GPS接收机灵敏度
GPS接收机灵敏度解析

1 GPS接收机的灵敏度定义随着GPS应用范围的不断扩展,对GPS接收机的灵敏度要求也越来越高,高灵敏度的接收性能可以令接收机在室内或其它卫星信号较弱的场景下仍然能够实现定位和跟踪,大大拓展了GPS的使用范围。
作为GPS接收机最为重要的性能指标之一,高灵敏度一直是各个GPS接收模块孜孜以求的目标。
对于GPS接收系统而言,灵敏度指标包括多个场景下的指标,分别为:跟踪灵敏度、冷启动灵敏度、温启动灵敏度。
目前业界已经可以实现跟踪灵敏度在-160dBm以下,冷启动灵敏度和温启动灵敏度也分别可以达到-145dBm和-158dBm以下,其中冷启动灵敏度和温启动灵敏度分别表示的是在两种不同场景下的捕获灵敏度。
GPS接收机首先需要完成对卫星信号的捕捉,完成捕捉所需要的最低信号强度为捕捉灵敏度;在捕捉之后能够维持对卫星信号跟踪所需要的最低信号强度为跟踪灵敏度。
2 GPS接收模块的灵敏度性能分析从系统级的观点来看,GPS接收机的灵敏度主要由两个方面决定:一是接收机前端整个信号通路的增益及噪声性能,二是基带部分的算法性能。
其中,接收机前端决定了接收信号到达基带部分时的信噪比,而基带算法则决定了解调、捕捉、跟踪过程所能容忍的最小信噪比。
2.1接收机前端电路性能对灵敏度的影响GPS信号是从距地面20000km的LEO(Low Earth Orbit,低轨道卫星)卫星上发送到地面上来的,其L1频段(f L1=1575.42MHz)自由空间衰减为:(1)按照GPS系统设计指标,L1频段的C/A码信号的发射EIRP(Effective Isotropic Radiated Power,有效通量密度)为P=478.63W(26.8dBw)([1][2]),若大气层衰减为A=2.0dB,则GPS系统L1频段C/A码信号到达地面的强度为:(2)GPS ICD(Interface Control Document,接口控制文档)文件([3])中给出的GPS系统L1频段C/A码信号强度最小值为-160dBw,和上述结果一致。
GPS接收机简介及性能测试

GPS接收机简介及GPS性能测试研究GPS接收机,是GPS导航卫星的用户设备,是实现GPS卫星导航定位的终端仪器。
它是一种能够接收、跟踪、变换和测量GPS卫星导航定位信号的无线电接收设备,既具有常用无线电接收设备的共性,又具有捕获、跟踪、和处理卫星微弱信号的特性。
GPS(Navigation System with Timing and Ranging Global Positioning System)是美国国防部开发运行的,带有定时和测距的全球导航定位系统。
GPS 系统由三部分组成:GPS 空中卫星,地面控制以及GPS 用户接收机。
图1 GPS 接收机原理框图如上GPS 接收机的简化框图所示,GPS 接收机首先通过天线单元接收到GPS 卫星发射的信号,经过下变频后,提取出卫星信号中的伪随机噪声码(PRN)和数据码,进而解算出接收机载体的位置,速度和时间等导航信息。
那么被接收的GPS 信号是怎样的呢?它是由50Hz 的导航信号脉冲,经过伪随机序列直序扩频至1.023Mbps,采用BPSK 调制,中心载波1575.42MHz。
由于真实的到达地面的GPS 卫星信号的能量是非常小的,一般都在-130dBm/1.023MHz(-190dBm/Hz)以下,比热噪声的功率谱密度(-174dBm/Hz)还要低,所以用普通的频谱仪是无法测量的,可以使用信号源模拟输出-99dBm 的GPS 信号,由频谱仪E4440A 测量出的信号频谱及功率值,例如测出的2.046MHz 带宽内的功率值。
尽管GPS技术日益普及,但是GPS接收机制造商、OEM集成商仍在为如何验证GPS接收机性能的标准测试而烦恼。
