指数与指数函数练习试题精选
高三数学指数与指数函数试题

高三数学指数与指数函数试题1.若则的值为 ____ .【答案】2.【解析】因为,所以,故答案为:2.【考点】分段函数值的求法.2.已知,,则________.【答案】【解析】由得,所以,解得,故答案为.【考点】指数方程;对数方程.3.已知函数f(x)=2|2x-m|(m为常数),若f(x)在区间[2,+∞)上是增函数,则m的取值范围是________.【答案】(-∞,4]【解析】令t=|2x-m|,则t=|2x-m|在区间[,+∞)上单调递增,在区间(-∞,]上单调递减.而y=2t为R上的增函数,所以要使函数f(x)=2|2x-m|在[2,+∞)上单调递增,则有≤2,即m≤4,所以m的取值范围是(-∞,4].故填(-∞,4].4.已知,则下列关系中正确的是()A.a>b>c B.b>a>c C.a>c>b D.c>a>b【答案】A【解析】由已知得,,,,故a>b>c.【考点】指数函数的图象和性质.5.已知函数,若,且,则的最小值为(). A.B.C.2D.4【答案】B【解析】因为,所以,整理得,又,所以,解得,即,因此.故正确答案为B.【考点】1.指数函数;2.基本不等式.6.若为正实数,则.【答案】1【解析】设所以因此【考点】指对数运算7.若为正实数,则.【答案】1【解析】设所以因此【考点】指对数运算8.已知函数,且函数有且只有一个零点,则实数的取值范围是( )A. B.. D.【答案】B【解析】如图,在同一坐标系中分别作出与的图象,其中a表示直线在y轴上截距,由图可知,当时,直线与只有一个交点.故选B.【考点】分段函数图像数形结合9.函数y=a x-3+3恒过定点________.【答案】(3,4)【解析】当x=3时,f(3)=a3-3+3=4,∴f(x)必过定点(3,4).10.已知函数f(x)=则f(2+log23)=________.【答案】【解析】由3<2+log23<4,得3+log23>4,所以f(2+log23)=f(3+log23)=11.若函数f(x)=a|2x-4|(a>0,a≠1)满足f(1)=,则f(x)的单调递减区间是()A.(-∞,2]B.[2,+∞)C.[-2,+∞)D.(-∞,-2]【答案】B【解析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,所以f(x)在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B.12.设,,,则的大小关系是 .【答案】【解析】由题意可知:,,,,,∴,∴.【考点】1.指数函数、对数函数的性质;2.比较大小.13.已知函数,则 .【答案】.【解析】.【考点】1.分段函数;2.指数与对数运算.14.已知函数则()A.B.C.D.【答案】C【解析】.【考点】函数与指数运算.15.函数的零点个数为A.1B.2C.3D.4【答案】B.【解析】令f(x)=0得.画出两个函数. 图像即可得交点的个数为两个.所以原函数的零点有两个. 故选B.本题关键是的图像的画法是将函数在负y半轴的图像沿x轴翻折.【考点】1.函数的零点问题.2.对数函数图像,指数函数图像的画法.3.函数绝对值的图像的画法.16.设,则的大小关系为()A.B.C.D.【答案】A【解析】由分数指数幂与根式的关系知:,从而易知,故选A.【考点】1.分数指数幂与根式的互换;2.比较大小.17.函数的定义域为,若且时总有,则称为单函数.例如,函数是单函数.下列命题:①函数是单函数;②函数是单函数;③若为单函数,且,则;④函数在定义域内某个区间上具有单调性,则一定是单函数.其中的真命题是_________.(写出所有真命题的编号)【答案】③【解析】根据单函数的定义可知如果函数为单函数,则函数在其定义域上一定是单调递增或单调递减函数,即该函数为一一对应关系,据此分析可知①不是,因为该二次函数先减后增;②不是,因为该函数是先减后增;显然④的说话也不对,故真命题是③.【考点】新定义、函数的单调性,考查学生的分析、理解能力.18.设,则这四个数的大小关系是()A.B.C.D.【答案】D.【解析】是上的减函数,,又.【考点】指数函数、对数函数及幂函数单调性的应用.19.二次函数y=ax2+b x与指数函数y=()x的图象只可能是()A. B. C. D.【答案】A【解析】解:根据指数函数y=()x可知a,b同号且不相等,二次函数y=ax2+bx的对称轴-<0可排除B与D,,C,a-b>0,a<0,∴>1,则指数函数单调递增,故C 不正确,选:A【考点】指数函数图象与二次函数图象点评:本题考查了同一坐标系中指数函数图象与二次函数图象的关系,根据指数函数图象确定出a、b的正负情况是求解的关键.20.计算:_____________【答案】4【解析】因为21. .若,,,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a【答案】A【解析】因为,,,因此选A22. .计算(1)(2)【答案】(1)2;(2) 0【解析】本试题主要是考查了指数幂的运算性质和对数式的运算法则的运用。
