MC9S12XS128例程
飞思卡尔16位单片机9S12XS128使用和程序

飞思卡尔16位单片机9S12XS128使用收藏最近做一个关于飞思卡尔16位单片机9S12XS128MAA的项目,以前未做过单片机,故做此项目颇有些感触。
现记录下这个艰辛历程。
以前一直是做软件方面的工作,很少接触硬件,感觉搞硬件的人很高深,现在接触了点硬件发现,与其说使用java,C#等语言写程序是搭积木,不如说搞硬件芯片搭接的更像是在搭积木(因为芯片是实实在在拿在手里的东西,而代码不是滴。
还有搞芯片内部电路的不在此列,这个我暂时还不熟悉)。
目前我们在做的这个模块,就是使用现有的很多芯片,然后根据其引脚定义,搭接出我们需要的功能PCB板,然后为其写程序。
废话不多说,进入正题。
单片机简介:9S12XS128MAA单片机是16位的单片机80个引脚,CPU是CPU12X,内部RAM 8KB,EEPROM:2KB,FLASH:128KB,外部晶振16M,通过内部PLL可得40M总线时钟。
9S12XS128MAA单片机拥有:CAN:1个,SCI:2个,SPI:1个,TIM:8个,PIT:4个,A/D:8个,PWM:8个下面介绍下我们项目用到的几个模块给出初始化代码1、时钟模块初始化单片机利用外部16M晶振,通过锁相环电路产生40M的总线时钟(9S12XS128系列标准为40M),初始化代码如下:view plaincopy to clipboardprint?/******************系统时钟初始化****************/void Init_System_Clock(){asm { // 这里采用汇编代码来产生40M的总线LDAB #3STAB REFDVLDAB #4STAB SYNRBRCLR CRGFLG,#$08,*//本句话含义为等待频率稳定然后执行下一条汇编语句,选择此频率作为总线频率BSET CLKSEL,#$80}}/******************系统时钟初始化****************/void Init_System_Clock(){asm { // 这里采用汇编代码来产生40M的总线LDAB #3STAB REFDVLDAB #4STAB SYNRBRCLR CRGFLG,#$08,*//本句话含义为等待频率稳定然后执行下一条汇编语句,选择此频率作为总线频率BSET CLKSEL,#$80}}上面的代码是汇编写的,这个因为汇编代码量比较少,所以用它写了,具体含义注释已经给出,主函数中调用此函数即可完成时钟初始化,总线时钟为40M.2、SCI模块初始化单片机电路做好了当然少不了和PC之间的通信,通信通过单片机串口SCI链接到PC 端的COM口上去。
第8章MC9S12XS128模数转换模块及其应用实例59页PPT

8.2 ATD模块结构组成和特点
MC9S12XS128内置的ATD 模块如图8.1所示。
《MC9S12XS单片机原理及嵌入式系统开发》 单片机原理及嵌入式系统开发》
8.2 ATD模块结构组成和特点
ATD模块具有以下基本特征: 8位/10位/12位可选转换精度; 停止模式下转换使用内部时钟; 转换完成后为低功耗状态; 自动和可编程数值比较,可设定大于或者小于等于设定值时中断申请; 可编程采样时间; 左对齐/右对齐转换数值; 外部触发功能; 转换完成中断申请; 16路模拟输入通道多路开关; 可实现VRH、VRL和(VRH+VRL)/2特殊转换; 转换序列长度为1~16; 连续转换模式; 多通道扫描功能; 外部触发功能可配置为AD通道或4个外部附加触发输入端,外部触发源可选
《MC9S12XS单片机原理及嵌入式系统开发》 单片机原理及嵌入式系统开发》
8.3 ATD模块寄存器及设置
8.3.4 ATD控制寄存器3(ATDCTL3)
S8C、S4C、S2C、S1C:转换序列长度定义位。这4位控制每个序列转换的长度。A/D 转换序列长度定义详见表8-7。复位后,S4C默认为1,所以默认的A/D转换序列的长度为 4。
8.3 ATD模块寄存器及设置
8.3.3 ATD控制寄存器2(ATDCTL2)
ETRIGE:外部触发模式使能位。该位允许表8-3中描述的AD通道或者ETRIG3~0输入 端作为外部触发源。如果外部触发源是AD某通道,则使能该通道的数字输入缓冲功能。外部 触发允许与外部事件实现同步转换。停止模式下的AD转换,外部触发不工作。
《MC9S12XS单片机原理及嵌入式系统开发》 单片机原理及嵌入式系统开发》
8.3 ATD模块寄存器及设置
MC9S12XS128例程

SCI程序串行通信时MCU与外部设备之间进行通信的一种简单而有效的硬件方法。
无论用查询方式还是中断方式进行串行通信编程,在程序初始化时均必须对SCI进行初始化。
初始化主要包括波特率设置、通信格式的设置、发送接收数据方式的设置等。
对SCI进行初始化,需要设置如下几部分:(1)定义波特率一般选内部总线时钟为串行通信的时钟源。
通过设置SCI波特率寄存器SCI0BD的波特率选择位SBR[12:0],来选择合适的分频系数。
(2)写控制字到SCI控制寄存器1(SCI0CR1)设置是否允许SCI、数据长度、输出格式、选择唤醒方法、是否校验等。
(3)写控制字到SCI控制寄存器2(SCI0CR2)设置是否允许发送与接收、是中断接收还是查询接收等。
