2017幂函数知识总结

合集下载

2017高考数学知识点:幂函数的性质

2017高考数学知识点:幂函数的性质

2017年高考数学知识点:幂函数的性质形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:如果a 为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。

当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。

在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

而只有a为正数,0才进入函数的值域性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q 次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q 是偶数,函数的定义域是[0,+∞)。

当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞)。

因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x>;0,则a可以是任意实数;排除了为0这种可能,即对于x;0的所有实数,q不能是偶数;排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。

幂函数——知识点、考点总结

幂函数——知识点、考点总结

精品PPT
求f x的解析式.
2.若幂函数y m2 3m 17 x4mm2的图象不过原点,求实数m的取值范围. 3.幂函数y m2 m 1 xm22m3,当x 0, 时为减函数,则实数m的值为
. A m 2; B m 1;C m 1或2;D m 1 5 .
2
精品PPT
题型三——幂函数的图象与性质的应用
-
2 3
-2
3

-
6
-2
3
的大小
练习:
7
例2.比较下列各组数的大小
5
5
1.32 和3.12;
7
2
.
8
7 8
和-
1 9
8

3.
2 3
2 3

-
6
-2 3
.
1.比较下列各组数的大小:1
-
.3
5 2
和3.1
5 2
;
2
.
8
7 8

1 9
பைடு நூலகம்
8
;
已知幂函数f
x
3 k 1 k2 x2 2
k
Z
Y=x
R
值域 R
奇偶性 奇
Y=x2 Y=x3 Y=x1/2 Y=x-1
R
〔0,+∞) 偶
R
R
〔0,+∞)
(-∞,0)∪(0,+∞)

精非品P奇PT非偶 奇
单调性
过定点
(-∞,0〕 〔0,+∞)
〔0,+∞)
(1,1)
(-∞,0) (0,+∞)
6.高考中的题型: 题型一——幂函数值的大小比较

幂函数知识点总结

幂函数知识点总结

幂函数知识点总结幂函数是数学中常见的一类函数,主要应用于数据分析和物理学中。

它有着独特的数学性质,并且能够解释一系列规律性的现象,因此在各个领域中都有着广泛的应用。

本文将综合介绍幂函数的基本性质、作用机制和表达方式,以及其在实际应用中的各种特性。

一、基本性质幂函数(Power Function)是一类函数,通常定义为 y=x^n,其中x为变量,n为常数。

它同样也是一种一元函数,因为它只有一个变量X,表示函数值由变量X决定。

二、作用机制幂函数的作用机制主要体现在它的图象与数轴上。

因为x的增大会使得y的值也会加大,所以函数的图象通常是一条上凸的曲线。

这条曲线在原点处发散无限,而且具有明显的拐点,即抛物线的最高点。

此外,幂函数的作用机制还表现出了其“加速增长”的性质。

从图象上看,在抛物线最高点处,x增大时,y值会比较稳定,但是在x值增大之后,y值会变化得越来越快,这也是函数的最显著特征。

三、表达方式幂函数的表达方式很简单,一般情况下,以n来表示其幂的值,并且幂的值可以是整数、实数或负数,但必须保证x的值不等于0,这里说明由于x不等于0才有意义,因为若x等于0时,n为任意值,y都等于0.例如:y=x^2,即平方函数,n=2;y=x^3,即立方函数,n=3;y=x^2,即倒数平方函数,n=2.四、实际应用1、数据分析:幂函数在数据分析中应用十分广泛,其特有的“加速增长”性质,让数据分析者能够以规律的路径追求特定的结果。

例如,可以利用幂函数进行回归分析,以拟合给定数据;此外,可以利用幂函数构建概率模型,更好地研究联系型数据间的关系;2、物理学:幂函数在物理学中也有着广泛应用,可以用来模拟夸克的衰变过程,更好地理解物质的衰变规律;另外,也可以利用幂函数,研究物体受力的加速度变化,以及质量变化对物体运动的影响等。

综上所述,幂函数是一类重要的函数,它的基本性质、作用机制和表达方式构成了幂函数的基本框架,而在实际应用中,幂函数又有着广泛的用途,能够用于数据分析和物理学等领域,从而帮助人们更好地理解客观事物的变化规律。

