(完整word版)北师大版初一数学七年级下册《概率初步》教案

合集下载

北师大版七年级数学下册教案:6.4概率初步(回顾与思考)

北师大版七年级数学下册教案:6.4概率初步(回顾与思考)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《概率初步(回顾与思考)》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过可能性大小不同的情况?”(例如:抛硬币正面朝上的可能性是50%)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索概率的奥秘。
在讲授新课的过程中,我发现通过举例和实际操作,学生们对概率的计算方法有了更直观的认识。尤其是树状图和列表法的使用,他们能够逐步掌握并应用于简单问题的解决。然而,对于一些步骤较多或条件较为复杂的问题,学生们在分解问题和构建模型时仍显得有些吃力。
在实践活动中,分组讨论和实验操作环节,学生们积极参与,课堂氛围较为活跃。但我也注意到,部分学生在讨论过程中过于依赖同伴,缺乏独立思考。在今后的教学中,我需要更加关注这部分学生,引导他们独立分析问题,提高解决问题的能力。
1.讨论主题:学生将围绕“概率在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
北师大版七年级数学下册教案:6.4概率初步(回顾与思考)
一、教学内容
北师大版七年级数学下册教案:6.4概率初步(回顾与思考)
1.理解概率的定义,回顾概率的表示方法。
2.掌握利用树状图和列表法计算简单事件的概率。
3.应用概率知识解决实际问题,体会概率在生活中的应用。
4.回顾以下内容:

北师大版七年级数学下册教学设计(含解析):第六章概率初步2频率的稳定性

北师大版七年级数学下册教学设计(含解析):第六章概率初步2频率的稳定性

北师大版七年级数学下册教学设计(含解析):第六章概率初步2频率的稳定性一. 教材分析本节课为人教版初中数学七年级下册第六章“概率初步”的第二节内容,主要介绍频率的稳定性。

频率稳定性是概率统计中的一个重要概念,通过本节课的学习,学生能够理解频率稳定性的一般规律,掌握利用频率稳定性估计概率的方法。

教材通过具体的实例引入频率稳定性,让学生在实际问题中发现频率稳定性,培养学生的动手操作能力和独立思考能力。

二. 学情分析学生在学习本节课之前,已经学习了概率的基本概念,对概率有一定的认识。

但是,对于频率稳定性这一概念,学生可能较为陌生。

因此,在教学过程中,教师需要从学生的实际出发,通过具体的实例和操作,引导学生理解和掌握频率稳定性。

同时,学生需要具备一定的观察和分析问题的能力,能够在实际问题中发现频率稳定性。

三. 教学目标1.理解频率稳定性的概念,掌握频率稳定性的一般规律。

2.能够利用频率稳定性估计概率,提高解决问题的能力。

3.培养学生的动手操作能力和独立思考能力。

四. 教学重难点1.重点:频率稳定性的概念和一般规律。

2.难点:利用频率稳定性估计概率的方法。

五. 教学方法1.情境教学法:通过具体的实例,引导学生理解和掌握频率稳定性。

2.动手操作法:让学生亲自动手进行实验,观察和分析频率稳定性。

3.小组合作法:学生分组进行讨论和交流,提高合作能力。

六. 教学准备1.教学PPT:制作相关的教学PPT,展示具体的实例和操作过程。

2.实验器材:准备实验所需的器材,如卡片、骰子等。

3.练习题:准备相应的练习题,巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过一个简单的实例,如抛硬币实验,引导学生观察和思考频率稳定性。

让学生亲自动手进行实验,观察在大量重复实验的情况下,硬币正反面出现的频率是否会趋向于稳定。

2.呈现(10分钟)教师通过PPT呈现具体的实例,如抽签实验、骰子实验等,让学生观察和分析频率稳定性。

引导学生发现,在大量重复实验的情况下,各种结果出现的频率会趋向于稳定,这个稳定的值可以作为概率的估计值。

北师大版七年数学(下)第六章概率初步教案

北师大版七年数学(下)第六章概率初步教案

6.2 频率的稳定性(第1课时)一、学生知识状况分析学生的知识技能基础:学生在小学已经体验过事件发生的等可能性及游戏规则的公平性,会求简单事件发生的可能性,对一些游戏的公平性能初步地作出自己的评判。

学生已接触了不确定事件,了解了不确定事件发生的可能性有大有小,学生具备了进一步探索频率的稳定性及频率与概率的关系的能力。

学生活动经验基础:在相关知识的学习过程中,学生已经感受到了数据收集和处理的必要性和作用,获得了从事统计活动所必须的一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,并对“做数学”有相当的兴趣和积极性,具备了一定的合作与交流的能力。

二、教学任务分析教科书基于学生对大量重复试验事件发生频率的认识,提出了本课的具体学习任务:使学生经历“猜测—实验和收集实验数据—分析试验结果—验证猜测”的过程,探索大量重复试验中不确定事件发生的频率会稳定在一个常数附近。

频率、概率是新课程标准第三学段“统计与概率”中的两个重要概念。

通过这部分内容的学习可以帮助学生,进一步理解试验频率和理论概率的辨证关系,同时亦为学生体会概率和统计之间的联系打下基础。

让学生经历数据收集、整理与表示、数据分析以及做出推断的全过程,发展学生的统计意识,同时也应力图在学习中逐步达成学生的有关情感态度目标。

为此,本节课设计了以下目标:教学目标:1.知识与技能: 通过试验让学生理解当试验次数较大时,试验频率稳定在某一常数附近,并据此能估计出某一事件发生的频率。

2.过程与方法: 在活动中进一步发展学生合作交流的意识与能力,发展学生的辩证思维能力。

3.情感与态度:通过对实际问题的分析,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值;进一步体会“数学就在我们身边”,发展学生的应用数学的能力教学重点:通过试验让学生理解当试验次数较大时,实验的频率具有稳定性,并据此能初步估计出某一事件发生的可能性大小。