串行通信程序如下:/** write in “Init.h” **/#include <hidef.h> /* common defines and macros */#include "derivative.h" /* derivative-specific definitions *///void InitBusClk(void); //可以不使用锁相环void InitSci(void);/** write in “Init.c” **///初始化程序#include "Init.h"/*//------------初始化Bus Clock------------//void InitBusClk(void) {DisableInterrupts;CLKSEL=0X00; //PLLSEL 1 : Bus Clock=PLLCLK/2// 0 : Bus Clock=OSCCLK/2PLLCTL_PLLON=1; //开启PLLSYNR=0; //OSCCLK=16MHzREFDV=0X0F; //PLLCLK=2*OSCCLK*[(1+SYNR)/(1+REFDV]=32/16=2MHz while(!(CRGFLG_LOCK==1)); //直到LOCK=1,when PLL is ready,退出循环CLKSEL_PLLSEL=1; //PLLSEL 1 : Bus Clock=PLLCLK/2=2MHz/2=1MHz// 0 : Bus Clock=OSCCLK/2=16M/2=8MHz}*///---------------初始化SCI---------------//void InitSci(void){SCI0BD=4545; //设波特率为110//SCI baud rate = SCI module clock/(16*SCIBD)=Bus Clock/(16*SCIBD)// = 8MHz/(16*4545)=500kHz/4545=110bps//SCIBD : SBR12-SBR0,Value from 1 to 8191SCI0CR1=0;SCI0CR2=0X2C; // 0010 1100 RIE=1,TE=1,RE=1// RIE=1 RDRF and OR interrupt requests enabled// TE=1 Transmitter enabled// RE=1 Receiver enabled}/** write in “SCI.h” **///函数声明unsigned char SciRead();void SciWrite(byte);/** write in “SCI.c” **///串行通信程序#include "Init.h"#include "SCI.h"//---------------读SCI数据---------------//unsigned char SciRead(){if(SCI0SR1_RDRF==1){//数据从移位寄存器传送到SCI数据寄存器SCIDRL//SCI0SR1_RDRF==1表明数据寄存器SCI0DRL为满,可以接收新的数据SCI0SR1_RDRF=1; //读取SCI数据寄存器会将RDRF清除,重新置位return SCI0DRL; //返回数据寄存器的数值}}//---------------写SCI数据---------------//void SciWrite(byte sci_value){while(!(SCI0SR1&0X80));//SCI0SR1_TDRE==1表明数据寄存器SCI0DRL为空,可以发送新的数据SCI0DRH=0;SCI0DRL=sci_value; //发送新的数据至数据寄存器SCI0DR}//---------------中断程序-----------------//#pragma CODE_SEG NON_BANKEDinterrupt 20 void Sci_Intrrupt(void){ //SCI的中断向量号为20byte text;DisableInterrupts; //关中断text=SciRead(); //接收数据寄存器SCI0DRL中的数据asm nop;asm nop;SciWrite(text); //发送数据至数据寄存器SCI0DRLDDRA=0XFF; //设A口为输出,用来显示是否执行中断,可以不用PORTA_PA6=!PORTA_PA6;EnableInterrupts; //开中断}#pragma CODE_SEG DEFAULT/** write in “main.c”” **/#include "Init.h"#include "SCI.h"void main(void) {/* put your own code here */_DISABLE_COP(); //关看门狗DisableInterrupts; //关中断//InitBusClk();InitSci();EnableInterrupts; //开中断for(;;) {// _FEED_COP(); /* feeds the dog */} /* loop forever *//* please make sure that you never leave main */}A/D转换应用实例要让ATD 开始转换工作,必须经过以下三个步骤:1.将ADPU 置1,使ATD 启动;2.按照要求对转换位数、扫描方式、采样时间、时钟频率及标志检查等方式进行设置;3.发出启动命令;如果上电默认状态即能满足工作要求,那么只要将ADPU 置1,然后通过控制寄存器发出转换命令,即可实现转换。