幂函数的性质知识点总结

幂函数的性质知识点总结

幂函数的性质知识点总结幂函数是一种常见的函数形式,其形式为$f(x)=x^a$,其中$a$为实数,$x$为正实数。

在初等数学中,我们常常使用幂函数来描述各种各样的问题。

因此,本文将全面总结幂函数的性质,包括定义域、值域、单调性、奇偶性、最值等等。

一、定义域对于幂函数$f(x)=x^a$,其定义域为$x>0$。

这是因为,对于$x\leq 0$的情况,幂函数的值可能会在实数范围内无限制地扩大或缩小,从而变成无意义的虚数或复数。

因此,为了确保$f(x)$在实数范围内有意义,必须限定$x>0$。

二、值域当$a>0$时,$f(x)$的值域为$[0,+\infty)$。

这是因为,对于$x=0$时,$f(x)=0$;而对于$x>0$时,$f(x)$的值随着$x$的增大而增大,趋近于无穷大。

因此,$f(x)$的值域为$[0,+\infty)$。

当$a<0$时,$f(x)$的值域为$(0,+\infty)$。

这是因为,对于$x\neq 0$时,$f(x)>0$;而对于$x=0$时,$f(x)=0$。

因此,$f(x)$的值域为$(0,+\infty)$。

三、单调性当$a>0$时,$f(x)$在定义域内单调递增。

这是因为,对于$x_1<x_2$的情况,$f(x_2)-f(x_1)=(x_2^a-x_1^a)$。

由于$x_2>x_1$且$a>0$,因此$x_2^a>x_1^a$,仅需考虑到$x_2^a$与$x_1^a$的差异即可。

因此,$f(x)$在定义域内单调递增。

当$a<0$时,$f(x)$在定义域内单调递减。

这是因为,对于$x_1<x_2$的情况,$f(x_2)-f(x_1)=(x_2^a-x_1^a)$。

由于$x_2>x_1$且$a<0$,因此$x_2^a<x_1^a$,仅需考虑到$x_2^a$与$x_1^a$的差异即可。

指对幂函数知识点总结

指对幂函数知识点总结

指对幂函数知识点总结幂函数是数学中一类重要的函数,它的形式为y=x^n,其中n为常数。

在数学和实际问题中,幂函数有着广泛的应用。

下面将对幂函数的定义、性质及应用进行总结。

一、定义与性质1. 幂函数的定义:幂数为常数的函数称为幂函数。

幂数n可以是整数、分数或实数。

2. 幂函数的特点:a) 当n为正整数时,幂函数的定义域为实数集,且在定义域上为递增函数或递减函数。

b) 当n为负整数时,幂函数的定义域为(0,+∞),且在此定义域上为递减函数。

c) 当n为零时,幂函数的定义域为(0,+∞),且在此定义域上为常数函数。

d) 当n为分数时,幂函数的定义域为0、正实数或正实数与0的并集,且在此定义域上有特定的变化趋势。

3. 幂函数的图像特点:a) 当n为正数时,随着x的增大,函数图像在y轴的正半轴上逐渐上升。

b) 当n为负数时,随着x的增大,函数图像在y轴的正半轴上逐渐下降。

c) 当n为奇数时,函数图像经过原点,且在第一象限和第三象限上对称。

d) 当n为偶数时,函数图像在y轴正半轴上单调递增,且在第一象限上有特定的变化趋势。

二、应用领域1. 自然科学领域:a) 物理学:幂函数常用于描述机械运动、电磁波传播等现象。

b) 化学:幂函数可用于描述化学反应的速率与温度、浓度等因素的关系。

2. 经济学领域:a) 收入与消费关系:幂函数可用于描述收入与消费之间的关系,如马太效应。

b) 产出与投入关系:幂函数可用于描述生产要素投入与产出之间的关系。

3. 工程学领域:a) 建筑设计:幂函数可用于描述建筑物的荷载、尺寸与结构的关系。

b) 通信工程:幂函数可用于描述信号传输的功率与距离的关系。

4. 生物学领域:a) 生物传感器:幂函数可用于描述生物传感器的输入与输出之间的关系。

b) 增长模型:幂函数可用于描述生物体的生长模式,如人口增长模型等。

总结:幂函数作为一类重要的函数,在数学和实际问题中具有广泛的应用。

通过对幂函数的定义、性质以及应用领域的总结,有助于我们更好地理解和应用幂函数,为解决实际问题提供了有力的工具和方法。

幂函数 知识点总结

幂函数 知识点总结

幂函数知识点总结一、幂函数的基本概念1.1 定义幂函数是指以自变量 x 为底数的常数次幂,形式为 y = ax^n,其中 a 为非零实数,n 为实数。

其中,底数 a 称为幂函数的底数,指数 n 称为幂函数的指数。