北师大版数学七年级下册第六章《概率初步》复习教案

北师大版数学七年级下册第六章《概率初步》复习教案

第六章概率初步教学目标(一)教学知识点1.回顾本章的内容,梳理本章的知识结构,建立有关概率知识的框架图.2.用所学的概率知识去解决某些现实问题,再自我回忆和总结出实验频率与理论概率的关系.(二)能力训练要求1.初步形成评价与反思的意识.2.通过举例,进一步发展学生随机观念和统计观念.3.学会与人合作,并能与他人交流思维的过程和结果.4.形成解决问题的一些策略,体验解决问题策略的多样性,发展实践能力和创新精神.(三)情感与价值观要求1.积极参与回顾与思考的过程,对数学有好奇心和求知欲.2.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.3.形成实事求是的态度.教学重点引导学生回顾本章内容,梳理知识结构,共同建立有关概率知识的框架图.教学难点结合实例,理解实验频率和理论概率的关系.教学方法交流——引导——反思的方法.教具准备多媒体演示.教学过程Ⅰ.根据问题,回顾本章内容,梳理知识结构.1,这意味着在两次重复试验中,该事件必有一次发[问题1]某个事件发生的概率是2生吗?1,是指当实验次数很大时,这个事件的实验频率稳定[生]某个事件发生的概率是2于它的理率概率,但我们在前面做过的大量实验中还发现,实验频率并不一定等于理论概率,虽然多次实验的频率逐渐稳定于其理论概率,但也可能无论做多少次实验,实验频率仍是理论概率的一个近似值,而不能等同于理论概率,两者存在着一定的偏差,应该说,偏差的存在是正常的,经常的.[师]这位同学通过大量的实验,真正理解了事件发生的频率与概率之间的关系,真正体会到了概率是描述随机现象的数学模型,而数学频率与理论概率不能等同,两者存在着一定的偏差,例如,在理论上,“随意抛掷一枚硬币,落地后国徽朝上”发生的概1,但实验100次,并不能保证50次国徽朝上、50次国徽朝下,事实上,做100率是2次掷币实验恰好50次国徽朝上,50次国徽朝下的可能性仅有80%左右,因此,概率的实验估算、理论计算以及频率及概率的偏差等应是理解概率不可分割的整体.现代社会中有很多的抽奖活动,其中一个抽奖活动的小奖率是1%,是否买100张奖券,一定会中奖呢?[生]不一定,这和刚才的道理是一样的.[问题2]你能用实验的方法估计哪些事件发生的概率?举例说明.[生]例如可以用实验的方法估计50个人中有2个人生日相同的概率.[生]还可以用实验的方法估计6个人中有2个人生肖相同的概率.[生]著名的投针实验,就是用实验的方法估计针与平行线相交的概率,而且通过此实验还有一个伟大的发现,针与平行线相交的概率P与π有关系,于是人们用投针实验来估计π的值,而且我们把这种用投针实验来估计π的值的方法叫蒙特卡罗方法,随着计算机等的现代技术的发展,这一方法已广泛应用到现代生活中.[生]我们还可以用实验的方法估计从一定高度掷一个啤酒瓶盖盖面朝上的概率.[生]用实验的方法来估计从一定高度落下的图钉,落地后针尖朝地的概率.……[师]可以说这样的例子举不胜举,而我们通过实验的方法估计这么多事件发生的概率的目的是理解“当实验次数很大时,实验频率是稳定于理论概率,由此来估计理论概率”这一事实的,从而也培养了同学们合作交流的意识和能力.[问题3]有时通过实验的方法估计一个事件发生的概率有一定难度,你是否通过模拟实验来估计该事件发生的概率?举例说明.[生]例如用实验的方法估计50个人中有2个人生日相同的概率需要做大量的调查获得数据,既费时又费力,因此我们可以利用计算器模拟实验来估计此事件的概率.可以两人组成一个小组,利用计算器产生1~366之间的随机数,并记录下来.每产生50个随机数为一次实验,每组做5次实验,看看有几次实验中存在2个相同的整数,将全班的数据集中起来,估计出50个1~366之间的整数中有2个数相同的概率就估计出了50个人中有2个人生日相同的概率,是个很好的方法.[问题4]你掌握了哪些求概率的方法?举例说明.[生]我们从七年级开始学习概率,求概率的方法有如下几种:(1)用概率的计算公式,当实验的结果是有限个,并且是等可能的时.(2)用实验的方法,当实验次数很大时,实验频率稳定于理论概率.(3)可用树状图,求某随机事件发生的概率.(4)用列表法,求某随机事件发生的概率.(5)用计算器模拟实验的方法求某随机事件发生的概率.[师]谁能举例说明上面这几种求概率的方法呢?[生]例如掷一枚均匀的骰子,点数为奇数的概率,就可以用概率的计算公式,即 P(点数为奇数)=63=21. [生]掷一枚均匀的骰子,每次实验掷两次,两次骰子的点数和为6的概率既可以用树状图,也可以用列表法求其概率.[师]其他几种方法前面的3个问题中已涉及到,我们在此就不一一说明了.下面我们看一练习题:(多媒体演示).(1)连掷两枚骰子,它们的点数相同的概率是多少?(2)转动如图所示的转盘两次,两次所得的颜色相同的概率是多少?(3)某口袋里放有编号率.为1~6的6个球,先从小摸出一球,将它放回到口袋中后,再摸一次,两次摸到的球相同的概率是多少?(4)利用计算器产生1~6的随机数(整数),连续两次随机数相同的概率是多少?[分析]本题的4个小题具有相同的数学模型,旨在通过多题一解,让学生体会到它们是同一数学模型,培养学生的抽象概括能力,解:(1)列表如下:根据表格,共有36种等可能的结果,其中点数相同的有(1,1),(2,2),(3,3),(4,),(5,5),(6,6)共六种,因此点数相同的概率是61366 . (2)此题只是将(1)题的1、2、3、4、5、6换成了红、白、蓝、黑、黄、绿而已,因此,两次所得的颜色相同的概率也是61 (3)将第(1)题中的1,2,3,4,5,6换成编号为1~6的6个球,两次摸到的球相同的概率为61. (4)将第(1)题中的1.2,3,4,5,6换成计算器中1~6随机数,连续两次随机数相同的概率为61. Ⅱ.建立有关概率知识的统计图在学生充分思考和交流的基础上,引导学生共同建立以下有关概率的知识框架图如下:Ⅲ.课时小结本节我们以问题的形式回顾本章的内容,梳理知识结构,在充分思考和交流的基础上,建立了有关概知识的框架图,在自我回忆和总结中找出实验频率与理论概率的关系.Ⅳ.课后作业复习题知识技能1,3,4,5题 数学理解6,7,9题Ⅴ.活动与探究17世纪的一天,保罗与著名的赌徒梅尔睹钱,每人拿出6枚金币,比赛开始后,保罗胜了一局,梅尔胜了两局,这时一件意外的事中断了他们的赌博,于是他们商量这12枚金币应怎样分配才合理. 保罗认为,根据胜的局数,他应得总数的31,即4枚金币,梅尔得总数的32,即8枚金币;但精通赌博的梅尔认为他赢的可能性大,所以他应得全部赌金,于是,他们请求数学家帕斯卡评判,帕斯卡又求教于数学家费尔马,他们一致的裁决是:保罗应分3枚金币,梅尔应分9枚.帕斯卡是这样解决的:如果再玩一局,或是梅尔胜,或是保罗胜,如果梅尔胜,那么他可以得全部金币(记为1);如果保罗胜,那么两人各胜两局,应各得金币的一半(记为21).由这一局中两人获胜的可能性相等,因此梅尔得金币的可能性应该是两种可能性大小的一半,即梅尔为(1+21)÷2=43,保罗为(0+21)÷2=43.所以保罗为(0+21)÷2=41.所以梅尔分9枚,保罗分3枚.费尔马是这样考虑的:如果再玩两局,会出现四种可能的结果:(梅尔胜,保罗胜);(保罗胜,梅尔胜);(梅尔胜,梅尔胜);(保罗胜,保罗胜).其中前三种结果都是梅尔胜,只有第四种结果保罗才能取胜.所以梅尔取胜的概率为43,保罗取胜的概率为41,所以梅尔分9枚,保罗分3枚.帕斯卡和费尔马还研究了有关这类随机事件的更一般的规律,由此开始了概率论的早期研究工作.板书设计。