【MC9S12XS128MAA】使用说明书

【MC9S12XS128MAA】使用说明书
预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制
MC9XS128MAA 使用说明书
该系统板供电电压为:5±0.02 V ,建议使用TPS7350为其供电,理由如下:TPS7350 是微功耗低压差线性电源芯片,具有完善的保护电路,包括过流、过压、电压反接保护。
使用这个芯片只需要极少的外围元件就能构成高效稳压电路。
与LM2940及AS1117稳压器件相比,TPS7350具有更低的工作压降和更小的静态工作电流,可以使电池获得相对更长的使用时间。
由于热损失小,因此无需专门考虑散热问题。
而且其纹波很小,又为线性稳压芯片,可以为单片机及片外AD 模块提供很稳定的工作电压!
1.到货后检测:
当你的系统板到货后,请你马上测试,如系统板的有个指示灯是一闪一闪的(我们发货检测的时候讲测试程序烧录在里面),证明系统板是没有问题的。
否则就是损坏的,请你马上联系我们的客服。
系统板与下载器BDM的连接图:
该系统板的编程需要专门的飞思卡尔软件:
2.
3.
需要使用USB专用接线,使用前需要安装USB转串口CH340T 驱动
5.烧录时出现问题
如果下载程序步骤不是以上步骤,并且不能进行烧录,则可能出现以下问题:
1、电脑未安装BDM 驱动或者安装未成功;
2、下载线跟芯片下载口的方向不对;
3、连接线出现问题,拔出各接口,重新连接;
4、芯片被锁,请按照解锁文档步骤进行解锁
5、BDM 跳线帽错误。
第9章 MC9S12XS128定时器模块及其应用实例

《MC9S12XS单片机原理及嵌入式系统开发》
第9章 MC9S12XS128定时器模块及其应用实例
本节内容
9.2 TIM模块结构和工作原理 9.2.1 TIM模块结构 9.2.2 TIM模块工作原理 9.2.3 TIM模块寄存器 9.2.4 TIM模块中断系统
《MC9S12XS单片机原理及嵌入式系统开发》
第9章 MC9S12XS128定时器模块及其应用实例
9.3 TIM模块的自由运行计数器和定时器基本寄存器及设置
9.3.1 自由运行主定时器与时钟频率设置 定时器系统控制寄存器TSCR1中的TEN位是TIMCLK时钟的总开关。 当TEN=0时,自由运行主定时器的时钟被关断,定时器停止工作,但并不
《MC9S12XS单片机原理及嵌入式系统开发》
第9章 MC9S12XS128定时器模块及其应用实例
9.1 TIM模块概述 定时器/计数器的特点:
(1)可以有多种工作方式——定时方式或计数方式等。 (2)计数器的模值可变——计数的最大值有一定的限制,取决于计数器
的位数。计数的最大值限制了定时的最大值。 (3)可以根据规定的定时或计数值,当定时时间到或到达计数终点时,
《MC9S12XS单片机原理及嵌入式系统开发》
第9章 MC9S12XS128定时器模块及其应用实例
9.1 TIM模块概述
9.2.2 TIM模块工作原理
【输入捕捉】
输入捕捉(Input Capture,IC):通过捕获自由运行计 数器的计数值来检测外部事件和记录选定的输入信号 跳变边沿的时间。
《MC9S12XS单片机原理及嵌入式系统开发》
飞思卡尔MC9S12XS128各模块初始化程序--超详细注释

飞思卡尔MC9S12XS128各模块初始化程序--超详细注释//**************************************************************************// 武狂狼2014.5.1 整理// 新手入门的助手////***************************************************************************注释不详细/*********************************************************/函数名称:void ATD0_init(void)函数功能:ATD初始化入口参数:出口参数:/***********************************************************/void ATD0_init(void){ATD0DIEN=0x00; //使用模拟输入功能|=1;数字输入功能// ATD0CTL0=0x07; //Bit[3:0]WRAP[3:0] 反转通道选择位ATD0CTL1=0x40; // 12位精度,采样前不放电 Bit[7]ETRIGSEL(外部触发源选择位。
=0选择A/D通道AN[15:0] |=1选择 ERTIG3~0)和Bit[3:0]ETRIGCH[3:0]选择外部触发通道// Bit[6:5]SRES[1:0]A/D分辨率选择位。