指数与指数函数测试题

修文县华驿私立中学2012-2013学年度第一学期单元测试卷(四)(内容:指数与指数函数 满分:150 时间:120 制卷人:朱文艺) 班级: 学号: 姓名: 得分:一、选择题:(以下每小题均有A,B,C,D 四个选项,其中只有一个选项正确,请把你的正确答案填入相应的括号中,每小题5分,共60分)1. 化简[32)5(-]43的结果为 ( ) A .5 B .5 C .-5 D .-5 2.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个)。
经过3个小时,这种细菌由1个可繁殖成 ( ) A. 511个 B. 512个 C. 1023个 D. 1024个3.函数f(x)=x21-的定义域是 ( )A. (]0,∞-B. [0,+∞)C.(-∞,0)D.(-∞,+∞) 4. 设.)32(,)32(2.15.1-==b a 那么实数a 、b 与1的大小关系正确的是 ( )A. 1<<a bB. 1<<b aC. a b <<1D. b a <<15.在同一平面直角坐标系中,函数ax x f =)(与xa x g =)(的图像可能是 ( )6.设dc b a ,,,都是不等于1的正数,xxxxd y c y by a y ====,,,在同一坐标系中的图像如图所示,则d c b a ,,,的大小顺序是) d c b a A <<<. c d b a B <<<. c d a b C <<<. d c a b D <<<.7. 函数xa x f )1()(2-=在R 上是减函数,则a 的取值范围是 ( )1.>a A2.<a B 2.<a C 21.<<a D8.函数121-=x y 的值域是 ( ) )1,.(-∞A ),0()0,.(+∞-∞ B ),1.(+∞-C ),0()1,.(+∞--∞ D9.当1>a 时,函数11-+=x x a a y 是 ( ).A 奇函数 .B 偶函数 .C 既奇又偶函数 .D 非奇非偶函数10.函数0.(12>+=-a ay x 且)1≠a 的图像必经过点 ( ))1,0.(A )1,1.(B )0,2.(C )2,2.(D11.某厂1998年的产值为a 万元,预计产值每年以n %递增,则该厂到2010年的产值(单位:万元)是 ( )n a A +1(.%13) n a B +1(.%12) n a C +1(.%11) n D -1(910.%12) 12.若函数f (x )=⎩⎪⎨⎪⎧a x,x >1(4-a2)x +2,x ≤1是R 上的增函数,则实数a 的取值范围为( ) A .(1,+∞) B .(1,8) C .(4,8)D .[4,8)二、填空题(每题5分,共20分,把答案填在题中横线上)13.已知)(x f 是指数函数,且255)23(=-f ,则=)3(f . 14.设10<<a ,使不等式531222+-+->x xx x a a成立的x 的集合是 .15.函数x x y 28)13(0-+-=的定义域为 . 16.函数xx y -=22的单调递增区间为 .三、解答题(共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17. (本题满分10分) 已知函数f (x )=a -12x+1,且f (x )为定义在R 上的奇函数,试求a 的值。
指数与指数函数练习题

指数与指数函数练习题1. 指数运算练习题(1) 计算 $2^4$。
(2) 计算 $(-3)^2$。
(3) 计算 $(-2)^3$。
(4) 计算 $0^5$。
(5) 计算 $1^8$。
2. 指数运算规律练习题(1) 计算 $2^3 \cdot 2^5$。
(2) 计算 $\left(3^2\right)^4$。
(3) 计算 $5^2 \cdot 5^3$。
(4) 计算 $(-2)^4 \cdot (-2)^2$。
(5) 计算 $10^3 \cdot 10^0$。
3. 指数函数绘图练习题(1) 绘制函数 $y = 2^x$ 的图像。
(2) 绘制函数 $y = \left(\frac{1}{2}\right)^x$ 的图像。
(3) 绘制函数 $y = 3^x$ 的图像。
(4) 绘制函数 $y = \left(\frac{1}{3}\right)^x$ 的图像。
(5) 绘制函数 $y = 4^x$ 的图像。
4. 指数函数性质练习题(1) 函数 $y = 2^x$ 是否有对称轴?解释原因。
(2) 函数 $y = \left(\frac{1}{3}\right)^x$ 的图像位于哪个象限?解释原因。
(3) 函数 $y = 5^x$ 是否有零点?解释原因。
(4) 函数 $y = 2^x$ 是否有最大值或最小值?解释原因。
(5) 函数 $y = \left(\frac{1}{4}\right)^x$ 是否有水平渐近线?解释原因。
5. 指数函数方程练习题(1) 解方程 $2^x = 8$。
(2) 解方程 $5^x = 1$。
(3) 解方程 $3^x = 27$。