无论是验证GPS接收机整机的功能,还是客观地测量各种GPS IC的性能,都需要一个能够重复执行精确测量的可控环境(比如屏蔽室)。
大多数情况下,制造商使用天线来接收实际的GPS卫星信号,但往往这样的测试,由于受到复杂的气候影响,电离层延迟,多径衰减等因素,使得测量可重复性非常差,尽管耗费了很多人力和时间,却很难得到一个真实而精准的数据。
GPS设计要求

1 简介TDD网络是一个时分网络,各基站之间需要严格同步,外场TDD基站采用了GPS作为同步时钟。
基站同步到GPS的功能通过基站中的主控板上的时钟模块来实现,时钟模块接收并解析GPS天线信号,获取GPS卫星时间作为基站的同步时间,同时向基站提供作为基准信号。
在GPS系统中,GPS接收机的灵敏度是影响GPS应用范围的非常关键指标,是指GPS接收机可以正常工作所需的输入最小信号强度,GPS接收机冷启动灵敏度受信号捕获、比特同步、导航电文解调灵敏度限制,一般GPS接收机的冷启动灵敏度要求在-147dBm以上。
在实际的TDD基站GPS的工程应用条件下,对外接馈线的长度,中继放大器的数量,使用的功分器的数量等有一个量化的限制,使单站BBU或者多网元BBU 共享GPS信号。
2 工作原理在基站中与同步GPS相关的部分主要包括:GPS天线、避雷器、GPS馈线和时钟模块中的GPS接收机、功率放大器(选配)。
时钟模块上的GPS接收机负责接收GPS天线传输的射频信号,然后进行变频解调等信号处理,向基站提供1pps 信号,进行同步。
由于GPS天线安装在室外,容易遭受到雷击,所以安装时GPS天线安装抱杆和天线外面的金属圆筒和天线LNA的地分开,避免引雷上身,但同时考虑到还有一些感应雷,为了保护室内的设备,一般在馈线穿墙之后在室内增加一个避雷器,如图1所示。
为了保证卫星同步,进入GPS接收机的接收电平必须满足接收机灵敏度的要求。
厂家提出了用接收机外部增益这个指标来量化链路中的衰减,指导安装,其定义就是从GPS天线到GPS接收机输入端的增益,即GPS天线增益减去链路中的衰减。
目前使用的GPS接收机是U-BLOX LEA-6T,GPS接收机处于激活状态接收的最低增益按照15dB计算,用于补偿射频线缆、连接器、避雷器和功分器损耗。
图1 GPS系统框图3 产品介绍3.1 GPS天线GPS天线有两种功能:接收、放大卫星信号;由它主要由无源微带天线、滤波器、低噪声放大器等组成。
提升GPS接收器灵敏度与定位效能

5 盔璧圃 2
圃 基础电 I0 . 子 21 5 1
I 技术前沿 l r nir e h oo y o t c n lg F eT
图2自主定位为 Ub x6 — l 的新特 性 。以卫星星历预 测为基础 ,毋 须网 c a n 1, 以 实 现 多种 深 具 吸 引 力 的 应 用 , 例 o h n e) 络连接或与主机整合 ,便能实现GP 的加速定位 S
如 :
・ 新 的位 置 感 知 服 务 消 费 性 装 置 能 在 基 本 的 导 航 功 能 外 ,提 供 全 新 功 能 ,如 寻 址 ( oainb sd网 站 内 容 和 社 L ct —ae ) o 交 网络 、紧 急 定 位 及 人 员/ 置 协 寻 服 务 。 位
・ 工 业 应 用 和 车 队 管 理 车 辆 和 资 产 追 踪 器 能 在 世 界 各 个 角 落 通 报
时 间接 收 , 而GP 信 号 仅 能 以每 秒 5 位 的速 度 传 S 0
输 。 此 外 , 必 须 要 先 能 找 到 四 个 不 同 的 卫 星 并 域 中提 升 效能 。
下 载其 讯 框 后 ,才能 进 行位 置 的计 算 。 这 些 问 题 使 得 接 收 器 不 容 易 找 到 并 锁 定 GP S 图 1GP 卫 星 信 号 非 常 为 微 弱 且 缓 慢 S
只好 落 在 G S 收 器 业 者 的 身上 。 P接