Bit[4]SMP_DIS =0采样前不放电|=1采样前内部电容放电,这会增加2个A/D时钟周期的采样时间,有助于采样前进行开路检测ATD0CTL2=0x40; // 快速清零,禁止中断,禁止外部触发ATD0CTL3=0x90; // 右对齐,转换序列长度为2,非FIFOATD0CTL4=0x03; // 采样时间4个周期,PRS=31,F(ATDCLK)=F(BUS)/(2(PRS+1))// ATD0CTL5=0x30; //启动AD转换序列//:对每项数据采集时,用到哪个通道采样可在相应子函数内设置某一通道(见Sample_AD.c)while(!ATD0STAT2L_CCF0);/*********************************************************/函数名称:void PIT_init(void)函数功能:初始化PIT 设置精确定时时间(1s)入口参数:无出口参数:无说明:无/***********************************************************/void PIT_init(void){PITCFLMT=0x00; //禁止PIT模块Bit[7] PITE:PIT模块使能位,0禁用|1使能// Bit[6] PITSWAI:等待模式下PIT停止位,0等待模式下,PIT模块正常运行| 1等待模式下,PIT模块停止产生时钟信号,冻结PIT模块// Bit[5] PITFRZ: 冻结模式下PIT计数器冻结位。
MC9S12XS128IO口编程

• 输出功能
• 相应引脚输出高低电平
•
1 --- 输出高电平 5V
•
0 --- 输出低电平 0V
注:I/O口带载能力低
I/0 口的作用
• 输入功能
ቤተ መጻሕፍቲ ባይዱ
• 读取相应引脚的电压高低
•
高---5V --- 读取结果为 1
•
低---0V --- 读取结果为 0
一般3V以上可识别为高电平,有些要 3.6V以上,但这不是绝对数据。
X128的I/O口
• MC9S12X128通用I/O口包括PORTA、PORTB、PORTE、 PORTK、PORTT、PORTS、PORTM、PORTP、PORTH、PORTJ、
PORTAD
• 注意:PORTK有7个引脚,PORTJ有4个引脚,其余均有8个
•
引脚
• 其中,B、E、K端口的寄存器名与A口类似 • 如PORTA PORTE PORTB PORTK ~~PORTA_PA1 • DDRA DDRB DDRE DDRK ~~DDRA_DDRA1
• 寄存器的值为1表示该引脚为输出,0表示输入
• 例:DDRA_DDRA0=1 ,A0为输出
•
DDRA_DDRA6=0 , A6为输入
•
DDRA=0XFF即0B11111111 ,A口为输出(含8引个脚)
•
DDRA=0X00即0B00000000 ,A口为输入(含8引个脚)
数据寄器PORTA
• A口共有8个引脚
• 实例1
• 设置A口8个引脚输出高电平 • DDRA=0XFF; //设为输出 • PORTA=0XFF; //输出为1,即高电平
• 实例2
• 读取A口电平信息,并存在变量 a 中 DDRA=0X00; //设置为输入 a=PORTA; //将电平信息读入变量a中 //若外部电平全为高,则a=0XFF
mc9s12xs128超声波程序

#include <hidef.h> /* common defines and macros */#include "derivative.h" /* derivative-specific definitions */#define uchar unsigned char#define uint unsigned int#define ulong unsigned long#define TX PORTB_PB1#define RX PORTB_PB7#define TX0 PTM_PTM4#define RX0 PTM_PTM2int SY=0;int SZ=0;int time=0;int time0=0;int rx=0;int rx0=0;void delay_1(uint shi){uchar i;for(;shi>0;shi--)for(i=100;i>0;i--); //18us}void suocun(){CLKSEL=0x00; //disengage PLL to systemPLLCTL_PLLON=1; //turn on PLLSYNR =0xc0 | 0x07; //VCOFRQ[7:6];SYNDIV[5:0];REFDV=0xc0 | 0x01; //REFFRQ[7:6];REFDIV[5:0]POSTDIV=0x00;//fVCO= 2*fOSC*(SYNDIV + 1)/(REFDIV + 1);fPLL= fVCO/(2 ×POSTDIV);BUS= fPLL/2//if POSTDIV=0, fPLL= fVCO_asm(nop); //BUS CLOCK=64M_asm(nop);while(!