(4) 解方程 $2^x = \frac{1}{16}$。
(5) 解方程 $\left(\frac{1}{2}\right)^x = 4$。
以上是关于指数与指数函数的练习题,通过解答这些问题,可以加深对指数运算、指数函数绘图、指数函数性质以及解指数函数方程的理解和掌握。
高一数学指数运算及指数函数试题(有答案)

高一数学指数运算及指数函数试题一.选择题1.若xlog 23=1,则3x+9x的值为(B)A.3B.6C.2D.解:由题意x=,所以3x==2,所以9x=4,所以3x+9x=6故选B2.若非零实数a、b、c满足,则的值等于(B)A.1B.2C.3D.4解答:解:∵,∴设=m,a=log5m,b=log2m,c=2lgm,∴==2lgm(log m5+log m2)=2lgm•log m10=2.故选B.3.已知,则a等于()A.B.C. 2 D. 4解:因为所以解得a=4故选D4.若a>1,b>1,p=,则a p等于()A.1B.b C.l og b a D.a log b a解:由对数的换底公式可以得出p==log a(log b a),因此,a p等于log b a.故选C.5.已知lg2=a,10b=3,则log125可表示为(C)A.B.C.D.解:∵lg2=a,10b=3,∴lg3=b,∴log125===.故选C.6.若lgx﹣lgy=2a,则=(C)A.3a B.C.a D.解:∵lgx﹣lgy=2a,∴lg﹣lg=lg﹣lg=(lg﹣lg)=lg=(lgx﹣lgy)=•2a=a;故答案为C.7.已知函数,若实数a,b满足f(a)+f(b﹣2)=0,则a+b= A.﹣2 B.﹣1 C.0D.2解:f(x)+f(﹣x)=ln(x+)+ln(﹣x+=0∵f(a)+f(b﹣2)=0∴a+(b﹣2)=0∴a+b=2故选D.8.=()A.1B.C.﹣2 D.解:原式=+2×lg2+lg5=+lg2+lg5=+1=,故选B.9.设,则=()A.1B.2C.3D.4解:∵,∴==()+()+()==3故选C10.,则实数a的取值区间应为(C)A.(1,2)B.(2,3)C.(3,4)D.(4,5)解:=log34+log37=log328∵3=log327<log328<log381=4∴实数a的取值区间应为(3,4)故选C.11.若lgx﹣lgy=a,则=(A)A.3a B.C.a D.解:=3(lgx﹣lg2)﹣3(lgy﹣lg2)=3(lgx﹣lgy)=3a故选A.12.设,则()A.0<P<1 B.1<P<2 C.2<P<3 D.3<P<4 解:=log112+log113+log114+log115=log11(2×3×4×5)=log11120.∴log1111=1<log11120<log11121=2.故选B.13.已知a,b,c均为正数,且都不等于1,若实数x,y,z满足,则abc的值等于(A)A.1B.2C.3D.4解:∵a,b,c均为正数,且都不等于1,实数x,y,z满足,∴设a x=b y=c z=k(k>0),则x=log a k,y=log b k,z=log c k,∴=log k a+log k b+log k c=log k abc=0,∴abc=1.故选A.14.化简a2•••的结果是(C)A.a B.C.a2D.a3解:∵a2•••=a2•••==a2,故选C15.若x,y∈R,且2x=18y=6xy,则x+y为()A.0B.1C.1或2 D.0或2解:因为2x=18y=6xy,(1)当x=y=0时,等式成立,则x+y=0;(2)当x、y≠0时,由2x=18y=6xy得,xlg2=ylg18=xylg6,由xlg2=xylg6,得y=lg2/lg6,由ylg18=xylg6,得x=lg18/lg6,则x+y=lg18/lg6+lg2/lg6=(lg18+lg2)/lg6=lg36/lg6=2lg6/lg6=2.综上所述,x+y=0,或x+y=2.故选D.16.若32x+9=10•3x,那么x2+1的值为(D)A.1B.2C.5D.1或5解:令3x=t,(t>0),原方程转化为:t2﹣10t+9=0,所以t=1或t=9,即3x=1或3x=9所以x=0或x=2,所以x2+1=1或5故选Dx x2A.﹣2<a<2 B.C.D.解;令t=2x,则t>0若二次函数f(t)=t2﹣at+a2﹣3在(0,+∞)上有2个不同的零点,即0=t2﹣at+a2﹣3在(0,+∞)上有2个不同的根∴解可得,即故选D18.若关于x的方程=3﹣2a有解,则a的范围是(A)A.≤a<B.a≥C.<a<D.a>解:∵1﹣≤1,函数y=2x在R上是增函数,∴0<≤21=2,故0<3﹣2a≤2,解得≤a<,故选A.二.填空题19.,则m=10.解:由已知,a=log2m,b=log5m.∴+=log m2+log m5=log m10=1∴m=10故答案为:10.20.已知x+y=12,xy=9,且x<y,则=.解:由题设0<x<y∵xy=9,∴∴x+y﹣2==12﹣6=6x+y+2==12+6=18∴=,=∴=故答案为:21.化简:=(或或).解:====.故答案为:(或或).22.