求函数零点近似解的一种计算方法二分法学案0

合集下载

高中数学:2.4.2求函数零点近似解的一种计算方法——二分法

高中数学:2.4.2求函数零点近似解的一种计算方法——二分法

2.4.2求函数零点近似解的一种计算方法——二分法1.了解变号零点与不变号零点的概念.2.理解函数零点的性质.3.会用二分法求近似值.1.函数零点的性质如果函数y=f(x) 在区间[a,b]上的图象是不间断的曲线,并且在它的两个端点处的函数值异号,即f(a)·f(b)<0,那么这个函数在这个区间上至少有一个零点,即存在一点x0∈(a,b),使f(x0)=0,若函数图象通过零点时穿过x轴,这样的零点称为变号零点,如果没有穿过x轴,则称为不变号零点.2.二分法对于在区间[a,b]上连续不断,且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法.3.用二分法求函数 f (x ) 零点近似值的步骤 给定精确度(1)确定区间[a ,b ],验证f (a )·f (b )<0; (2)求区间(a ,b )的中点 x 1;(3)计算 f (x 1);①若f (x 1)=0,则 x 1 就是函数的零点;②若f (a )·f (x 1)<0,则令 b =x 1 (此时零点 x 0∈(a ,x 1));③若f (x 1)·f (b )<0,则令a =x 1(此时零点 x 0∈(x 1,b )).(4)判断是否达到精确度,即若|a -b |<,则得到零点近似值 a (或 b );否则重复 (2)~(4).1.函数f (x )=x 3-2x 2+3x -6在区间[-2,4]上的零点必属于区间( ) A .[-2,1] B .⎣⎡⎦⎤52,4 C .⎣⎡⎦⎤1,74 D .⎣⎡⎦⎤74,52解析:选D .由于f (-2)<0, f (4)>0,f (-2+42)=f (1)<0,f (1+42)=f (52)>0, f (1+522)=f (74)<0, 所以零点在区间⎣⎡⎦⎤74,52内.2.用二分法研究函数f (x )=x 2+3x -1的零点时,第一次经计算f (0)<0,f (0.5)>0,可得其中一个零点x 0∈________,第二次计算________.以上横线应填的内容分别是( )A .(0,0.5) f (0.25)B .(0,1) f (0.25)C .(0.5,1) f (0.75)D .(0,0.5) f (0.125)解析:选A .因为f (0)<0,f (0.5)>0, 所以函数f (x )的一个零点x 0∈(0,0.5), 第二次计算f ⎝⎛⎭⎫0+0.52=f (0.25).3.函数的零点都能用“二分法”求吗?解:不一定.例如:函数y =x 2的零点为x =0,但不能用二分法求解.判断函数在某个区间内是否有零点(1)指出方程 x 5-x -1=0 的根所在的大致区间;(2)求证:方程x3-3x+1=0 的根一个在区间(-2,-1)内,一个在区间(0,1)内,另一个在区间(1,2)内.【解】(1)方程x5-x-1=0,即x5=x+1,令F(x)=x5-x-1,y=f(x)=x5,y=g(x)=x+1.在同一平面直角坐标系中,函数f(x)与g(x)的图象如图,显然它们只有1 个交点.两函数图象交点的横坐标就是方程的解.又F(1)=-1<0,F(2)=29>0,所以方程x5-x-1=0 的根在区间(1,2)内.(2)证明:令F(x)=x3-3x+1,它的图象一定是不间断的,又F(-2)=-8+6+1=-1<0,F(-1)=-1+3+1=3>0,所以方程x3-3x+1=0 的一根在区间(-2,-1)内.同理可以验证F(0)·F(1)=1×(-1)=-1<0,F(1)·F(2)=(-1)×3=-3<0,所以方程的另两根分别在区间(0,1)和(1,2)内.本题考查的是如何判断方程的根所在的大致区间问题,它是用二分法求方程近似解的前提.对于连续的函数可以多次验证某些点处的函数值的符号是否异号;若异号,则方程的解在以这两数为端点的区间内,这种方法需多次尝试,比较麻烦.另外在这个区间内也不一定只有一个解.已知f(x) 为偶函数,且当x≥0 时,f(x)=(x-1)2-1,求函数f(x)的零点,并判断哪些零点是变号零点,哪些零点是不变号零点.解:因为x≥0 时,f(x)=(x-1)2-1,而当x<0 时,-x>0,所以f(-x)=(-x-1)2-1,而f(x) 为偶函数,则f(-x)=f(x),所以 f (x ) =⎩⎪⎨⎪⎧(x -1)2-1(x ≥0),(x +1)2-1(x <0).解方程 (x -1)2-1=0, 得 x 1=0,x 2=2. 