现 行GP 卫 星 系 统 有 以下 两 个 主 要 的 限 制 : S
期望大打折扣。 要 克服 这 些 既 有 限制 ,就 必 须 在 接 受 器端 开 发 出 更聪 明 的 技 巧 ,才 能 改善 GP 效 能 。Ub o S — lx
依 卫 星 轨 道 预 测 毋 须 外 部 辅 助 定位
GPS接收机的灵敏度分析

GPS接收机的灵敏度分析首先,灵敏度是指接收机在低信号强度情况下能够接收到的最小有效信号强度。
通常以接收和解码导航信号的最低功率为衡量标准,以dBm或dB-Hz为单位进行表示。
接收机的灵敏度越高,就能在更弱的信号环境下工作,提高了定位的可靠性和成功率。
接下来,影响GPS接收机灵敏度的因素主要有以下几个方面:1.天线性能:GPS接收机的天线性能直接影响信号接收的效果。
天线的增益、波束宽度和方向性等指标都会对接收机的灵敏度产生影响。
因此,选择合适的天线和调整其方向也是提高灵敏度的重要手段。
2.前端设计:前端设计主要包括低噪声放大器(LNA)的设计和功率分配等。
LNA的噪声系数和增益直接影响了接收机的灵敏度。
较低的噪声系数和合适的功率分配可以提高接收机的灵敏度。
3.中频放大器(IF)设计:IF放大器的设计和性能对于信号处理的正确性和灵敏度也有着显著的影响。
合适的增益、线性度和频带宽度都是提高灵敏度的重要因素。
4.数据处理算法:接收到的GPS信号需要经过一系列的解调、解码、滤波等处理才能得到最终的定位结果。
因此,高效、精确的数据处理算法也是提高灵敏度的重要因素。
除了影响因素,还有一些方法可以提高GPS接收机的灵敏度:1.天线方面:选择合适的天线,并根据天线增益和方向性调整天线的方向,以获得更好的信号接收效果。
2.前端设计:合理选择LNA的设计参数,以获得更低的噪声系数和更高的增益。
优化功率分配,增强前端输入信号的有效性。
3.中频放大器设计:充分考虑IF放大器的设计参数,以保证其增益、线性度和频带宽度的一致性。
避免过度放大和失真。
4.数据处理算法:针对GPS信号处理进行优化,提高解调和解码算法的性能,优化滤波和数据处理流程,从而提高定位的可靠性和精度。
综上所述,GPS接收机的灵敏度是衡量其接收能力的重要指标之一、灵敏度的高低直接影响了接收机在低信号强度环境下的工作效果。
通过选择合适的天线、优化前端和中频放大器的设计以及优化数据处理算法等方法,可以提高GPS接收机的灵敏度,提高定位的可靠性和精度。
GPS灵敏度分析

GPS相关知识整理一、何为热启动、暖启动和冷启动。
1.热启动就是GPS关闭不久后的再开启,相当于是卫星收讯不佳、失联,再度获取定位的时间。
2.暖启动就是一般开机,包括GPS 自我测试、取得精确星历至定位完成,就是有星历资料[Almanac],没有导航讯息[Current Ephemeris (nav message) ],其前提是离上次关机移动距离在100公里内、速率在25m/sec 下。
3.冷启动开机后GPS接收器需执行一连串如下载星历等的初始化动作,也称为初始值。
所以不管什么开机,可能情形就是……完全没有资料…有星历,但没正确时间或所在位置…有星历、时间、位置,而且短暂定位资料尚未过期…关机前不久已定位完成(两小时内),有足够资料二、GPS的TTFF和C/N、C/No值1.所谓TTFF 就是Time To First Fix 的简称2.C/N值,指GPS接收机收到的GPS卫星信号的强度值,用以标明GPS接收机的品质,跟接收天线、LNA设计、系统EMC等均相关。
C/N包括一切噪音。
C/No=10* Log(C/KTB)﹐不包括天線到Correlator的PATH LOSS及LNA等線路引進的噪音。
C是指信號強度﹐K是指波爾茲蔓常數﹐T是溫度﹐B是等效噪音帶寬。
C/N的計算公式與C/No公式是一樣的﹐只是C/N中包含了接收機本身影響。
三、GPS接受能力的分析(灵敏度)。