新北师大版数学七下第六章《概率初步》word教案

新北师大版数学七下第六章《概率初步》word教案

昭仁中学七年级数学学科导学案昭仁中学七年级数学学科导学案昭仁中学七年级数学学科导学案昭仁中学七年级数学学科导学案昭仁中学七年级数学学科导学案昭仁中学七年级数学学科导学案科目数学内容等可能事件的概率(3)课时年级七编写人杨维选授课人审核人班级小组学生姓名时间学习目标1.在实验过程中了解几何概型发生概率的计算方法,能进行简单计算;并能联系实际设计符合要求的简单概率模型。

2.在实验过程中学会通过比较、观察、归纳等数学活动,选择较好的解决问题的方法,学会从数学的角度研究实际问题,并且初步形成用数学知识解决实际问题的能力。

重点概率模型概念的形成过程。

难点分析概率模型的特点,总结几何概型的计算方法。

教学过程:因材施教以学定教学习过程:先入为主自主学习学习课本P151-154,思考下列问题:1.如图所示是一个可以自由转动的转盘,转动这个转盘,当转盘停止转动时,指针指向可能性最大的区域是________色。

2.如图是一个可以自由转动的转盘,当转盘转动停止后,下面有3个表述:①指针指向3个区域的可能性相同;②指针指向红色区域的概率为31;③指针指向红色区域的概率为21,其中正确的表述是________________(填番号)个案补充1.汇报:展示学习成果2、导学:明确学习目标预习案3、交流:合作探求新知探下图是卧室和书房地板的示意图,图中每一块地砖除颜色外完全相同,一个小球在卧室和书房中自由地滚动,并随机的停留在某块方块上。

(1)在哪个房间里,小球停留在黑砖上的概率大?究案(2)你觉得小球停留在黑砖上的概率大小与什么有关?假如小球在如图所示的地板上自由地滚动,并随机地停留在某块方砖上,它最终停留在黑色方砖上的概率是多少?请说明你的理由。

4、检测:强化变式训练5、延伸:评价拓展提升检测案1. 某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会。

如果转盘停止后,指针正好对准红、黄或绿色区域,顾客就可以分别获得100元、50元、20元的购物券(转盘等分成20份)。

19-20学年七年级数学下册第六章概率初步教案新版北师大版

19-20学年七年级数学下册第六章概率初步教案新版北师大版

1 感受可能性【教学目标】1.知识与技能(1)理解不确定事件(随机事件)的概念,能区分确定事件与不确定事件;(2)并感受不确定事件发生的可能性有大有小。

2.过程与方法通过骰子活动,经历猜测、试验、收集试验结果等过程,体会数据的随机性。

3.情感态度和价值观初步培养以科学数据为依据分析问题、解决问题的良好习惯。

【教学重点】体会事件发生的确定性与不确定性。

【教学难点】理解生活中不确定现象的特点,不确定事件发生的可能性大小,树立一定的随机观念。

【教学方法】自学与小组合作学习相结合的方法。

【课前准备】教学课件、骰子若干。

【课时安排】1课时【教学过程】一、情景导入【过渡】在生活中,我们总会遇到不同的事情,这些事情,有的是一定会发生的,有的则是一定不会发生的。

更多的则是我们不确定是否能发生的事情。

现在,我来展示几个事件,大家来判断一下这些事件是否是一定能发生,或一定不能发生。

下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边落下;(2)在一个装着白球和黑球的袋中摸球,摸出红球;(3)a2+b2=-1(a,b都是有理数);(4)水往低处流;(5)实心铁球投入水中会沉入水底。

【过渡】这些都是日常生活中的常见现象,大家一起来判断一下吧。

(学生回答)【过渡】今天我们就来学习一下,在数学中,如何定义这些一定会发生的,一定不会发生的以及可能会发生的事件。

二、新课教学1.感受可能性【过渡】在日常生活中,骰子是大家常见的,在电视中,我们也经常能看到通过掷骰子得到点数的大小决定游戏的顺序等等。

现在,我们来思考这样几个问题。

如果随机投掷一枚均匀的骰子,那么(1)掷出的点数会是10吗?(2)掷出的点数一定不超过6吗?(3)掷出的点数一定是1吗?(学生讨论)【过渡】我们先来看一下第一个问题,掷出的点数会是10吗?(学生回答)【过渡】我们知道,骰子的最大点数是6,因此,是不可能出现10的。