解方程 (x +1)2-1=0, 得 x 1=0,x 2=-2,故函数 f (x ) 共有 3 个零点为 -2,0,2,如图所示,可知函数 f (x )的变号零点为 -2,2,不变号零点为 0.用二分法求方程近似解用二分法求函数f(x)=x3-x-2的一个正实数零点(精确到0.1).【解】由f(1)=-2<0,f(2)=4>0,可以确定区间[1,2]作为计算的初始区间,用二分法逐步计算,具体如表.1.5,所以1.5可作为所求函数的一个正实数零点的近似值.用二分法求函数零点的近似值,首先要选好计算的初始区间,这个区间既要符合条件,又要使其长度尽量小,其次要依据条件给定的精确度及时检验计算所得到的区间是否满足这一精确度,以决定是停止计算还是继续计算.借助计算器,用二分法求方程(x+1)(x -2)(x-3)=1在区间(-1,0)内的近似解(精确到0.1).解:令f(x)=(x+1)(x-2)(x-3)-1,由于f(-1)=-1<0,f(0)=5>0,可取区间[-1,0]作为计算的初始区间.用二分法逐次计算,列表如下:5-0.9即为区间(-1,0)内的近似解.1.函数零点判定定理的应用判断一个函数是否有零点,首先看函数f(x) 在区间[a,b]上的图象是否连续,并且是否存在f(a)·f(b)<0,若存在,那么函数y=f(x) 在区间(a,b)内必有零点.对于函数f(x),若满足f(a)·f(b)<0,则f(x) 在区间[a,b]内不一定有零点,反之,f(x) 在区间[a,b]内有零点也不一定有f(a)·f(b)<0,如图所示.即此方法只适合变号零点的判断,不适合不变号零点.2.二分法的使用条件和范围(1)二分法的理论依据:如果函数y=f(x)是连续的,且f(a)与f(b)的符号相反(a<b),那么方程f(x)=0至少存在一个根在(a,b)之间.(2)用二分法求函数零点近似值的方法仅对函数的变号零点适合,对函数的不变号零点不适合.(3)每一次二分有根区间(a,b)为两个小区间,区间的长度都是原来区间长度的一半.用零点存在性定理判断函数的零点时,两个条件是缺一不可的.因此,在判断已知函数在区间上的零点是否存在时,应首先确定图象是不间断的.1.下列函数中能用二分法求零点的是()解析:选C.由二分法的定义知.2.设f(x)在区间[a,b]上是单调函数,且f(a)·f(b)<0,则方程f(x)=0在闭区间[a,b]内() A.至少有一实根B.至多有一实根C.没有实根D.必有唯一实根答案:D3.下面关于二分法的叙述,正确的是________.①用二分法可求所有函数零点的近似值;②用二分法求方程的近似解时,可以精确到小数点后的任一位;③二分法无规律可循,无法在计算机上完成;④只有在求函数零点时才用二分法. 答案:②4.设函数y =f (x )在区间[a ,b ]上的图象是连续不间断曲线,且f (a )·f (b )<0,取x 0=a +b2,若f (a )·f (x 0)<0,则利用二分法求方程根时取有根区间为________.解析:利用二分法求方程根时,根据求方程的近似解的一般步骤,由于f (a )·f (x 0)<0, 则[a ,x 0]为新的区间. 答案:[a ,x 0][A 基础达标]1.函数f (x )=x 3-3x -3有零点的区间是( ) A .(-1,0) B .(0,1) C .(1,2)D .(2,3)解析:选D .因为f (2)·f (3)=(8-6-3)·(27-9-3)=-15<0, 所以f (x )有零点的区间是(2,3).2.如图是函数f (x )的图象,它与x 轴有4个不同的公共点,给出下列四个区间中,存在不能用二分法求出的零点,则该零点所在的区间是( )A .[-2.1,-1]B .[1.9,2.3]C .[4.1,5]D .[5,6.1]解析:选B .由不变号零点的特征易判断该零点在[1.9,2.3]内. 3.方程2x 3-4x 2+7x -9=0在区间[-2,4]上的根必定属于区间( ) A .(-2,1) B .(52,4)C .(π4,1)D .(1,74)解析:选D .设f (x )=2x 3-4x 2+7x -9, 由f (1)·f (74)<0知选D .4.已知函数f (x )与g (x )满足的关系为f (x )-g (x )=-x -3,根据所给数表,判断f (x )的一个零点所在的区间为( )A .(-1,0) C .(1,2)D .(2,3)解析:选C .由列表可知f (1)=g (1)-1-3=2.72-4=-1.28,f (2)=g (2)-2-3=7.39-5=2.39,所以f (1)·f (2)<0.所以f (x )的一个零点所在的区间为(1,2).5.