=1.解:===1.故答案为:1.23.函数在区间[﹣1,2]上的值域是[,8].解:令g(x)=x2﹣2x=(x﹣1)2﹣1,对称轴为x=1,∴g(x)在[﹣1,1]上单调减,在[1,8]上单调递增,又f(x)=2g(x)为符合函数,∴f(x)=2g(x)在[﹣1,1]上单调减,在[1,,2]上单调递增,∴f(x)min=f(1)==;又f(﹣1)==23=8,f(2)==1,∴数在区间[﹣1,2]上的值域是[,8].故答案为:[,8].24.函数的值域为(0,8].解:令t=x2+2|x|﹣3==结合二次函数的性质可得,t≥﹣3∴,且y>0故答案为:(0,8].25.函数(﹣3≤x≤1)的值域是[3﹣9,39],单调递增区间是(﹣2,+∞)..解:可以看做是由y=和t=﹣2x2﹣8x+1,两个函数符合而成,第一个函数是一个单调递减函数,要求原函数的值域,只要求出t=﹣2x2﹣8x+1,在[1,3]上的值域就可以,t∈[﹣9,9]此时y∈[3﹣9,39]函数的递增区间是(﹣∞,﹣2],故答案为:[3﹣9,39];(﹣2,+∞)三.解答题26.计算:(1);(2).解:(1)==(2)===2+2﹣lg3+lg2+lg3﹣lg2+2=627.(1)若,求的值;(2)化简(a>0,b>0).解:(1)∵,∴x+x﹣1=9﹣2=7,x2+x﹣2=49﹣2=47,∴==3×6=18,∴==.(2)∵a >0,b >0,∴====.28.已知函数f (x )=4x ﹣2x+1+3. (1)当f (x )=11时,求x 的值;(2)当x ∈[﹣2,1]时,求f (x )的最大值和最小值.解:(1)当f (x )=11,即4x ﹣2x+1+3=11时,(2x )2﹣2•2x ﹣8=0 ∴(2x ﹣4)(2x +2)=0 ∵2x >02x +2>2,∴2x ﹣4=0,2x =4,故x=2﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分) (2)f (x )=(2x )2﹣2•2x +3 (﹣2≤x ≤1) 令∴f (x )=(2x ﹣1)2+2当2x =1,即x=0时,函数的最小值f min (x )=2﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)当2x =2,即x=1时,函数的最大值f max (x )=3﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)29.已知函数||22)(x x x f -=. (1)若2)(=x f ,求x 的值;(2)若0)()2(2≥+t mf t f t 对于]2,1[∈t 恒成立,求实数m 的取值范围。
(完整版)指数和指数函数练习题及答案

指数和指数函数一、选择题1.(36a 9)4(63a 9)4等于()(C)a 4(A)a 16(B)a b 8(D)a -b 22.若a>1,b<0,且a +a =22,则a -a 的值等于()-b b (A)6(B)±2(C)-2(D)22x 3.函数f(x)=(a -1)在R 上是减函数,则a 的取值范围是()(A)a >1(B)a <2(C)a<2(D)1<a <4.下列函数式中,满足f(x+1)=(A)21f(x)的是( )211x -x(x+1) (B)x+ (C)2(D)224x 25.下列f(x)=(1+a )⋅a -x 是()(A)奇函数(B)偶函数(C)非奇非偶函数(D)既奇且偶函数1a 1b116.已知a>b,ab ≠0下列不等式(1)a >b ,(2)2>2,(3)<,(4)a 3>b 3,(5)()<()33a b22a b 11中恒成立的有()(A)1个(B)2个(C)3个(D)4个2x -17.函数y=x 是()2+1(A)奇函数(B)偶函数(C)既奇又偶函数(D)非奇非偶函数8.函数y=1的值域是()x 2-1(A)(-∞,1)(B)(-∞,0)⋃(0,+∞)(C)(-1,+∞)(D)(-∞,-1)⋃(0,+∞)+9.下列函数中,值域为R 的是()(A)y=512-x(B)y=(1x 11-xx)(C)y=()-1(D)y=1-223e x -e -x10.函数y=的反函数是()2(A)奇函数且在R 上是减函数(B)偶函数且在R 上是减函数++(C)奇函数且在R 上是增函数(D)偶函数且在R 上是增函数11.下列关系中正确的是()++111111(A)()3<()3<()3(B)()3<()3<()3252225111111(C)()3<()3<()3(D)()3<()3<()352252221222122112212.若函数y=3+2的反函数的图像经过P 点,则P 点坐标是()(A)(2,5)(B)(1,3)(C)(5,2)(D)(3,1)x -113.函数f(x)=3+5,则f (x)的定义域是()(A)(0,+∞)(B)(5,+∞)(C)(6,+∞)(D)(-∞,+∞)x 14.若方程a -x-a=0有两个根,则a 的取值范围是()(A)(1,+∞)(B)(0,1)(C)(0,+∞)(D)φ15.已知函数f(x)=a +k,它的图像经过点(1,7),又知其反函数的图像经过点(4,0),则函数f(x)的表达式是()x x x x (A)f(x)=2+5 (B)f(x)=5+3 (C)f(x)=3+4 (D)f(x)=4+316.已知三个实数a,b=a ,c=a a x x-1a a ,其中0.9<a<1,则这三个数之间的大小关系是()(A)a<c<b (B)a<b<c (C)b<a<c (D)c<a<bx 17.已知0<a<1,b<-1,则函数y=a +b 的图像必定不经过()(A)第一象限 (B)第二象限(C)第三象限 (D)第四象限二、填空题1.若a <ax 322,则a 的取值范围是。