我们把这样的事件称为不可能事件。

有些事情我们事先肯定它一定不会发生,这些事情称为不可能事件。

【精选】北师版七年级数学下册第六章《概率初步》优秀教案

【精选】北师版七年级数学下册第六章《概率初步》优秀教案

【精选】北师版七年级数学下册第六章《概率初步》优秀教案6.1 感受可能性【学习目标】1.通过对生活中各种事件的概率的判断,归纳出必然事件、不可能事件和随机事件的特点,并根据这些特点对有关事件做出准确的判断;(重点) 2.知道事件发生的可能性是有大小的.(难点)【教学过程】一、情境导入在一些成语中也蕴含着事件类型,例如瓮中捉鳖、拔苗助长、守株待兔和水中捞月所描述的事件分别属于什么类型的事件呢?二、合作探究探究点一:必然事件、不可能事件和随机事件【类型一】必然事件一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是( ) A.摸出的4个球中至少有一个是白球B.摸出的4个球中至少有一个是黑球C.摸出的4个球中至少有两个是黑球D.摸出的4个球中至少有两个是白球解析:∵袋子中只有3个白球,而有5个黑球,∴摸出的4个球可能都是黑球,因此选项A是不确定事件;摸出的4个球可能都是黑球,也可以3黑1白、2黑2白、1黑3白,不管哪种情况,至少有一个球是黑球,∴选项B是必然事件;摸出的4个球可能为1黑3白,∴选项C是不确定事件;摸出的4个球可能都是黑球或1白3黑,∴选项D是不确定事件.故选B.方法总结:事件类型的判断首先要判断该事件发生与否是不是确定的.若是确定的,再判断其是必然发生的(必然事件),还是必然不发生的(不可能事件).若是不确定的,则该事件是不确定事件.【类型二】不可能事件下列事件中不可能发生的是( )A.打开电视机,中央一台正在播放新闻B.我们班的同学将来会有人当选为劳动模范C.在空气中,光的传播速度比声音的传播速度快D.太阳从西边升起解析:“太阳从西边升起”这个事件一定不会发生,所以它是一个不可能事件.故选D.【类型三】随机事件下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃;③掷一次骰子,向上一面的数字是2;④测量三角形的内角和,结果是180°.其中是随机事件的是________(填序号).解析:书的页码可能是奇数,也有可能是偶数,所以事件①是随机事件;100℃的气温人不能生存,所以不可能测得这样的气温,所以事件②是不可能事件,属于确定事件;骰子六个面的数字分别是1、2、3、4、5、6,因此事件③是随机事件;三角形内角和总是180°,所以事件④是必然事件,属于确定事件.故答案是①③.探究点二:随机事件发生的可能性掷一枚均匀的骰子,前5次朝上的点数恰好是1~5,则第6次朝上的点数( )A.一定是6B.是6的可能性大于是1~5中的任意一个数的可能性C.一定不是6D.是6的可能性等于是1~5中的任意一个数的可能性解析:要分清可能与可能性的区别:可能是情况的分类数目,是正整数;可能性指事件发生的概率,是一个0到1之间的分数.要求可能性的大小,只需求出各自所占的比例大小即可.第6次朝上的点数可能是6,故A、D均错;因为一枚均匀的骰子上有1~6六个数,所以出现的点数为1~6的可能性相同,故B 错,D对.故选D.方法总结:不确定事件的可能性有大有小.骰子在掷的过程中,每个点数出现的可能性是一样的.三、板书设计1.必然事件、不可能事件和随机事件必然事件:一定会发生的事件;不可能事件:一定不会发生的事件;必然事件和不可能事件统称为确定事件;随机事件:无法事先确定一次试验中会不会发生的事件.2.随机事件发生的可能性【教学反思】教学过程中,结合生活实际,对身边事件发生的情况作出判断,通过实测理解掌握定义,鼓励学生展开想象,积极参与到课堂学习中去6.2 频率的稳定性【学习目标】1.理解频率和概率的意义;2.了解频率与概率的关系,能够用频率估计某一事件的概率.(重点,难点) 【教学过程】一、情境导入养鱼专业户为了估计他承包的鱼塘里有多少条鱼(假设这个鱼塘里养的是同一种鱼),先捕上100条做上标记,然后放回塘里,过了一段时间,待带标记的鱼完全和塘里的鱼混合后,再捕上100条,发现其中带标记的鱼有10条,塘里大约有鱼多少条?二、合作探究探究点一:频率的稳定性在一个不透明的布袋中装有红色、白色玻璃球共60个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在25%左右,则口袋中红色球可能有( )A.5个 B.10个 C.15个 D.45个解析:∵摸到红色球的频率稳定在25%左右,∴口袋中红色球的频率为25%,故红球的个数为60×25%=15(个).故选C.方法总结:频率在一定程度上可以反映随机事件发生的可能性的大小,在大量重复试验的条件下才可以近似地作为这个事件的概率.解题时由“频数=数据总数×频率”计算即可.探究点二:用频率估计概率【类型一】用频率估计概率为了看图钉落地后钉尖着地的概率有多大,小明做了大量重复试验,发现钉尖着地的次数是实验总次数的40%,下列说法错误的是( )A.钉尖着地的频率是0.4B.随着试验次数的增加,钉尖着地的频率稳定在0.4附近C.钉尖着地的概率约为0.4D.前20次试验结束后,钉尖着地的次数一定是8次解析:A.钉尖着地的频率是0.4,故此选项说法正确;B.随着试验次数的增加,钉尖着地的频率稳定在0.4,故此选项说法正确;C.∵钉尖着地的频率是0.4,∴钉尖着地的概率大约是0.4,故此选项说法正确;D.前20次试验结束后,钉尖着地的次数应该在8次左右,故此选项说法错误.故选D.【类型二】利用频率估计球的个数王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据(结果保留两位小数):(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是________;(2)估算袋中白球的个数.解析:(1)用大量重复试验中事件发生的频率稳定到某个常数来表示该事件发生的概率即可;(2)根据概率公式列出方程求解即可.解:(1)251÷1000≈0.25.∵大量重复试验事件发生的频率逐渐稳定到0.25附近,∴估计从袋中摸出一个球是黑球的概率是0.25;(2)设袋中白球为x 个,11+x=0.25,x =3. 答:估计袋中有3个白球.方法总结:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n .【类型三】 利用频率折线图估计概率一粒木质中国象棋棋子“車”,它的正面雕刻一个“車”字,它的反面是平的,将棋子从一定高度下抛,落地反弹后可能是“車”字面朝上,也可能是“車”字朝下.由于棋子的两面不均匀,为了估计“車”字朝上的机会,某实验小组做了棋子下抛实验,并把实验数据整理如下(结果保留两位小数):相应的0.700.450.630.590.520.550.56____频率(1)请将表中数据补充完整,并画出折线统计图中剩余部分;(2)如果实验继续进行下去,根据上表数据,这个实验的频率将接近于该事件发生的概率,请估计这个概率约是多少?解析:(1)根据表中信息,用频数除以实验次数,得到频率,由于试验次数较多,可以用频率估计概率.描点连线,可得折线图;(2)根据表中数据,试验频率为0.70,0.45,0.63,0.59,0.52,0.55,0.56,0.55稳定在0.55左右,即可估计概率的大小.