(CRGFLG_LOCK==1)); //when pll is steady ,then use it;CLKSEL_PLLSEL =1;}void chushihua()PITCFLMT_PITE=0X00; // PIT使能位PITCE_PCE1=0; // 通道选择PITMUX_PMUX1=0; //16位定时器微定时基准0计数PITMTLD1=5-1; //8位微定时装载寄存器PITLD1=128-1; //16位装载初始值设定频率10us PITINTE_PINTE1=1;//定时器中断通道0中断使能PITCFLMT_PITE=1;//定时中断通道0使能}/*******超声波*********/void qidong(){}void jiance(){qidong();if(time==0){TX=1;delay_1(1);TX=0;}if(time0==0){TX0=1;delay_1(1);TX0=0;}if(RX==0&&rx==1){SY=(int)(time*0.17);}if(RX==0){time=0;PITCE_PCE1=1;rx=RX;if(RX0==0&&rx0==1){SZ=(int)(time0*0.17);}if(RX0==0){time0=0;PITCE_PCE1=1;}rx0=RX0;}void duankouchushihua(){DDRB=0X02; //TX的B口置1PORTB=0X00;DDRM=0X10; // 端口M 的方向输入PTM=0X00;}void main(void){DisableInterrupts;suocun();duankouchushihua() ;chushihua();EnableInterrupts;for(;;){jiance();}}#pragma CODE_SEG __NEAR_SEG NON_BANKED void interrupt 67 PIT1_ISR(void){if(RX==1)time++;if(RX0==1)time0++;PITTF_PTF1=1;#pragma CODE_SEG DEFAULT。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SCI程序串行通信时MCU与外部设备之间进行通信的一种简单而有效的硬件方法。
无论用查询方式还是中断方式进行串行通信编程,在程序初始化时均必须对SCI进行初始化。
初始化主要包括波特率设置、通信格式的设置、发送接收数据方式的设置等。
对SCI进行初始化,需要设置如下几部分:(1)定义波特率一般选内部总线时钟为串行通信的时钟源。
通过设置SCI波特率寄存器SCI0BD的波特率选择位SBR[12:0],来选择合适的分频系数。
(2)写控制字到SCI控制寄存器1(SCI0CR1)设置是否允许SCI、数据长度、输出格式、选择唤醒方法、是否校验等。
(3)写控制字到SCI控制寄存器2(SCI0CR2)设置是否允许发送与接收、是中断接收还是查询接收等。
串行通信程序如下:/** write in “Init.h” **/#include <hidef.h> /* common defines and macros */#include "derivative.h" /* derivative-specific definitions *///void InitBusClk(void); //可以不使用锁相环void InitSci(void);/** write in “Init.c” **///初始化程序#include "Init.h"/*//------------初始化Bus Clock------------//void InitBusClk(void) {DisableInterrupts;CLKSEL=0X00; //PLLSEL 1 : Bus Clock=PLLCLK/2// 0 : Bus Clock=OSCCLK/2PLLCTL_PLLON=1; //开启PLLSYNR=0; //OSCCLK=16MHzREFDV=0X0F; //PLLCLK=2*OSCCLK*[(1+SYNR)/(1+REFDV]=32/16=2MHz while(!(CRGFLG_LOCK==1)); //直到LOCK=1,when PLL is ready,退出循环CLKSEL_PLLSEL=1; //PLLSEL 1 : Bus Clock=PLLCLK/2=2MHz/2=1MHz// 0 : Bus Clock=OSCCLK/2=16M/2=8MHz}*///---------------初始化SCI---------------//void InitSci(void){SCI0BD=4545; //设波特率为110//SCI baud rate = SCI module clock/(16*SCIBD)=Bus Clock/(16*SCIBD)// = 8MHz/(16*4545)=500kHz/4545=110bps//SCIBD : SBR12-SBR0,Value from 1 to 8191SCI0CR1=0;SCI0CR2=0X2C; // 0010 1100 RIE=1,TE=1,RE=1// RIE=1 RDRF and OR interrupt requests enabled// TE=1 Transmitter enabled// RE=1 Receiver enabled}/** write in “SCI.h” **///函数声明unsigned char SciRead();void SciWrite(byte);/** write in “SCI.c” **///串行通信程序#include "Init.h"#include "SCI.h"//---------------读SCI数据---------------//unsigned char SciRead(){if(SCI0SR1_RDRF==1){//数据从移位寄存器传送到SCI数据寄存器SCIDRL//SCI0SR1_RDRF==1表明数据寄存器SCI0DRL为满,可以接收新的数据SCI0SR1_RDRF=1; //读取SCI数据寄存器会将RDRF清除,重新置位return SCI0DRL; //返回数据寄存器的数值}}//---------------写SCI数据---------------//void SciWrite(byte sci_value){while(!(SCI0SR1&0X80));//SCI0SR1_TDRE==1表明数据寄存器SCI0DRL为空,可以发送新的数据SCI0DRH=0;SCI0DRL=sci_value; //发送新的数据至数据寄存器SCI0DR}//---------------中断程序-----------------//#pragma CODE_SEG NON_BANKEDinterrupt 20 void Sci_Intrrupt(void){ //SCI的中断向量号为20byte text;DisableInterrupts; //关中断text=SciRead(); //接收数据寄存器SCI0DRL中的数据asm nop;asm nop;SciWrite(text); //发送数据至数据寄存器SCI0DRLDDRA=0XFF; //设A口为输出,用来显示是否执行中断,可以不用PORTA_PA6=!PORTA_PA6;EnableInterrupts; //开中断}#pragma CODE_SEG DEFAULT/** write in “main.c”” **/#include "Init.h"#include "SCI.h"void main(void) {/* put your own code here */_DISABLE_COP(); //关看门狗DisableInterrupts; //关中断//InitBusClk();InitSci();EnableInterrupts; //开中断for(;;) {// _FEED_COP(); /* feeds the dog */} /* loop forever *//* please make sure that you never leave main */}A/D转换应用实例要让ATD 开始转换工作,必须经过以下三个步骤:1.将ADPU 置1,使ATD 启动;2.按照要求对转换位数、扫描方式、采样时间、时钟频率及标志检查等方式进行设置;3.发出启动命令;如果上电默认状态即能满足工作要求,那么只要将ADPU 置1,然后通过控制寄存器发出转换命令,即可实现转换。
程序描述:由通道ATD0进行单通道A/D转换,转换值在B口显示。
程序如下:程序一:#include <hidef.h> /* common defines and macros */#include "derivative.h" /* derivative-specific definitions */byte ad_value; //AD转换结果void Delay(int i) { //延时程序int j;for(;i>0;i--)for(j=500;j>0;j--);}/***---------------初始化程序---------------***/void InitBusClk(void) {CLKSEL=0X80; //PLLSEL 1 : Bus Clock=PLLCLK/2// 0 : Bus Clock=OSCCLK/2PLLCTL_PLLON=1; //开启PLLSYNR=0;REFDV=0X03; //OSCCLK=16MHz//PLLCLK=2*OSCCLK*[(1+SYNR)/(1+REFDV]=32/4=8MHzwhile(!(CRGFLG_LOCK==1)); //直到LOCK=1,when PLL is ready,退出循环CLKSEL_PLLSEL=1;//PLLSEL 1 : Bus Clock=PLLCLK/2=8MHz/2=4MHz// 0 : Bus Clock=OSCCLK/2=16M/2=8MHz}void InitAD(void){ATD0CTL2 = 0XC0; // 1100 0000 启动A/D,快速清除标志位// 无等待模式,外部触发禁止(bit2=0),中断禁止(bit1=0)ATD0CTL3 = 0X0C;// 0 0001 1 00 转换序列为1 、FIFO模式启动,冻结模式下继续转换ATD0CTL4 = 0XE1; // 1 11 00001 8位精度,16AD采样时间// 总线(1+1)*2 = 4 分频,AD时钟= 1MHz ATD0CTL5 = 0X27;// 0 0 1 0 0 111 