高中数学:指数与指数函数练习

高中数学:指数与指数函数练习(时间:30分钟)1.函数y=a x-(a>0,且a≠1)的图象可能是( D )解析:若a>1时,y=a x-是增函数;当x=0时,y=1-∈(0,1),A,B不满足;若0<a<1时,y=a x-在R上是减函数;当x=0时,y=1-<0,C错,D项满足.故选D.2.(湖南永州第三次模拟)下列函数中,与函数y=2x-2-x的定义域、单调性与奇偶性均一致的是( B )(A)y=sin x (B)y=x3(C)y=()x (D)y=logx2解析:y=2x-2-x在(-∞,+∞)上是增函数且是奇函数,y=sin x不单调,y=logx定义域为(0,+∞),y=()x是减函数,三者不满足,只有y=x3的定2义域、单调性、奇偶性与之一致.3.函数f(x)=a x-1(a>0,a≠1)的图象恒过点A,下列函数中图象不经过点A的是( A )(A)y= (B)y=|x-2|(2x)(C)y=2x-1 (D)y=log2解析:由题意,得点A(1,1),将点A(1,1)代入四个选项,y=的图象不过点A(1,1).4.设x>0,且1<b x<a x,则( C )(A)0<b<a<1 (B)0<a<b<1(C)1<b<a (D)1<a<b解析:因为x>0时,1<b x,所以b>1.因为x>0时,b x<a x,所以x>0时,()x>1.所以>1,所以a>b.所以1<b<a.5.函数f(x)=a x-b的图象如图所示,其中a,b为常数,则下列结论正确的是( D )(A)a>1,b<0(B)a>1,b>0(C)0<a<1,b>0(D)0<a<1,b<0解析:由f(x)=a x-b的图象可以观察出,函数f(x)=a x-b在定义域上单调递减,所以0<a<1.函数f(x)=a x-b的图象是在f(x)=a x的基础上向左平移得到的,所以b<0.6.已知f(x)=2x+2-x,f(m)=3,且m>0,若a=f(2m),b=2f(m),c=f(m+2),则a,b,c的大小关系为( D )(A)c<b<a (B)a<c<b(C)a<b<c (D)b<a<c解析:因为f(m)=2m+2-m=3,m>0,所以2m=3-2-m>2,b=2f(m)=2×3=6,a=f(2m)=22m+2-2m=(2m+2-m)2-2=7,c=f(m+2)=2m+2+2-m-2=4·2m+·2-m>8,所以b<a<c.故选D.7.下列说法正确的序号是.①函数y=的值域是[0,4);②(a>0,b>0)化简结果是-24;③+的值是2π-9;④若x<0,则=-x.解析:由于y=≥0(当x=2时取等号),又因为4x>0,所以16-4x<16得y<,即y<4,所以①正确;②中原式====-24,正确;由于+=|π-4|+π-5=4-π+π-5=-1,所以③不正确.由于x<0,所以④正确.答案:①②④8.不等式<4的解集为.解析:因为<4,所以<22,所以x2-x<2,即x2-x-2<0,解得-1<x<2.答案:{x|-1<x<2}9.(鸡西模拟)已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[-1,0],则a+b= . 解析:若a>1,则f(x)=a x+b在[-1,0]上是增函数,所以则a-1=0,无解.当0<a<1时,则f(x)=a x+b在[-1,0]上是减函数,所以解得因此a+b=-.答案:-能力提升(时间:15分钟)10.若函数f(x)=a|2x-4|(a>0,且a≠1),满足f(1)=,则f(x)的单调递减区间是( B )(A)(-∞,2] (B)[2,+∞)(C)[-2,+∞) (D)(-∞,-2]解析:由f(1)=,得a2=,解得a=或a=-(舍去),即f(x)=()|2x-4|.由于y=|2x-4|在(-∞,2]上递减,在[2,+∞)上递增,所以f(x)在(-∞,2]上递增,在[2,+∞)上递减.11.(湖南郴州第二次教学质量检测)已知函数f(x)=e x-,其中e是自然对数的底数,则关于x的不等式f(2x-1)+f(-x-1)>0的解集为( B )(A)(-∞,-)∪(2,+∞) (B)(2,+∞)(C)(-∞,)∪(2,+∞) (D)(-∞,2)解析:易知f(x)=e x-在R上是增函数,且f(-x)=e-x-=-(e x-)=-f(x),所以f(x)是奇函数.