解:(1)120×0.55=66,88÷160=0.55,故所填数字为66,0.55;补全折线图如下;(2)如果实验继续进行下去,根据上表数据,这个实验的频率将接近于该事件发生的概率,这个概率约是0.55.方法总结:用频率估计概率时,一般观察所计算的各频率数值的变化趋势,即观察各数值主要接近在哪个数附近,这个常数就是所求概率的估计值.【类型四】利用概率解决实际问题某批篮球质量检验结果如下:抽取的篮球数n 40060080010001200优等品频数m 3765707449401128优等品频率m/n 0.94________________(1)填写表中优等品的频率;(2)这批篮球优等品的概率估计值是多少?解析:(1)根据表中信息,用优等品频数m除以抽取的篮球数n即可;(2)根据表中数据,优等品频率为0.94,0.95,0.93,0.94,0.94,稳定在0.94左右,即可估计这批篮球优等品的概率.解:(1)570600=0.95,744800=0.93,9401000=0.94,11281200=0.94,故表中依次填0.95,0.93,0.94,0.94;(2)这批篮球优等品的概率估计值是0.94.三、板书设计1.频率及其稳定性:在大量重复试验的情况下,事件的频率会呈现稳定性,即频率会在一个常数附近摆动.随着试验次数的增加,摆动的幅度有越来越小的趋势.2.用频率估计概率:一般地,在大量重复实验下,随机事件A发生的频率会稳定到某一个常数p,于是,我们用p这个常数表示随机事件A发生的概率,即P(A)=p.【教学反思】教学过程中,学生通过对比频率与概率的区别,体会到两者间的联系,从而运用其解决实际生活中遇到的问题,使学生感受到数学与生活的紧密联系6.3 等可能事件的概率第1课时与摸球相关的等可能事件的概率【学习目标】1.进一步理解概率的意义并掌握计算事件发生概率的方法;(重点)2.了解事件发生的等可能性及游戏规则的公平性.(难点)【教学过程】一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,那么这个游戏是否公平?二、合作探究探究点一:与摸球有关的等可能事件的概率【类型一】摸球问题一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为( )A.23B.12C.13D.16解析:根据题意可得不透明的袋子里装有6个乒乓球,其中2个黄色的,任意摸出1个,则P(摸到黄色乒乓球)=26=13.故选C.方法总结:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.【类型二】与代数知识相关的问题已知m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,则m4>100的概率为( )A.15B.310C.12D.35解析:共有10个数,满足条件的有6个,则可得到所求的结果.∵m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,只有(-3)4=81,(-2)4=16,34=81,24=16小于100,∴P(m4>100)=610=35.故选D.探究点二:利用概率分析游戏规则是否公平在一个不透明的袋中有6个除颜色外其他都相同的小球,其中3个红球,2个黄球,1个白球.(1)小明从中任意摸出一个小球,摸到的白球机会是多少?(2)小明和小亮商定一个游戏,规则如下:小明从中任意摸出一个小球,摸到红球则小明胜,否则小亮胜,问该游戏对双方是否公平?为什么?解析:(1)由题意可得共有6种等可能的结果,其中从口袋中任意摸出一个球是白球的有1种情况,利用概率公式即可求得答案;(2)游戏公平,分别计算他们各自获胜的概率再比较即可.解:(1)∵在一个不透明的口袋中有6个除颜色外其余都相同的小球,其中3个红球,2个黄球,1个白球,∴P(摸出一个白球)=1 6;(2)该游戏对双方是公平的.理由如下:由题意可知P(小明获胜)=36=12,P(小亮获胜)=1+26=12,∴他们获胜的概率相等,即游戏是公平的.方法总结:判断游戏是否公平,关键是看双方在游戏中所关注的事件所发生的概率是否相同.三、板书设计1.等可能事件的概率计算2.等可能事件的概率的应用【教学反思】教学过程中,强调简单的概率的计算应确定事件总数及事件A包含的数目.事件A发生的概率P(A)的大小范围是0≤P(A)≤1,通过适当的练习,及时巩固所学知识,引导学生从练习中总结解题规律,培养学生独立思考与归纳总结的能力6.3 等可能事件的概率第2课时与面积相关的等可能事件的概率【学习目标】1.了解与面积有关的一类事件发生概率的计算方法,并能进行简单计算;(重点)2.能够运用与面积有关的概率解决实际问题.(难点)【教学过程】一、情境导入学生甲与学生乙玩一种转盘游戏.如图是两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字“1”“2”“3”“4”表示.固定指针,同时转动两个转盘,任其自由停止,若图①指针所指数字为奇数,则甲获胜;若图②指针所指数字为偶数,则乙获胜;若指针指向扇形的分界线,则重转一次.在该游戏中乙获胜的概率是多少?二、合作探究探究点一:与面积有关的概率如图,AB、CD是水平放置的轮盘(俯视图)上两条互相垂直的直径,一个小钢球在轮盘上自由滚动,该小钢球最终停在阴影区域的概率为( )A.14B.15C.38D.23解析:根据题意,AB、CD是水平放置的轮盘上两条互相垂直的直径,即圆面被等分成4个面积相等的部分.分析图示可得阴影部分面积之和为圆面积的1 4,可知该小钢球最终停在阴影区域的概率为14.故选A.方法总结:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件A ,然后计算阴影区域的面积在总面积中占的比例,这个比例即事件A 发生的概率.一儿童行走在如图所示的地板上,当他随意停下时,最终停在地板上阴影部分的概率是( ) A.13 B.12 C.34 D.23解析:观察这个图可知阴影区域(3块)的面积占总面积(9块)的13,故其概率为13.故选A. 方法总结:当某一事件A 发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A 所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P (A )=事件A 所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目.二者的比值就是其发生的概率.探究点二:与面积有关的概率的应用如图,把一个圆形转盘按1∶2∶3∶4的比例分成A 、B 、C 、D 四个扇形区域,自由转动转盘,停止后指针落在B 区域的概率为________.解析:∵一个圆形转盘按1∶2∶3∶4的比例分成A 、B 、C 、D 四个扇形区域,∴圆形转盘被等分成10份,其中B 区域占2份,∴P (落在B 区域)=210=15.故答案为15. 三、板书设计1.与面积有关的等可能事件的概率2.与面积有关的概率的应用【教学反思】本课时所学习的内容多与实际相结合,因此教学过程中要引导学生展开丰富的联想,在日常生活中发现问题,并进行合理的整合归纳,选择适宜的数学方法来解决问题。