右对齐,无符号,连续转换,单通道, 起始通道ATD7// DJM DSGN SCAN MULT 0 CC CB CA// DJM :1-Right justified 0-Left justified// DSGN:1-Signed data 0-Unsigned data// SCAN:1-Continuous 0-Single conversion// CC CB CA : Analog Input Channel Select CodeATD0DIEN = 0X00; // 数字输入disabled}/***---------------主程序---------------***/void main(void) {/* put your own code here */_DISABLE_COP(); // 关看门狗InitBusClk();InitAD();DDRB=0XFF; // 设PORTB为输出口PORTB=0x00;EnableInterrupts; // 开放总中断for(;;) {while(!ATD0STAT2L_CCF7); //等待转换结束,退出循环ad_value=(byte)ATD0DR7H;//左对齐,右对齐时转换结果都先存储在ATD0DRxH,后存储在ATD0DRxL.Delay(200); //延时PORTB=ad_value;//PORTB输出AD转换结果,并用8个LED发光二极管显示//_FEED_COP(); /* feeds the dog */} /* loop forever *//* please make sure that you never leave main */}程序二:(用指针实现AD转换)#include <hidef.h> /* common defines and macros */#include "derivative.h" /* derivative-specific definitions */ byte AD_Value; //AD转换结果void Delay(int i) { //延时程序int j;for(;i>0;i--)for(j=500;j>0;j--);}/***---------------初始化程序---------------***/(初始化程序与上述相同)/***---------------读取AD转换结果---------------***/void AD_GetValue(word *AD_Value){*AD_Value=ATD0DR0;}void main(void) {/* put your own code here */_DISABLE_COP(); //关看门狗InitBusClk();InitAD();DDRB=0XFF; //设PORTB为输出口PORTB=0x00;EnableInterrupts;for(;;) {while(!ATD0STAT2L_CCF7); //等待转换结束,退出循环AD_GetValue(&AD_Value); //读取转换结果Delay(400);PORTB=AD_Value; //转换结果在B口显示_FEED_COP(); /* feeds the dog */} /* loop forever *//* please make sure that you never leave main */}程序三:(用中断实现AD转换)#include <hidef.h> /* common defines and macros */#include "derivative.h" /* derivative-specific definitions */#include <mc9s12xs128.h>byte AD_Data=0;//*void Delay(int i) {int j;for(;i>0;i--)for(j=500;j>0;j--);}//*//***---------------初始化程序---------------***/void InitBusClk(void) {CLKSEL=0X80; //PLLSEL 1 : Bus Clock=PLLCLK/2// 0 : Bus Clock=OSCCLK/2PLLCTL_PLLON=1; //开启PLLSYNR=0;REFDV=0X03; //OSCCLK=16MHz//PLLCLK=2*OSCCLK*[(1+SYNR)/(1+REFDV]=32/4=8MHz while(!