由f(2x-1)+f(-x-1)>0,得f(2x-1)>f(x+1),因此2x-1>x+1,所以x>2.12.(衡阳三中模拟)当x∈(-∞,-1]时,不等式(m2-m)·4x-2x<0恒成立,则实数m的取值范围是( D )(A)(-2,1) (B)(-4,3)(C)(-3,4) (D)(-1,2)解析:因为(m2-m)·4x-2x<0在x∈(-∞,-1]上恒成立,所以(m2-m)<在x∈(-∞,-1]上恒成立,由于f(x)=在x∈(-∞,-1]上单调递减,所以f(x)≥2,所以m2-m<2,所以-1<m<2.故选D.13.设偶函数g(x)=a|x+b|在(0,+∞)上单调递增,则g(a)与g(b-1)的大小关系是. 解析:由于g(x)=a|x+b|是偶函数,知b=0,又g(x)=a|x|在(0,+∞)上单调递增,得a>1.则g(b-1)=g(-1)=g(1),故g(a)>g(1)=g(b-1).答案:g(a)>g(b-1)14.已知函数f(x)=a x(a>0,a≠1)在区间[-1,2]上的最大值为8,最小值为m.若函数g(x)=(3-10m)是单调增函数,则a= .解析:根据题意,得3-10m>0,解得m<;当a>1时,函数f(x)=a x在区间[-1,2]上单调递增,最大值为a2=8,解得a=2,最小值为m=a-1==>,不合题意,舍去;当0<a<1时,函数f(x)=a x在区间[-1,2]上单调递减,最大值为a-1=8,解得a=,最小值为m=a2=<,满足题意.综上,a=.答案:15.函数f(x)=x2-bx+c满足f(x+1)=f(1-x),且f(0)=3,则f(b x)与f(c x)的大小关系是.解析:由f(x+1)=f(1-x)知y=f(x)的图象关于x=1对称,所以b=2.又f(0)=3,得c=3.则f(b x)=f(2x),f(c x)=f(3x).当x≥0时,3x≥2x≥1,且f(x)在[1,+∞)上是增函数,所以f(3x)≥f(2x).当x<0时,0<3x<2x<1,且f(x)在(-∞,1]上是减函数,所以f(3x)>f(2x),从而有f(c x)≥f(b x).答案:f(c x)≥f(b x)。
指数与指数函数练习题

指数与指数函数练习题一、选择题1. 指数函数\( y = a^x \)中,当\( a > 1 \)时,函数的图像是:A. 在第一象限单调递增B. 在第二象限单调递增C. 在第三象限单调递增D. 在第四象限单调递增2. 已知\( 2^x = 4 \),则\( x \)的值为:A. 1B. 2C. 3D. 43. 对于\( y = 3^x \),当\( x \)增加1时,\( y \)增加的倍数是:A. 1B. 2C. 3D. 44. 函数\( y = a^x \)的图像关于y轴对称的条件是:A. \( a > 1 \)B. \( a < 1 \)C. \( a = 1 \)D. \( a = -1 \)5. 如果\( a \)是正数,\( b \)是负数,那么\( a^b \)的值是:A. 正数B. 负数C. 零D. 无法确定二、填空题6. 根据指数函数的性质,\( 2^3 \)等于______。
7. 如果\( 5^x = 125 \),那么\( x \)等于______。
8. 函数\( y = 2^{-x} \)的图像在第一象限的斜率是______。
9. 指数函数\( y = a^x \)的图像在\( x = 0 \)处的值为______。
10. 函数\( y = (1/2)^x \)的图像在\( y = 1 \)时,\( x \)的值为______。
三、简答题11. 解释指数函数\( y = a^x \)在\( x \)轴上的截距是什么,并说明为什么。
12. 描述指数函数\( y = a^x \)在\( a \)的值大于1时的增长速度。
13. 说明为什么指数函数\( y = a^x \)的图像在\( a \)小于1但大于0时,随着\( x \)的增加而递减。
14. 给定一个指数函数\( y = 2^x \),如果\( x \)增加1,\( y \)的值会如何变化?15. 讨论指数函数在\( a \)的值小于0时的性质,并给出一个具体的例子。
高一数学指数与指数函数试题

高一数学指数与指数函数试题1.每次用相同体积的清水洗一件衣物,且每次能洗去污垢的,若洗n次后,存在的污垢在1%以下,则n的最小值为_______.【答案】4【解析】因为每次洗去后存在的污垢为原来的所以洗n次后,存在的污垢为原来的,由解得,因此n的最小值为【考点】指数函数实际应用2..【答案】【解析】原式=【考点】指数与对数3.若,则的取值范围为________________.【答案】【解析】当即时,,当即时,,所以的取值范围是.【考点】1.指数与对数的运算;2.分类讨论的思想.4.计算(1);(2).【答案】(1);(2).【解析】(1)由对数的运算法则,利用,将其化简有;(2)由指数的运算法则,利用,,将其化简有.试题解析:(1)原式6分(2)原式12分考点:1、有理数指数幂的运算性质;2、对数的运算性质.5.设,,,则的大小顺序为()A.B.C.D.【答案】B【解析】因为,,,所以,故选B.【考点】1.