初中数学北师大七年级下册(2023年新编) 概率初步感受可能性教案

初中数学北师大七年级下册(2023年新编) 概率初步感受可能性教案
1、极有可能发生,但不一定发生;( )
2、发生与不发生的可能性一样; ( )
3、发生的可能性极小; ( )
4、不可能发生. ( )
A、% B、50% C、0 D、%
学生先自主完成,再学生间讨论有异议的地方
以习题的方式让学生理解随机事件的概念,区分必然事件、不可能事件与随机事件,并感受随机事件发生的可能性有大有小
故事引入一 :寓言故事引入:“刻舟求剑”、“乌鸦喝水”“守株待兔”(PPT展示)
提问:三幅图片中描述的事件肯定能达成吗?
故事引入二:“二孩政策”下家庭里“一男一女”与“都是男孩”的可能性大小的讨论?(PPT展示)
提问:一对夫妇有两个孩子,一男一女的可能性大,还是都是男孩的可能性大?
以小组为单位,先独立完成,再组内交流并回答
引出学习内容:第六章《概率初步》第一节“感受可能性”
互动探究
实践活动、感受认知:4人一组每人掷一次,掷一枚质地均匀的正方体骰子,骰子的六个面分别刻有1至6的点数。请考虑以下问题,掷一次骰子,观察骰子向上的一面,带着下面的问题实践活动:
(1)掷出的点数一定会大于0吗?
(2)掷出的点数可能是7吗?
(3)掷出的点数一定是1吗?
概念引入
必然事件:在一定条件下进行重复试验时,肯定会发生的事情,叫“必然事件”
不可能事件:在一定条件下进行重复试验时,肯定不会发生的事情,叫“不可能事件”
确定事件:必然事件和不可能事件统称“确定事件”,确定事件不是必然事件就是不可能事件.
随机事件:在一定条件下进行重复试验时,有些事情无法肯定它会不会发生,也就是可能发生、也可能不发生,这样的事件叫“随机事件”.随机事件是不确定事件,但不确定事件并非都是随机事件.
感受可能性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率初步【知识点一】1.在一定条件下一定发生的事件,叫做必然事件;在一定条件下一定不发生的事件,叫做不可能事件;必然事件和不可能事件统称为确定事件。

2.在一定条件下可能发生也可能不发生的事件,叫做不确定事件,也称为随机事件.【基础练习】1.在下列事件中:(1)投掷一枚均匀的硬币,正面朝上;(2)投掷一枚均匀的骰子,6点朝上;(3)任意找367人中,至少有2人的生日相同;(4)打开电视,正在播放广告;(5)小红买体育彩票中奖;(6)北京明年的元旦将下雪;(7)买一张电影票,座位号正好是偶数;(8)到2020年世界上将没有饥荒和战争;(9)抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于等于2;(10)在标准大气压下,温度低于0℃时冰融化;(11)如果a,b为有理数,那么a+b=b+a;(12)抛掷一枚图钉,钉尖朝上.确定的事件有________________________;随机事件有________________________,在随机事件中,你认为发生的可能性最小的是________________________,发生的可能性最大的是________________________.(只填序号)2.下列事件中是必然事件的是( ).A.从一个装有蓝、白两色球的缸里摸出一个球,摸出的球是白球B.小丹的自行车轮胎被钉子扎坏C.小红期末考试数学成绩一定得满分D.将豆油滴入水中,豆油会浮在水面上3.同时投掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.下列事件中是不可能事件的是( ).A.点数之和为12 B.点数之和小于3C.点数之和大于4且小于8 D.点数之和为134.下列事件中,是确定事件的是( ).A.明年元旦北京会下雪B.成人会骑摩托车C.地球总是绕着太阳转D.从北京去天津要乘火车5.下列说法中,正确的是( ).A.生活中,如果一个事件不是不可能事件,那么它就必然发生B.生活中,如果一个事件可能发生,那么它就是必然事件C.生活中,如果一个事件发生的可能性很大,那么它也可能不发生D.生活中,如果一个事件不是必然事件,那么它就不可能发生【综合运用】1.在如图所示的图案中,黑白两色的直角三角形都全等.甲、乙两人将它作为一个游戏盘,游戏规则是:按一定距离向盘中投镖一次,扎在黑色区域为甲胜,扎在白色区域为乙胜.你认为这个游戏公平吗? 为什么?2.用力旋转如图所示的甲转盘和乙转盘的指针,如果指针停在蓝色区域就称为成功.A同学说:“乙转盘大,相应的蓝色部分的面积也大,所以选乙转盘成功的机会比较大.”B同学说:“转盘上只有两种颜色,指针不是停在红色上就是停在蓝色上,因此两个转盘成功的机会都是50%.”你同意两人的说法吗? 如果不同意,请你预言旋转两个转盘成功的机会有多大?3.分别列出下列各项操作的所有可能结果,并分别指出在各项操作中出现可能性最大的结果.(1)旋转各图中的转盘,指针所处的位置.(2)投掷各图中的骰子,朝上一面的数字.(3)投掷一枚均匀的硬币,朝上的一面.【巩固练习】1.一副去掉大小王的扑克牌(共52张),洗匀后,摸到红桃的可能性______摸到J、Q、K的可能性.(填“<,>或=”)2.下列事件为必然发生的事件是( )(A)掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是1(B)掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是偶数(C)打开电视,正在播广告(D)抛掷一枚硬币,掷得的结果不是正面就是反面3.气象台预报“本市明天降水概率是80%”.对此信息,下列说法正确的是( )(A)本市明天将有80%的地区降水(B)本市明天将有80%的时间降水(C)本市明天肯定下雨(D)本市明天降水的可能性比较大4.从一副扑克牌中任意抽出一张,则下列事件中可能性最大的是( )(A)抽出一张红心(B)抽出一张红色老K(C)抽出一张梅花J(D)抽出一张不是Q的牌5.某学校的七年级(1)班,有男生23人,女生23人.其中男生有18人住宿,女生有20人住宿.现随机抽一名学生,则a :抽到一名住宿女生; b :抽到一名住宿男生; c :抽到一名男生. 其中可能性由大到小排列正确的是( ) (A )cab(B )acb(C )bca(D )cba6.班级劳动委员安排值日表,要求每人从周一到周五中有一天做值日,则小明在下列各种情形下做值日的可能性分别有多大?(1)周一值日; (2)逢双值日; (3)周五不值日.【知识点二】1.随机事件A 发生的频率,是指在相同条件下重复n 次试验,事件A 发生的次数m 与试验总次数n 的比值,在大量重复试验时,也就是说试验次数很大时,频率会逐步趋于稳定,总在某个常数附近摆动,且摆动幅度很小,那么这个常数叫做这个事件发生的概率.区别:某随机事件发生的概率是一个常数,是客观存在的,与试验次数无关。