dBm(1毫瓦的分贝数)dBm是一个表示功率绝对值的值(也可以认为是以1mW功率为基准的一个比值),计算公式为:10log(功率值/1mw)。
[例] 如果功率P为1mw,折算为dBm后为0dBm。
[例] 对于0.01mW的功率,按dBm单位进行折算后的值应为:10log(0.01/1)=-20dBm。
这个数值越大,表明信号越好。
由于GPS信号强度一般较小,折算成为dBm一般都是负数根据上面对C/N、C/No值的解释,可以得出同dBm下,C/N、C/No值越大,模块性能越好。
GPS接收机的灵敏度分析

GPS接收机的灵敏度分析GPS接收机的灵敏度分析根据GPS 接收机的定位原理和GPS 接收机灵敏度分析接收机性能,发现灵敏度主要与前端电路和基带有着密切关系。
据此对GPS 的天线前端电路设计滤波器和低噪声放大器,并对电路的其他方面提出要求,考虑包含处理器和大量逻辑门电路的Cyclo ne 器件,并通过配置嵌入式软核处理设计GPS 接收机。
GPS 系统在海运方面因能够提供连续、高精度的船位,在保证船舶安全经济方面和保证在计划航线上航行有着极为重要的作用。
高灵敏度的GPS 接收机要求接收机在卫星信号较弱的场景下仍然能够实现定位和跟踪。
GPS 接收系统的灵敏度指标包括跟踪灵敏度、捕获灵敏度和初始启动灵敏度。
目前GPS 接收机基本上可以实现跟踪灵敏度在- 160 dBm 以下,同时初始启动的灵敏度和捕获灵敏度也分别可以达到- 142dBm 和- 148 dBm 以下。
1 GPS 接收机灵敏度分析GPS 接收机的灵敏度主要由两个方面决定:一是接收机前端信号通路的增益及噪声性能,二是基带部分的算法性能。
接收机前端决定了接收信号到达基带部分时的信噪比; 基带算法则决定了解调、捕获、跟踪过程需要最小信噪比。
GPS 卫星的导航载波信号是L 频段(L 1 :19cm; L2 :24 cm)的电波信号,现行GPS 工作卫星采用L 波段的三种导航信号,分别为L 1、L2、L3 ,其载波频率分别为:1 575 42、1 227 60 和1 381. 05 MHzGPS 信号是从距地面20 000 km 的卫星发送到地面,其L 1频段(f L1 = 1 575. 42 MHz)自由空间衰减为:根据GPS 接口控制文档(interface cONt ro ldocument ,ICD)规定GPS 系统L 1频段C/ A 码信号强度的最小值为- 160 dBW,而GPS 系统设计该频段中C/ A 码信号发射的有效通量密度(effect ive isot ro pic radiated pow er,EIRP)为P=478. 63 W(26. 8 dBW)[4],若大气层衰减为2. 0dBW,那么GPS 系统L 1 频段C/ A 码信号到达地面的强度为:。
GPS 接收机的灵敏度分析

GPS 接收机的灵敏度分析The Analysis on the Sensitivity of GPS Receiver深圳市华颖锐兴科技有限公司摘要:GPS 接收机的灵敏度是影响GPS 应用范围的非常关键的指标,目前业界纷纷推出高灵敏度的GPS 接收系统,使得GPS 的室内定位成为可能,大大拓展了GPS 的应用场景。
本文对GPS 接收机的灵敏度性能进行原理性分析,并给出了设计高灵敏度GPS 接收模块的建议。