(CRGFLG_LOCK==1)); //直到LOCK=1,when PLL is ready,退出循环CLKSEL_PLLSEL=1; //PLLSEL 1 : Bus Clock=PLLCLK/2=8MHz/2=4MHz// 0 : Bus Clock=OSCCLK/2=16M/2=8MHz}void InitAD(void){ATD0CTL2 = 0XC3;// 110 000 11 启动A/D,快速清除标志位,无等待模式,外部触发禁止(bit2=0) // 中断开放(bit1=1,bit0=1)// bit1 :ATD Sequence Complete Interrupt Enable// bit0 :ATD Sequence Complete Interrupt FlagATD0CTL3 = 0X0C;// 0 0001 1 00 转换序列为1 、FIFO模式启动,冻结模式下继续转换ATD0CTL4 = 0XE1; // 1 11 00001 8位精度,16AD采样时间// 总线(1+1)*2 = 4 分频,AD时钟= 1MATD0CTL5 = 0XA7;// 1010 0111 右对齐,无符号,连续转换,单通道, 起始通道ATD7ATD0DIEN = 0X00; // 数字输入disabled}/***---------------主程序---------------***/void main(void) {/* put your own code here */DisableInterrupts; //关中断InitBusClk();InitAD();DDRB=0XFF; //设B口为输出口PORTB=0X00;EnableInterrupts; //开中断for(;;){//while(!ATD0STAT2L_CCF7);PORTB=(byte)AD_Data; //B口显示转换结构}}/***---------------中断服务程序---------------***/#pragma CODE_SEG NON_BANKEDvoid interrupt 22 IntAD(void){ // AD转换的中断向量号为33 DisableInterrupts; //关中断//while(!ATD0STAT2L_CCF7);AD_Data=ATD0DR0H; //读取AD转换结果EnableInterrupts; //开中断}#pragma CODE_SEG DEFAULTPWM例程//---------------------------------------------------------------------------------------------------////功能说明:MC9S12XS128--PWM例程//使用说明:实现通道0(PTP0)输出频率为1Hz,占空比为50%的方波,可以用发光二极管显示,每秒钟放光二极管亮一次//--------------------------------------------------------------------------------------------------//#include <hidef.h> /* common defines and macros */#include "derivative.h" /* derivative-specific definitions */void Delay(int i){int j ;for(;i>0;i--)for(j=500;j>0;j--);}void InitPWM(void){PWME =0x00; //clear PWM Enable register 关闭PWM输出PWMPOL = 0XFF; //初始极性高电平PWMCAE =0x00; // left allign 左对齐//PWMCTL = 0x50; // 0101 0000 CON01 CON45PWMCLK = 0x01; // 0000 0001 con0 uses Clock SA// SA Clock A is the clock source for PWM channel 0// SA Clock SA is the clock source for PWM channel 1// SA Clock B is the clock source for PWM channel 2// SA Clock B is the clock source for PWM channel 3// SA Clock A is the clock source for PWM channel 4// SA Clock A is the clock source for PWM channel 5// SA Clock B is the clock source for PWM channel 6// SA Clock B is the clock source for PWM channel 7PWMPRCLK=0x07;// 0000 0111 时钟A 128分频clockA=bus colck/128=8MHz/128=1/16 MHzPWMSCLA=0XFA;// 1111 1010 时钟SA为1/16MHz/(250*2)=1/8000MHz=1/8kHz=1000/8Hz=125HzPWMPER0=125; // Period = 1s *** (0.008)*125=1s *** PWMDTY0=60;PWME = 0x01; // 0000 0001 开启通道0的PWM 输出}void main(void) {/* put your own code here */InitPWM();EnableInterrupts;for(;;) {_FEED_COP(); /* feeds the dog */} /* loop forever *//* please make sure that you never leave main */}。