能电池阵列和蓄电池提供的低压直流电逆变成220伏交流电,供给交流负载使用。

蓄电池(组):蓄电池(组)的作用是将太阳能阵列发出的直流电直接储存起来,供负载使用。

在光伏发电系统中,蓄电池处于浮充放电状态,当日照量大时,除了供给负裁用电外,还对蓄电池充电;当日照量小时,这部分储存的能量将逐步放出。

太阳能光伏发电系统的分类根据不同场合的需要,太阳能光伏发电系统一般分为独立供电的光伏发电系统、并网光伏发电系统、混合型光伏发电系统三种。

(1)独立供电的光伏发电系统独立供电的太阳能光伏发电系统如图2-6所示。

整个独立供电的光伏发电系统由太阳能电池板、蓄电池、控制器、逆变器组成。

太阳能电池板作为系统中的核心部分,其作用是将太阳能直接转换为直流形式的电能,一般只在白天有太阳光照的情况下输出能量。

根据负载的需要,系统一般选用铅酸蓄电池作为储能环节,当发电量大于负载时,太阳能电池通过充电器对蓄电池充电;当发电量不足时,太阳能电池和蓄电池同时对负载供电。

控制器一般由充电电路、放电电路和最大功率点跟踪控制组成。

逆变器的作用是将直流电转换为.与交流负载同相的交流电。

图2-6 独立运行的太阳能光伏发电系统结构框图(2)并网光伏发电系统图2-7 并网光伏发电系统结构框图并网光伏发电系统如图2-7所示,光伏发电系统直接与电网连接,其中逆变器起很重要的作用,要求具有与电网连接的功能。

目前常用的并网光伏发电系统具有两种结构形式,其不同之处在于是否带有蓄电池作为储能环节。

带有蓄电池环节的并网光伏发电系统称为可调度式并网光伏发电系统,由于此系统中逆变器配有主开关和重要负载开关,使得系统具有不间断电源的作用,这对于一些重要负荷甚至某些家庭用户来说具有重要意义。

此外,该系统还可以充当功率调节器的作用,稳定电网电压、抵消有害的高次谐波分量从而提高电能质量。

不带有蓄电池环节的并网光伏发电系统称为不可调度式并网光伏发电系统,在此系统中,并网逆变器将太阳能电池板产生的直流电能转化为和电网电压同频、同相的交流电能,当主电网断电时,系统自动停止向电网供电。

当有日照照射、光伏系统所产生的交流电能超过负载所需时,多余的部分将送往电网;夜间当负载所需电能超过光伏系统产生的交流电能时,电网自动向负载补充电能。

(3)混合光伏发电系统图2-8为混合型光伏发电系统,它区别于以上两个系统之处是增加了一台备用发电机组,当光伏阵列发电不足或蓄电池储量不足时,可以启动备用发电机组,它既可以直接给交流负载供电,又可以经整流器后给蓄电池充电,所以称为混合型光伏发电系统。

图2-8 混合型光伏发电系统结构框图2.5太阳能光伏发电系统的特点(1)无枯竭危险; (2)绝对千净(无污染,除蓄电池外); (3)不受资源分布地域的限制;(4)可在用电处就近发电;(5)能源质量高;(6)获取能源花费的时间短;(7)供电系统工作可靠;不足之处是:(1)照射的能量分布密度小;(2)获得的能源与四季、昼夜及阴晴等气象条件有关;太阳能光伏系统设计太阳能光伏系统总体设计原则太阳能光伏发电系统的设计分为软件设计和硬件设计,且软件设计先于硬件设计。

软件设计主要包括:负载用电量的计算,太阳能电池方阵辐射量的计算,太阳能电池、蓄电池用量的计算以及两者之间相互匹配的优化设计,太阳能电池方阵安装倾角的计算,系统运行情况的预测和系统经济效益的分析等。

硬件设计主要包括:负载的选型及必要的设计,太阳能电池和蓄电池的选型,太阳能电池支架的设计,逆变器的选型和设计,以及控制、测量系统的选型和设计。

对于大型太阳能光伏发电系统,还有光伏电池方阵场的设计、防雷接地的设计。

由于软件设计牵涉到复杂的太阳辐射量、安装倾角以及系统优化的设计计算,一般是由计算机来完成的;在要求不太严格的情况下,也可以采取估算的办法。

太阳能光伏发电系统设计的总原则是,在保证满足负载供电需要的前提下,确定使用最少的太阳能电池组件功率和蓄电池容量,以尽量减少初始投资。

系统设计者应当知道,在光伏发电系统设计过程中做出的每个决定都会影响造价。

由于不适当的选择,可轻易地使系统的投资成倍地增加,而且未必就能满足使用要求。

在决定要建立一个独立的太阳能光伏发电系统之后,可按下述步骤进行设计:计算负载,确定蓄电池容量,确定太阳能电池方阵容量,选择控制器和逆变器,考虑混合发电的问题等。

在进行光伏系统的设计之前,需要了解并获取一些进行计算和选择必需的基本数据:光伏系统现场的地理位置,包括地点、纬度、经度和海拔;该地区的气象资料,包括逐月的太阳能总辐射量、直接辐射量以及散射辐射量;年平均气温和最高、最低气温,最长连续阴雨天数,最大风速以及冰雹、降雪等特殊气象情况等。