而频率是随机的,试验前无法确定。

2、事件的分类【基础练习】1.下表是一个机器人做9999次“抛硬币”游戏时记录下的出现正面的频数和频率.抛掷结果 5次 50次 300次 800次 3200次 6000次 9999次 出现正面的频数 1 31 135 408 1580 2980 5006 出现正面的频率20%62%45%51%49.4%49.7%50.1%(1)由这张频数和频率表可知,机器人抛掷完5次时,得到1次正面,正面出现的频率是20%,那么,也就是说机器人抛掷完5次后,得到______次反面,反面出现的频率是______;(2)由这张频数和频率表可知,机器人抛掷完9999次时,得到______次正面,正面出现的频率是______;那么,也就是说机器人抛掷完9999次时,得到______次反面,反面出现的频率是______;(3)请你估计一下,抛这枚硬币,正面出现的概率是______. 2.某个事件发生的概率是21,这意味着( ). A .在两次重复实验中该事件必有一次发生 B .在一次实验中没有发生,下次肯定发生 C .在一次实验中已经发生,下次肯定不发生 D .每次实验中事件发生的可能性是50%3.在生产的100件产品中,有95件正品,5件次品.从中任抽一件是次品的概率为( ). A .0.05B .0.5C .0.95D .954.某篮球运动员在最近几场大赛中罚球投篮的结果如下:(1)计算表中各次比赛进球的频率;(2)这位运动员每次投篮,进球的概率约为多少?【综合运用】1.下列说法:①频率是反映事件发生的频繁程度,概率反映事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的概率一定等于nm;③频率是不能脱离具体的n 次试验的实验值,而概率是具有确定性的不依赖于试验次数的理论值;④频率是概率的近似值,概率是频率的稳定值.其中正确的是______________(填序号).2.某市元宵节期间举行了“即开式社会福利彩票”销售活动,印制彩票3000万张(每张彩票2元).在这些彩票中,设置了如下的奖项:如果花2元钱购买1张彩票,那么能得到8万元以上(包括8万元)大奖的概率是______. 3.从不透明的口袋中摸出红球的概率为51,若袋中红球有3个,则袋中共有球( ). A .5个B .8个C .10个D .15个4.柜子里有5双鞋,取出一只鞋是右脚鞋的概率是( ).A .21 B .31C .51 D .101 5.某储蓄卡上的密码是一组四位数字号码,每一位上的数字可在0~9这10个数字中选取.某人未记准储蓄卡密码的最后一位数字,他在使用这张储蓄卡时,如果随意地按一下密码的最后一位数字,正好按对密码的概率有多少?6.小明在课堂做摸牌实验,从两张数字分别为1,2的牌(除数字外都相同)中任意摸出一张,共实验10次,恰好都摸到1,小明高兴地说:“我摸到数字为1的牌的概率为100%”,你同意他的结论吗? 若不同意,你将怎样纠正他的结论.7.小刚做掷硬币的游戏,得到结论:掷均匀的硬币两次,会出现三种情况:两正,一正一反,两反,所以出现一正一反的概率是31.他的结论对吗? 说说你的理由.8.袋子中装有3个白球和2个红球,共5个球,每个球除颜色外都相同,从袋子中任意摸出一个球,则:(1)摸到白球的概率等于______; (2)摸到红球的概率等于______; (3)摸到绿球的概率等于______; (4)摸到白球或红球的概率等于______;(5)摸到红球的机会______于摸到白球的机会(填“大”或“小”).【巩固练习】1.在抛掷一枚普通正六面体骰子的过程中,出现点数为2的概率是______.2.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯恰是黄灯亮的概率为______.3.在一个口袋里装有a 个红球,b 个白球,c 个黄球,每个球除颜色外都相同,从口袋中任选1个,选中黄球的概率是______.4.袋中有5个黑球,3个白球和2个红球,摸出后再放回,在连续摸9次且9次摸出的都是黑球的情况下,第10次摸出红球的概率为______.5.在一个暗箱里放有a 个除颜色外其它完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是( ) (A )12(B )9(C )4(D )36.某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:(1)计算并完成表格;转动转盘的次数n 100 150 200 500 800 1000 落在“铅笔”的次数m 68 111 136 345 564 701 落在“铅笔”的频率nm(2)请估计,当n 很大时,频率将会接近多少?(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?7.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n 100 150 200 500 800 1000 摸到白球的次数m 58 96 116 295 484 601 摸到白球的频率nm 0.580.640.580.590.6050.601(1)请估计:当n 很大时,摸到白球的频率将会接近______;(2)假如你去摸一次,你摸到白球的概率是______,摸到黑球的概率是______; (3)试估算口袋中黑、白两种颜色的球各有多少只?8.王强与李刚两位同学在学习“概率”时,做抛骰子(均匀正方体形状)实验,他们共抛了54次,出现向上点数的次数如下表:(1)请计算出现向上点数为3的频率及出现向上点数为5的频率; (2)王强说:“根据实验,一次试验中出现向上点数为5的频率最大.” 李刚说:“如果抛540次,那么出现向上点数为6的次数正好是100次.” 请判断王强和李刚说法的对错;【用列举法求概率】事件P 的概率=所有出现的结果的总数出现的结果数事件P【基础练习】1.掷一枚均匀正方体骰子,6个面上分别标有数字1,2,3,4,5,6,则有: (1)P (掷出的数字是1)=______;(2)P (掷出的数字大于4)=______.2.袋中有3个红球,2个白球,现从袋中任意摸出1球,摸出白球的概率是______. 3.一副扑克牌有54张,任意从中抽一张.(1)抽到大王的概率为_________; (2)抽到A 的概率为_________;(3)抽到红桃的概率为_________; (4)抽到红牌的概率为_________;(红桃或方块) (5)抽到红牌或黑牌的概率为_________.4.一道选择题共有4个答案,其中有且只有一个是正确的,有一位同学随意地选了一个答案,那么他选对的概率为( ). A .1B .21 C .31D .41 5.掷一枚均匀的正方体骰子,骰子6个面分别标有数字1,1,2,2,3,3,则“3”朝上的概率为( ). A .61B .41 C .31D .21 6.一个口袋共有50个球,其中白球20个,红球20个,蓝球10个,则摸到不是白球的概率是( ). A .54B .53 C .52 D .517.有10张卡片,每张卡片分别写有1,2,3,4,5,6,7,8,9,10,从中任意摸取一张卡片,问摸到2的倍数的卡片的概率是多少? 3的倍数呢? 5的倍数呢?8.