指数函数的单调性;2.对数函数的单调性.6.我国大西北某地区荒漠化土地面积每年平均比上一年增长,专家预测经过年可能增长到原来的倍,则函数的图像大致为()【答案】D【解析】设初始年份的荒漠化土地面积为,则1年后荒漠化土地面积为,2年后荒漠化土地面积为,3年后荒漠化土地面积为,所以年后荒漠化土地面积为,依题意有即,,由指数函数的图像可知,选D.【考点】1.指数函数的图像与性质;2.函数模型及其应用.7.幂函数的图象经过点),则其解析式是.【答案】【解析】设幂函数为,因为其图像过点,,即,x=2,函数解析式为【考点】幂函数的概念以及指数的运算8.函数在区间[0,1]上的最大值和最小值之和为.【答案】4【解析】因为在[0,1]上单调递增,在[0,1]上单调递减,所以在 [0,1]单调递增,所以y的最大值为,最小值为,所以最大值和最小值之和为4.【考点】指数函数和对数函数的单调性及利用单调性求最值9.计算 .【答案】14【解析】【考点】指数幂的运算;对数的运算10.计算 .【答案】14【解析】【考点】指数幂的运算;对数的运算11.(1)计算:(2)已知,求的值.【答案】(1);(2).【解析】(1)此题主要考查学生对指数运算法则、对数运算性质的掌握情况,以及对指数式、对数式整体与局部的认识,属基础题;(2)经过审题,若从已知条件中求出难度较大,由指数运算法则知,,所以所求式子中的,. 试题解析:(1)原式= 6分(2)因为得得所以原式= 12分【考点】1.指数运算法则;2.对数运算性质.12.已知,那么用表示是()A.B.C.D.【答案】B【解析】,所以答案选.【考点】指数对数的计算13.方程的解是.【答案】【解析】方程化为【考点】指数式的运算点评:本题极简单,对于基本指数运算的考查14.计算等于()A.B.C.D.1【答案】D【解析】根据题意,由于化简变形为,故可知答案为D.【考点】对数式的运算点评:解决的关键是利用对数的运算性质来化简求解,属于基础题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一必修①指数与指数函数试题归纳精编沈阳市同泽高级中学 谷凤军 2007年10月15日 (一)指数1、化简[32)5(-]43的结果为 ( ) A .5B .5C .-5D .-52、将322-化为分数指数幂的形式为( )A .212- B .312- C .212-- D .652-3、化简4216132332)b (a b ba ab⋅⋅(a, b 为正数)的结果是( )A .ab B .ab C .ba D .a 2b4、化简1111132168421212121212-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,结果是( ) A 、11321122--⎛⎫- ⎪⎝⎭B 、113212--⎛⎫- ⎪⎝⎭C 、13212-- D 、1321122-⎛⎫- ⎪⎝⎭5、13256)71(027.0143231+-+-----=__________.6、321132132)(----÷ab babab a =__________.7、48373)27102(1.0)972(032221+-++--π=__________。
8、)31()3)((656131212132b a b a b a ÷-=__________。
9、4160.25321648200549-+----()() =__________。
10、已知),0(),(21>>+=b a ab ba x 求122--x x ab 的值。
11、若32121=+-x x,求23222323-+-+--xx x x 的值。
(二)指数函数一、指数函数的定义问题1、一批设备价值a 万元,由于使用磨损,每年比上一年价值降低%b ,则n 年后这批设备的价值为( )A 、(1%)na b -B 、(1%)a nb -C 、[1(%)]n a b -D 、(1%)n a b - 2、若21(5)2x f x -=-,则(125)f = 。
3、若21025x=,则10x-等于 ( )A 、15B 、15- C 、150D 、16254、某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格比较,变化的情况是( )A 、减少7.84%B 、增加7.84%C 、减少9.5%D 、不增不减 5、已知指数函数图像经过点)3,1(-p ,则=)3(f二、指数函数的图像问题1、若函数(1)(0,1)x y a b a a =-+>≠的图像经过第一、三、四象限,则一定有( )A .01>>b a 且B .010<<<b a 且C .010><<b a 且D .11>>b a 且2、方程2|x |+x=2的实根的个数为_______________3、直线a y 3=与函数)10(1≠>-=a a a y x 且的图像有两个公共点,则a 的取值范围是________。