太阳能光伏发电系统的容量设计容量设计的主要目的就是要计算出系统在全年内能够可靠工作所需的太阳电池组件和蓄电池的数量。

同时要注意协调系统工作的最大可靠性和系统成本两者之间的关系,在满足系统工作的最大可靠性基础上尽量减少系统成本。

蓄电池设计方法蓄电池的设计思想是保证在太阳光照连续低于平均值的情况下负载仍能可以正常工作。

在进行蓄电池设计时,我们需要引入一个不可缺少的参数:自给天数,即系统在没有任何外来能源的情况下负载仍能正常工作的天数。

这个参数让系统设计者能够选择所需使用的蓄电池容量大小。

一般来讲,自给天数的确定与两个因素有关:负载对电源的要求程度;光伏系统安装地点的气象条件,即最大续阴雨天数。

通常可以将光伏系统安装地点的最大续阴雨天数作为系统设计中使用的自给天数,但还要综合考虑负载对电源的要求。

对于负载对电源要求不是很严格的光伏应用,我们在设计中通常取自给天数为3~5天。

对于负载要求很严格的光伏系统,我们在设计中通常取自给天数为7~14天。

所谓负载要求不严格的系统通常是指用户可以稍微调节一下负载要求从而适应恶劣天气带来的不便;而严格系统指的是用电负载比较重要,例如常用于通信、导航或者重要的健康设施,如医院、诊所等。

此外还要考虑光伏系统的安装地点,如果在很偏远的地区,必须设计较大的蓄电池容量,因为维护人员要到达现场需要花费很长时间。

蓄电池的设计包括电池容量设计计算和蓄电池组的串并联设计。

首先,给出计算蓄电池容量的基本方法。

(1)基本公式第一步,将每天负载需要的用电量乘以根据实际情况确定的自给天数就可以得到初步的蓄电池容量。

第二步,将第一步得到的蓄电池容量除以蓄电池的允许最大放电深度。

因为不能让蓄电池在自给天数中完全放电,所以需要除以最大放电深度,得到所需要的蓄电池容量。

最大放电深度的选择需要参考光伏系统中选择使用的蓄电池的性能参数,可以从蓄电池供应商得到详细的有关该蓄电池最大放电深度的资料。

通常情况下,如果使用的是深循环型蓄电池,推荐使用80%的放电深度(DOD);如果使用的是浅循环蓄电池,推荐选用伸用50%DOD 。

设计蓄电池容量的基本公式如下:⨯=自给天数日平均负载数蓄电池容量最大放电深度下面介绍确定蓄电池串并联的方法。

每个蓄电池都有它的标称电压。

为了达到负载工作的标称电压,我们将蓄电池串联起来给负载供电,需要串联的蓄电池的个数等于负载的标称电压除以蓄电池的标称电压。

=负载标称电压串联蓄电池数蓄电池标称电压(2)设计修正以上给出的只是蓄电池容量的基本估算方法,在实际情况中还有很多性能参数会对蓄电池容量和使用寿命产生很大的影响。

为了得到正确的蓄电池容量设计,上面的基本方程必须加以修正。

对于蓄电池,蓄电池的容量不是一成不变的,蓄电池的容量与两个重要因素相关:蓄电池的放电率和环境温度。

首先,我们考虑放电率对蓄电池容量的影响。

蓄电池的容量随着放电率的改变而改变,随着放电率的降低,放电电流变小,放电时间就越长,蓄电池的容量也会相应增加。

这样就会对我们的容量设计产生影响。

进行光伏系统设计时就要为所设计的系统选择在恰当的放电率下的蓄电池容量。

通常,生产厂家提供的是蓄电池额定容量是l0h 放电率下的蓄电池容量。

但是在光伏系统中,因为蓄电池中存储的能量主要是为了自给天数中的负载需要,蓄电池放电率通常较慢,光伏供电系统中蓄电池典型的放电率为100~200h 。

在设计时我们要用到在蓄电池技术中常用的平均放电率的概念。

光伏系统的平均放电率公式如下:⨯=自给天数负载工作时间平均放电率(小时)最大放电深度上式中负载工作时间可以用下述方法估计:对于只有单个负载的光伏系统,负载的工作时间就是实际负载平均每天工作的小时数;对于有多个不同负载的光伏系统,负载的工作时间可以使用加权平均负载工作时间,加权平均负载工作时间的计算方法如下:⨯=∑∑负载功率负载工作时间加权平均工作时间负载功率根据上面两式就可以计算出光伏系统的实际平均放电率,根据蓄电池生产商提供的该型号电池在不同放电速率下的蓄电池容量,就可以对蓄电池的容量进行修正。

温度对蓄电池容量的影响:蓄电池的容量会随着蓄电池的温度的变化而变化,当蓄电池温度下降时,蓄电池的容量会下降。

通常,铅酸蓄电池的容量是在25℃时标定的。

随着温度的降低,0℃时的容量大约下降到额定容量的90%,而在-20℃的时候大约下降到额定容量的80%,所以必须考虑蓄电池的环境温度对其容量的影响。

如果光伏系统安装地点的气温很低,这就意味着按照额定容量设计的蓄电池容量在该地区的实际使用容量会降低,也就是无法满足系统负载的用电需求。

在实际工作的情况下就会导致蓄电池的过放电,减少蓄电池的使用寿命,增加维护成本。

这样,设计时需要的蓄电池容量就要比根据标准情况(25℃)下蓄电池参数计算出来的容量要大,只有选装相对于25℃时计算容量多的容量,才能够保证蓄电池在温度低于25℃的情况下,还能完全提供所需的能量。

蓄电池生产商一般会提供相关的蓄电池温度一容量修正曲线。

在该曲线上可以查到对应温度的蓄电池容量修正系数,除以蓄电池容量修正系数就能对上述的蓄电池容量初步计算结果加以修正。

因为低温的影响,在蓄电池容量设计上还必须要考虑的一个因素就是修正蓄电池的最大放电深度,以防止蓄电池在低温下凝固失效,造成蓄电池的永久损坏。

相关文档
最新文档