小李新买了一部手机,并设置了六位数的开机密码(每位数码都是0~9这10个数字中的一个),第二天小李忘记了密码中间的两个数字,他一次就能打开手机的概率是多少?【综合运用】1.有纯黑、纯白的袜子各一双,小明在黑暗中穿袜子,左脚穿黑袜子,右脚穿白袜子的概率为______. 2.有7条线段,长度分别为2,4,6,8,10,12,14,从中任取三条,能构成三角形的概率是______. 3.一个均匀的正方体各面上分别标有数字1,2,3,4,6,8,其表面展开图 如图所示,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面上的数 字的2倍的概率是( ). A .32B .21 C .31D .61 4.从6名同学中选出4人参加数学竞赛,其中甲被选中的概率是( ).A .31B .21 C .53 D .32 5.设袋中有4个乒乓球,一个涂白色,一个涂红色,一个涂蓝、白两色,另一个涂白、红、蓝三色,今从袋中随机地取出一球.①取到的球上涂有白色的概率为43;②取到的球上涂有红色的概率为;21③取到的球上涂有蓝色的概率为;21④取到的球上涂有红色、蓝色的概率为,41以上四个命题中正确的有( ). A .4个B .3个C .2个D .1个6.随意安排甲、乙、丙3人在3天节日中值班,每人值班1天.(1)这3人的值班顺序共有多少种不同的排列方法? (2)其中甲排在乙之前的排法有多少种? (3)甲排在乙之前的概率是多少?7.甲、乙、丙三人参加科技知识竞赛,已知这三人分别获得了一、二、三等奖.在不知谁获一等奖、谁获二等奖、谁获三等奖的情况下,“小灵通”凭猜测事先写下了获奖证书,则“小灵通”写对获奖名次的概率是多少?8.用24个球设计一个摸球游戏,使得:(1)摸到红球的概率是,21摸到白球的概率是,31摸到黄球的概率是;61(2)摸到白球的概率是,41摸到红球和黄球的概率都是 83【巩固练习】1.甲、乙、丙三人随意排成一列拍照,甲恰好排在中间的概率是______.2.小明有道数学题不会,想打电话请教老师,可是他只想起电话号码的前6位(共7位数的电话),那么他一次打通电话的概率是______.3.如图所示,小明走进迷宫,站在A 处,迷宫的8扇门每一扇门都相同,其中 6号门为迷宫出口,则小明一次就能走出迷宫的概率是( ) (A )21(B )31 (C )61 (D )81 4.中国象棋红方棋子按兵种小同分布如下:1个帅,5个兵,“士、象、马、车、炮”各2个,将所有棋子反面朝上放在棋盘中,任取一个不是兵和帅的概率是( ) (A )161 (B )165 (C )83 (D )85 5.袋中有5个大小一样的球,其中红球有2个、黄球有2个、白球1个.(1)从袋中摸出一个球,得到红球、白球、黄球的概率各是多少? (2)从袋中摸出两个球,两球为一红一黄的概率为多少?【利用频率估计概率】1.50张牌,牌面朝下,每次抽出一张记下花色后放回,洗匀后再抽,抽到红桃、黑桃、梅花、方片的频率依次是16%、24%、8%、52%,估计四种花色分别有______张.2.在一个8万人的小镇,随机调查了1000人,其中有250人有订报纸的习惯,则该镇有订报纸习惯的人大约为______万人.3.为估计某天鹅湖中天鹅的数量,先捕捉10只,全部做上记号后放飞.过了一段时间后,重新捕捉40只,其中带有标记的天鹅有2只.据此可估算出该地区大约有天鹅______只.4.如果手头没有硬币,用来模拟实验的替代物可用( ).A.汽水瓶盖B.骰子C.锥体D.两个红球5.在“抛硬币”的游戏中,如果抛了10000次,则出现正面的概率是50%,这是( ).A.确定的B.可能的C.不可能的D.不太可能的6.对某厂生产的直径为4cm的乒乓球进行产品质量检查,结果如下:(1)计算各次检查中“优等品”的频率,填入表中;(2)该厂生产乒乓球优等品的概率约为多少?7.某封闭的纸箱中有红色、黄色的玻璃球若干,为了估计出纸箱中红色、黄色球的数目,小亮向纸箱中放入25个白球,通过多次摸球实验后,发现摸到白球的频率为25%,摸到黄球的频率为40%,试估计出原纸箱中红球、黄球的数目.【综合运用】1.一口袋中有6个红球和若干个白球,除颜色外均相同,从口袋中随机摸出一球,记下颜色,再把它放回口袋中摇匀.重复上述实验共300次,其中120次摸到红球,则口袋中大约有______个白球.2.某班级有学生40人,其中共青团员15人,全班分成4个小组,第一小组有学生10人,其中共青团员4人.如果要在班内任选一人当学生代表,那么这个代表恰好在第一小组内的概率为______;现在要在班级任选一个共青团员当团员代表,问这个代表恰好在第一小组内的概率是______.3.某科研小组,为了考查某河流野生鱼的数量,从中捕捞200条,作上标记后,放回河里,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该河流中有野生鱼( )A.8000条B.4000条C.2000条D.1000条4.某笔芯厂生产圆珠笔芯,每箱可装2000支.一位质检员误把一些已做标记的不合格产品也放入箱子里,若随机拿出100支,共做10次实验,这100支中不合格笔芯的平均数是5,你能估计箱子里有多少支不合格品吗?若每支合格品的利润为0.5元,如果顾客发现不合格品,需双倍赔偿(即每支赔1元),如果让这箱含不合格品的笔芯走上市场,根据你的估算这箱笔芯是赚是赔?赚多少或赔多少?5.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近______;(2)假如你去摸一次,你摸到白球的概率是______,摸到黑球的概率是______;(3)试估算口袋中黑、白两种颜色的球各有多少只?(4)解决了上面的问题,小明同学猛然顿悟,过去一个悬而未决的问题有办法了.这个问题是:在一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计白球的个数(可以借助其他工具及用品)?请你应用统计与概率的思想和方法解决这个问题,写出解决这个问题的主要步骤及估算方法.【巩固练习】1.一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程.实验中总共摸了200次,其中有50次摸到红球.则白球的个数为______.2.某射击运动员在同一条件下练习射击,结果如下表所示:(1)计算表中击中靶心的各个频率并填入表中; (2)这个运动员射击一次,击中靶心的概率约是______.3.一个口袋中放有20个球,其中红球6个,白球和黑球各若干个,每个球除了颜色以外没有任何区别.(1)小王通过大量反复的实验(每次取一个球,放回搅匀后再取第二个)发现,取出黑球的频率稳定在41左右,请你估计袋中黑球的个数; (2)若小王取出的第一个球是白球,将它放在桌上,闭上眼睛从袋中余下的球中再任意取一个球,取出红球的概率是多少?4.为了调查本市今年有多少名考生参加中考,小华从全市所有家庭中随机抽查了200个家庭,发现其中10个家庭有子女参加中考.(1)本次抽查的200个家庭中,有子女参加中考的家庭的频率是多少? (2)如果你随机调查一个家庭,估计该家庭有子女参加中考的概率是多少?(3)已知本市约有1.3×106个家庭,假设有子女参加中考的每个家庭中只有一名考生,请你估计今年全市有多少名考生参加中考?。

相关文档
最新文档