关键词:GPS 高灵敏度 接收机设计Abstract: High sensitivity is a key feature for GPS receiver to extend its application field. A lot of high sensitivity GPS receiver chipsets has been put forward in the industry, making the indoor positioning possible. This paper analyzes the principle of the high sensitivity from both RF part and baseband part, and gives some advices on the design of high sensitivity GPS receiver. Key words: GPS, High Sensitivity, Receiver Design1 GPS 接收机的灵敏度定义随着GPS 应用范围的不断扩展,业界对GPS 接收机的灵敏度要求也越来越高,高灵敏度的接收性能可以令接收机在室内或其它卫星信号较弱的场景下仍然能够实现定位和跟踪,大大拓展了GPS 的使用范围。
作为GPS 接收机最为重要的性能指标之一,高灵敏度一直是各个GPS 接收模块孜孜以求的目标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 GPS接收机的灵敏度定义随着GPS应用范围的不断扩展,对GPS接收机的灵敏度要求也越来越高,高灵敏度的接收性能可以令接收机在室内或其它卫星信号较弱的场景下仍然能够实现定位和跟踪,大大拓展了GPS的使用范围。
作为GPS接收机最为重要的性能指标之一,高灵敏度一直是各个GPS接收模块孜孜以求的目标。
对于GPS接收系统而言,灵敏度指标包括多个场景下的指标,分别为:跟踪灵敏度、冷启动灵敏度、温启动灵敏度。
目前业界已经可以实现跟踪灵敏度在-160dBm以下,冷启动灵敏度和温启动灵敏度也分别可以达到-145dBm和-158dBm以下,其中冷启动灵敏度和温启动灵敏度分别表示的是在两种不同场景下的捕获灵敏度。
GPS接收机首先需要完成对卫星信号的捕捉,完成捕捉所需要的最低信号强度为捕捉灵敏度;在捕捉之后能够维持对卫星信号跟踪所需要的最低信号强度为跟踪灵敏度。
2 GPS接收模块的灵敏度性能分析从系统级的观点来看,GPS接收机的灵敏度主要由两个方面决定:一是接收机前端整个信号通路的增益及噪声性能,二是基带部分的算法性能。
其中,接收机前端决定了接收信号到达基带部分时的信噪比,而基带算法则决定了解调、捕捉、跟踪过程所能容忍的最小信噪比。
2.1接收机前端电路性能对灵敏度的影响GPS信号是从距地面20000km的LEO(Low Earth Orbit,低轨道卫星)卫星上发送到地面上来的,其L1频段(f L1=1575.42MHz)自由空间衰减为:(1)按照GPS系统设计指标,L1频段的C/A码信号的发射EIRP(Effective Isotropic Radiated Power,有效通量密度)为P=478.63W(26.8dBw)([1][2]),若大气层衰减为A=2.0dB,则GPS系统L1频段C/A码信号到达地面的强度为:(2)GPS ICD(Interface Control Document,接口控制文档)文件([3])中给出的GPS系统L1频段C/A码信号强度最小值为-160dBw,和上述结果一致。
在实际场景中,由于卫星仰角的不同、以及受树木、建筑物等的遮挡,L1频段C/A信号到达地面的强度可能会低于-160dBw。
GPS信号被天线接收下来后,假如天线有源,则经过滤波器和低噪放,再通过电缆接到接收机部分,接收机内同样经过一级低噪放和一级滤波器,再进射频前端模块进行下变频和模数转换处理。
天线的有源部分主要是用来补偿从天线到接收模块之间的电缆损耗,假如天线和接收模块之间的插极小,则可以使用无源天线。
GPS接收机前整个特性可以由整个接收机的G/T值来表征。
设GPS接收机的射频前端可以分为n级,第i级的增益、噪声系数、等效噪声温度分别为G i、NF i、Te i,则GPS接收机的总的等效噪声温度为:(3)其中,G a为天线增益,T a为天线噪声温度。