4、函数()2()1xf x a =-在R 上是减函数,则a 的取值范围是( )A 、1>aB 、2<aC 、a <D 、1a <<5、当0>x 时,函数()2()1xf x a =-的值总是大于1,则a 的取值范围是_____________。
6、若01<<-x ,则下列不等式中成立的是( )x xxA ⎪⎭⎫ ⎝⎛<<-2155.x x x B -<⎪⎭⎫ ⎝⎛<5215.x x x C ⎪⎭⎫ ⎝⎛<<-2155.xx xD 5521.<<⎪⎭⎫ ⎝⎛-7、当a ≠0时,函数y ax b =+和y b ax =的图象只可能是( )8、(2005福建理5)函数bx a x f -=)(的图象如图,其中a 、b 为常数,则下列结论正确的是( ) A .0,1<>b a B .0,1>>b aC .0,10><<b aD .0,10<<<b a三、定义域与值域问题1、求下列函数的定义域和值域 (1)121xy =- (2)222)31(-=xy(3)xy 121⎪⎭⎫ ⎝⎛= (4)2221++-⎪⎭⎫⎝⎛=x x y(5)1121+-⎪⎭⎫⎝⎛=x x y (6)xx y 212+=2、下列函数中,值域为()+∞,0的函数是( )x y A 23.= 12.-=xy B 12.+=xy C xy D -⎪⎭⎫⎝⎛=221.3、设集合2{|3,},{|1,}x S y y x R T y y x x R ==∈==-∈,则S T 是 ( )A 、∅B 、TC 、SD 、有限集4、(2005湖南理2)函数f(x)=x 21-的定义域是 ( )A 、(]0,∞-B 、[0,+∞)C 、(-∞,0)D 、(-∞,+∞)5、(2007重庆)若函数()1222-=--aax x x f 的定义域为R ,则实数a 的取值范围 。
6、若函数0322≤--x x ,求函数x x y 4222⋅-=+的最大值和最小值。
7、已知[]3,2x ∈-,求11()142xxf x =-+的最小值与最大值。
8、如果函数)10(122≠>-+=a a a a y x x 且在[]1,1-上的最大值为14,求实数a 的值。
9、若函数3234+⋅-=x x y 的值域为[]1,7,试确定x 的取值范围。
四、比较大小问题1、设 1.50.90.4812314,8,2y y y -⎛⎫=== ⎪⎝⎭,则 ( )A 、312y y y >>B 、213y y y >>C 、132y y y >>D 、123y y y >> 2、设.)32(,)32(2.15.1-==b a 那么实数a 、b 与1的大小关系正确的是 ( )A. 1<<a bB. 1<<b aC. a b <<1D. b a <<13、311213,32,2-⎪⎭⎫⎝⎛的大小顺序有小到大依次为_____________。
4、设,10<<<b a 则下列不等式正确的是( )babaA <. b a b bB <. a a b aC <. a b a bD <.五、定点问题函数)10(33≠>+=-a a a y x 且的图象恒过定点____________。
六、单调性问题。
1、函数xx y 2221-⎪⎭⎫⎝⎛=的单调增区间为_____________2、函数)10()(≠>=a a a x f x且在区间]2,1[上的最大值比最小值大2a ,则a =__________3、函数1)1(222)(+--=x a x x f 在区间),5[+∞上是增函数,则实数a 的取值范围是 ( )A. [6,+)∞B. ),6(+∞C. ]6,(-∞D. )6,(-∞4、函数),0,0()(11b a b a ba bax f xxx x ≠>>++=++的单调性为( )A .增函数B .减函数C .常数函数D .与a, b 取值有关5、设01a <<,解关于x 的不等式22232223x x x x a a-++->。
6、 已知函数()f x x x -+=22.(Ⅰ) 用函数单调性定义及指数函数性质证明: ()f x 是区间 ),0(+∞上的增函数; (Ⅱ) 若325)(+⋅=-x x f ,求x 的值.7、已知函数22513x x y ++⎛⎫= ⎪⎝⎭,求其单调区间及值域。
七、函数的奇偶性问题1、如果函数)(x f 在区间[]a a 24,2--上是偶函数,则a =_________2、函数2121xxy -=+是( )A 、奇函数B 、偶函数C 、既奇又偶函数D 、非奇非偶函数 3、若函数141)(++=xa x f 是奇函数,则a =_________ 4、若函数141)(-+=x a x f 是奇函数,则a =_________5、2()1()(0)21xF x f x x ⎛⎫=+⋅≠ ⎪-⎝⎭是偶函数,且()f x 不恒等于零,则()f x ( )A 、是奇函数B 、可能是奇函数,也可能是偶函数C 、是偶函数D 、不是奇函数,也不是偶函数6、设函数2()21xf x a =-+,(1) 求证:不论a 为何实数()f x 总为增函数;(2) 确定a 的值,使()f x 为奇函数及此时()f x 的值域.7、已知函数1()(1)1xx a f x a a -=>+,(1)判断函数的奇偶性; (2)求该函数的值域;(3)证明()f x 是R 上的增函数。