1.2 定义域和值域幂函数的定义域为全体实数集 R,即 x 可以取任意实数值;而值域则受底数 a 和指数 n 的影响而不同。

当 n 为正数时,值域为全体正实数集 R^+;当 n 为负数时,值域为正实数集R^+,并且x ≠ 0;当 n 为零时,值域为全体实数集 R。

1.3 奇偶性当指数 n 为偶数时,幂函数关于 y 轴对称;当指数 n 为奇数时,幂函数关于原点对称。

1.4 增减性当指数 n 大于 1 时,幂函数在定义域上是增函数;当指数 n 大于 0 且小于 1 时,幂函数在定义域上是减函数。

二、幂函数图像的特点2.1 当底数 a 大于 1 时当底数 a 大于 1 时,幂函数的值域为正实数集 R^+。

图像呈现出从左下方无穷趋近于 x 轴,经过原点后逐渐上升并趋近于正无穷的趋势。

2.2 当底数 0 < a < 1 时当底数 0 < a < 1 时,幂函数的值域同样为正实数集 R^+。

图像呈现出从左下方无穷趋近于x 轴,经过原点后逐渐下降并趋近于 0 的趋势。

2.3 当底数 a 小于 0 时当底数 a 小于 0 时,则根据指数 n 的奇偶性和正负性来确定图像的性质。

当指数 n 为正偶数时,图像同样呈现出从左下方无穷趋近于 x 轴,经过原点后逐渐上升并趋近于正无穷的趋势;当指数 n 为正奇数时,图像同样呈现从左上方无穷趋近于 x 轴,经过原点后逐渐下降并趋近于负无穷的趋势。

2.4 特殊情况当底数 a 等于 1 时,幂函数的图像表现为一条平行于 x 轴的直线 y = 1;当底数 a 等于 -1 时,根据指数 n 的奇偶性不同,图像分别为一条平行于 x 轴的直线 y = -1 和关于 y 轴对称的抛物线。

幂函数高考知识点总结

幂函数高考知识点总结

幂函数高考知识点总结幂函数是高中数学中非常重要的一部分内容,也是高考中经常出现的知识点之一。

幂函数在数学中具有广泛的应用,不仅仅体现在纵坐标的数值关系上,更是涉及到图像特征、函数性质以及解题方法等方面。

下面我将对幂函数的相关知识进行总结和梳理,希望对大家复习和备考有所帮助。

1、幂函数的定义和性质幂函数的一般形式可以表示为:f(x) = ax^b,其中a和b是常数,而x是变量。

其中,a称为幂函数的系数,b称为幂函数的指数。

幂函数的定义域由指数b的正负决定,若b为正整数,则定义域是全体实数;若b为负整数,则定义域是x ≠ 0的一切实数;若b为0,则幂函数的定义域是x > 0的一切实数。

当只考虑幂函数f(x)在正数定义域上的取值时,幂函数的图像可以分为两种情况:当a > 1时,图像呈现递增趋势;当0 < a < 1时,图像则呈现递减趋势。

2、幂函数的图像特征通过观察幂函数的图像,我们可以得出一些重要的结论。

首先,当幂函数的系数a为正数时,图像都经过第一象限的点(1, a)。

其次,当幂函数的指数b为奇数时,幂函数的图像对称于y轴;当幂函数的指数b为偶数时,幂函数的图像具有原点对称性。

除此之外,我们还可以通过改变系数a和指数b的值,来改变幂函数图像的特征,如峰值的高低、函数图像的陡峭程度等。

3、幂函数的运算与应用幂函数的求导是高中数学中的重要内容之一。

对于幂函数f(x) =ax^b,其中a为常数,b为实数,我们可以通过求导的方法来确定幂函数的导函数形式。

具体来说,当指数为整数时,我们可以利用幂函数的定义进行求导;当指数为实数且不为整数时,我们则需要利用对数函数的性质来求导。

此外,由于幂函数具有多种性质和特点,在解决实际问题时也能够提供很多启示和方法。

4、幂函数的解题技巧和例题分析在高考中,幂函数常常出现在各种数学题目中,因此熟练掌握幂函数的解题方法是非常重要的。

对于幂函数的解题技巧,我们可以利用以下几点进行分析和总结:首先,要熟悉幂函数的性质和特点,了解其图像形态和函数性质;其次,要能够根据题目给出的条件和要求,建立幂函数方程或不等式;最后,要善于运用数学方法和思维工具,进行合理的推导和计算。

指对幂函数知识点总结

指对幂函数知识点总结

指对幂函数知识点总结幂函数是指将一个变量的函数,其函数表达式类似于ax^b,其中x表示函数的自变量,a与b为实数,a可以为1,b可以为任意实数(包括0)。

2、幂函数的特点(1)该函数的图像一般具有一个模式,当b>0时,以原点为顶点,向右延伸的弧线;当b<0时,以原点为顶点,向左延伸的弧线;当b=0时,是一条水平线。