天线的噪声温度和天线大小、信号频率、天线方向图、摆放位置等都有关系,一般GPS天线噪声温度为Ta=100K。
根据系统的G/T值即可以得到在一定输进信号功率下的接收载噪比:其中,k=1.38e-23,为Bolzmann常数。
下表给出了采用有源天线的场景下常见的GPS接收模块前端载噪比计算:表1有源天线场景下GPS接收单元前端载噪比计算从上表可以很明显的看出,影响系统载噪比的最主要因素是天线本身的增益和噪声温度,在天线无源部分性能确定的条件下,天线有源部分则决定了整个系统的载噪比变化,而后级的链路增益和噪声系数对系统载噪比基本没有贡献。
实际电路设计中,由于电磁干扰的存在,每一级都有可能引进新的噪声,后级的性能也会对系统载噪比产生重要影响。
因此,需要重点考虑电磁干扰对系统性能带来的损失。
有源天线的主要目的是补偿天线至接收机的电缆损耗,对于天线和接收机比较接近的场景,天线至接收机的损耗基本可以忽略,则可以直接采用无源天线,通过进步接收机内部第一级低噪声放大器的增益和噪声系数性能,同样可以达到采用有源天线的性能。
第一级的噪声系数决定了前级引进噪声的大小,而第一级的增益则决定了后级引进的噪声对系统性能的影响,第一级的增益越大,后级噪声性能对系统性能的影响越小,但同时需要考虑整个信号通路至A/D量化部分的总体增益,以确保A/D量化对信噪比的损失最小。
下图给出了接收机前级低噪声放大器的噪声系数对系统整体载噪比的影响,图中还给出了不同增益天线的性能差异。
实际中选用天线时,除天线增益外,还需要考虑天线的方向图、不圆度以及轴比、驻波系数等性能。
图2前级放大器噪声系数对载噪比的影响接收机前A/D转换过程也会导致系统载噪比的降低,A/D量化对信噪比的影响主要和A/D量化位数有关,一般以为,1bit量化会导致1.96dB的载噪比损失,但该值的条件是中频带宽为无穷宽。
A/D转换的载噪比损失还和中频带宽有关,对于中频带宽即是C/A码带宽而言,1bit量化会导致3.5dB的载噪比损失,而3bit量化带来的载噪比损失为0.7dB([4])。
此外,A/D转换对性能的影响还和A/D量化最大阈值和噪声的均方根(RMS)之间的比例有关。
接收机的热噪声基底为:假设接收机带宽为GPS C/A 码的带宽2.046MHz,则热噪声基底的功率为:该功率远大于GPS输进信号功率-130dBm,因此系统的增益控制以及A/D量化阈值主要由热噪声确定,与输进信号强度基本无关。
常用的GPS射频芯片中,A/D量化和自动增益控制部分的电路都是联合设计的,根据A/D量化阈值的要求设置自动增益控制的控制电平。
2.2基带算法性能对灵敏度的影响基带算法性能直接影响信号捕捉、跟踪以及解调过程对载噪比的最低要求。
GPS信号是一个扩频系统,对于C/A码而言,其扩频码为码长1023的Gold码,码速率为1.023Mcps,即每1ms为一个C/A码周期。
因此,可以通过进步本地码和接收信号之间的积分时间来进步接收信号的载噪比。
积分方式分为相干累积和非相干累积。
相干累积是指直接用本地码和接收信号按位相乘后再累加,而非相干累积则是对相干累积的结果再进行直接相加。
相干累积结果可根据下式进行计算([5]):其中,Δf为本地本振与载波之间的频率差,T为相干累积时间,CN0为到达基带时的信号载噪比,单位为dBHz,R(τ )为C/A码的自相关函数,Δφ为初始相位差,D为信号调制的导航电文符号,ηI和ηQ分别为I路和Q路的噪声。
由公式(6)(7)可知,相干累积结果和相干累积时长非常相关,相干累积时间越长,对输进载噪比的要求越低,其灵敏度也就越高,但累积时长过长,由于频偏Δf的影响,上式中第一项值也会越小,又会降低其灵敏度。
因此,一般高灵敏度的GPS接收机都需要采用频率稳定度较高的TCXO作为本振,以降低本地频率和载波频率之间的偏差。
一般而言,高灵敏度的基带算法对本振的稳定度要求在8ppm左右,该稳定度包括校正偏差、老化以及温度补偿稳定度,对于频率校正稳定度为2ppm、老化稳定度为5ppm的TCXO而言,一般要求其温度补偿稳定度在0.5ppm以内。
非相干累积结果为,通过公式(6)(7)还可以看出,当采用非相干累积时,由于ηI和ηQ的存在,其信噪比会比相干累积有所降低。
下图给出了不同频率偏移情况下相干累积结果随相干时长变化的情况。
由图中可以看出,当频偏较小的情况下,可以选择较长的相干时长以达到较高的相干累积结果。
图3相干时长与相干累积结果的关系2.3高接收灵敏度的GPS接收机设计根据本文前述内容的分析可知,要设计高接收灵敏度的GPS接收机,需要从以下几个方面着手:1、要有好的抗干扰和隔离设计,由于GPS信号属于弱信号,信号强度在-130dBm左右,因此射频通道内任何一级引进的干扰都有可能极大地影响系统的接收信噪比,因此,需要从电路设计上做到抗干扰和隔离,尤其是地线的设计,差的地线设计可以使系统信噪比降低6dB以上;2、需要最小化接收机噪声,即尽可能进步系统的G/T值,这可以从尽量降低前级噪声系数、前级增益等方面进行,但同时还需要考虑系统的动态范围,全通道增益不能过大;3、要有好的基带算法,包括对信噪比要求极低的捕捉、跟踪算法,这一点目前在业界很多GPS基带芯片内都已经实现;4、需要高稳定度的本振,这也是好的基带算法能够工作的必要条件。
3总结随着GPS应用范围的不断扩展,业界对GPS接收机的灵敏度要求也越来越高。
GPS接收机的灵敏度主要受两个部分的限制:一是接收机前端电路包括天线部分的设计,二是接收机基带算法的设计。
其中,接收机前端电路决定了接收信号到达基带部分时的信噪比,而基带算法则决定了解调、捕捉、跟踪过程所能容忍的最小信噪比。
本文针对上述两个方面的原理分别进行了阐述,并给出了高灵敏度接收机设计的建议。
参考文献[1]. M. Braasch and F. van Graas, “Guidance accuracy considerations for realtime GPS interferometry,” in Proc. 4th Int. ech. Meeting Satellit e Division of the Institute of Navigation, Sept. 1991, pp. 373–386.[2]. P. Nieuwjaar, “GPS signal structure,” NATO AGARD Lecture Series No. 161, The NAVSTAR GPS System, Sept.1988.[3]. Anonymous, Interface Control Document ICD-GPS-200, Arinc Research Corporation, Fountain Valley, CA, July1991.[4]. Machael S. Braasch, A. J. Van Dierendonck, GPS Receiver Architectures and Measurements,Proceedings of The IEEE, Vol. 87, No. 1, January 1999 [5]. Bradford W. Parkinson, James J. Spilker Jr., Global Positioning System: Theory and Applications, Volume I, American Institute of Aeronautics and Astronautics, Inc., 1996(end)本资料来源于:/view/a48d224ac850ad02de804129.html以下是少有的有水平的讨论,作为补充。