(2)幂函数是单调函数,当b>0时,其函数值由小到大;当b<0时,其函数值由大到小。

(3)幂函数具有对称性,当b为偶数时,其横轴对称;当b为奇数时,其纵轴对称。

(4)幂函数具有对称性,当b为偶数时,其横轴对称;当b为奇数时,其纵轴对称。

3、幂函数的基本性质(1)幂函数的导数当b=1时,函数的导数为ax;当b≠1时,函数的导数为abx^(b-1)。

(2)幂函数的极值当a>0且b>1时,函数的极大值为+∞,极小值为0;当a<0且b>1时,函数的极大值为-∞,极小值为0;当a>0且b<1时,函数的极大值为a,极小值为0;当a<0且b<1时,函数的极大值为0,极小值为-a。

(3)函数的增减性当b>1时,函数在[0, +∞)内递增;当b<1时,函数在[0, +∞)内递减;当b=1时,函数在x>0和x<0两段位置都是递增的。

4、幂函数的应用(1)实际问题的求解:幂函数主要用于解决一些实际问题,如财务计算中的时间价值计算。

(2)计算机科学:幂函数也被应用于计算机科学中,它用于表示某些算法的时间复杂度,用最好的、最坏的以及平均的情况来表示。

(3)物理学:幂函数在物理学中也有应用,可以用它来描述很多物理现象,如重力加速度的变化曲线、质点运动轨迹等等。

5、总结本文介绍了幂函数的基本概念,特点及其基本性质,同时介绍了它在实际问题、计算机科学以及物理学中的应用,以期让读者对幂函数有一个全面而深入的了解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幂 函 数 复 习
一、幂函数定义:形如
)(R x y ∈=αα的函数称为幂函数,其中x 是自变量,α是常数。

注意:幂函数与指数函数有何不同
【思考·提示】 本质区别在于自变量的位置不同,幂函数的自变量在底数位置,而指数函数的自变量在指数位置.
观察图:
归纳:幂函数图像在第一象限的分布情况如下:
二、幂函数的性质
归纳:幂函数在第一象限的性质:
0>α,图像过定点(0,0)(1,1),在区间(+∞,0)上单调递增。

0<α,图像过定点(1,1),在区间(+∞,0)上单调递减。

探究:整数m,n 的奇偶与幂函数n
m x y =),,,(互质且n m Z n m ∈的定义域以及奇偶
性有什么关系 结果:形如n m x y =),,,(互质且n m Z n m ∈的幂函数的奇偶性
(1)当m ,n 都为奇数时,f (x )为奇函数,图象关于原点对称;
(2)当m 为奇数n 为偶数时,f (x )为偶函数,图象关于y 轴对称;
(3)当m 为偶数n 为奇数时,f (x )是非奇非偶函数,图象只在第一象限内.
三、幂函数的图像画法:
关键先画第一象限,然后根据奇偶性和定义域画其它象限。

指数大于1,在第一象限为抛物线型(凹);
指数等于1,在第一象限为上升的射线;
指数大于0小于1,在第一象限为抛物线型(凸);
指数等于0,在第一象限为水平的射线;
指数小于0,在第一象限为双曲线型;
2、幂函数
),,,,(互质q p Z q p p q x y ∈==αα的图像:
3、比较幂形式的两个数的大小,一般的思路是:
(1)若能化为同指数,则用幂函数的单调性;
(2)若能化为同底数,则用指数函数的单调性;
(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.
.经典例题:
例1、已知函数2
23()()m m f x x m -++=∈Z 为偶函数,且(3)(5)f f <,求m 的值,并确定()f x 的解析式.
例2、若11(1)(32)m m --+<-,试求实数m 的取值范围.
例3、若33(1)(32)m m +<-,试求实数m 的取值范围.
例4、若44(1)(32)m m +<-,试求实数m 的取值范围.
例5、函数1
224(42)(1)y mx x m m mx -=++++-+的定义域是全体实数,求m 的取值范围。

练习1:已知函数2
221(1)m m y m m x --=--是幂函数,求此函数的解析式.
练习2:若函数29()(919)a f x a a x -=-+是幂函数,且图象不经过原点,求函数的
解析式.
题型二:幂函数性质
例2:下列命题中正确的是( )
A .当0α=时,函数y x α=的图象是一条直线
B .幂函数的图象都经过(0,0),(1,1)两点
C .幂函数的
y x α=图象不可能在第四象限内 D .若幂函数y x α
=为奇函数,则在定义域内是增函数 练习3:如图,曲线c1, c2分别是函数y =x m 和y =x n 在第一象限的图象,那么一定有( )
A .n<m<0
B .m<n<0
C .m>n>0
D .n>m>0
练习4:.(1)函数y =52
x 的单调递减区间为( ) A .(-∞,1) B .(-∞,0) C .[0,+∞) D .(-∞,+∞)
(2).函数y =x 43
-在区间上 是减函数.
(3).幂函数的图象过点(2,41
), 则它的单调递增区间是。

相关文档
最新文档