若函数f (x )=x 3+x 2-2x -2的一个正整零点附近的函数值用二分法计算,其参考数据如下:A .1.2B .1.3C .1.4D .1.5解析:选C .由零点的定义知,方程的根所在区间为[1.406 25,1.437 5],故精确到0.1的近似根为1.4.6.函数f (x )=x 2+ax +b 有零点,但不能用二分法求出,则a ,b 的关系是________. 解析:因为函数f (x )=x 2+ax +b 有零点,但不能用二分法,所以函数f (x )=x 2+ax +b 的图象与x 轴相切,所以Δ=a 2-4b =0,所以a 2=4b . 答案:a 2=4b7.方程x 3=2x 精确到0.1的一个近似解是________. 解析:令f (x )=x 3-2x ,f (1)=-1<0,f (2)=4>0,所以在区间[1,2]上求函数f (x )的零点,即为方程x 3=2x 的一个根,依照二分法求解得x =1.4.答案:1.48.某方程有一无理根在区间D =(1,3)内,若用二分法求此根的近似值,则将D 至少等分________次后,所得近似值的精确度为0.1.解析:由3-12n ≤0.1,得2n ≥20,n >4,故至少等分5次. 答案:59.分别求出下列函数的零点,并指出是变号零点还是不变号零点. (1)f (x )=3x -6; (2)f (x )=x 2-x -12; (3)f (x )=x 2-2x +1; (4)f (x )=(x -2)2(x +1)x . 解:(1)零点是2,是变号零点. (2)零点是-3和4,都是变号零点. (3)零点是1,是不变号零点.(4)零点是-1,0和2,其中变号零点是0和-1,不变号零点是2. 10.已知函数f (x )=13x 3-x 2+1(1)证明方程f (x )=0在区间(0,2)内有实数解;(2)使用二分法,取区间的中点三次,指出方程f (x )=0(x ∈[0,2])的实数解x 0在哪个较小的区间内.解:(1)证明:因为f (0)=1>0,f (2)=-13<0,所以f (0)·f (2)<0,由函数的零点存在性定理可得方程 f (x )=0在区间(0,2)内有实数解. (2)取x 1=12(0+2)=1,得f (1)=13>0,由此可得f (1)·f (2)<0,下一个有解区间为(1,2). 再取x 2=12(1+2)=32,得f ⎝⎛⎭⎫32=-18<0, 所以f (1)·f ⎝⎛⎭⎫32<0,下一个有解区间为⎝⎛⎭⎫1,32. 再取x 3=12⎝⎛⎭⎫1+32=54,得f ⎝⎛⎭⎫54=17192>0, 所以f ⎝⎛⎭⎫54·f ⎝⎛⎭⎫32<0,下一个有解区间为⎝⎛⎭⎫54,32. 综上所述,得所求的实数解x 0在区间⎝⎛⎭⎫54,32内.[B 能力提升]11.若函数f (x )的图象在R 上连续不断,且满足f (0)<0,f (1)>0,f (2)>0,则下列说法正确的是()A.f(x)在区间(0,1)上一定有零点,在区间(1,2)上一定没有零点B.f(x)在区间(0,1)上一定没有零点,在区间(1,2)上一定有零点C.f(x)在区间(0,1)上一定有零点,在区间(1,2)上可能有零点D.f(x)在区间(0,1)上可能有零点,在区间(1,2)上一定有零点解析:选C.根据零点存在性定理,由于f(0)·f(1)<0,f(1)·f(2)>0,所以f(x)在区间(0,1)上一定有零点,在区间(1,2)上无法确定,可能有,也可能没有,如图所示:12.已知定义在R上的函数f(x)的图象是连续不断的,且有如下部分对应值表:则f(x解析:由于f(2)>0,f(3)<0,f(4)>0,f(5)<0,所以f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,故f(x)的零点个数至少有3个.答案:313.在一个风雨交加的夜里,从某水库闸房到防洪指挥部的电话线路发生了故障.这是一条10 km长的线路,如果沿着线路一小段一小段查找,困难很多.每查一个点要爬一次电线杆子,10 km长,大约有200多根电线杆子.则:(1)维修线路的工人师傅怎样工作最合理?(2)算一算要把故障可能发生的范围缩小到50 m~100 m 左右,即一两根电线杆附近,要查多少次?解:(1)如图,他首先从中点C查.用随身带的话机向两端测试时,发现AC段正常,断定故障在BC段,再到BC段中点D查,这次发现BD段正常,可见故障在CD段,再到CD中点E来查.(2)每查一次,可以把待查的线路长度缩减一半,因此只要7 次就够了.14.(选做题)求方程3x2-4x-1=0的根的近似值.解:令f(x)=3x2-4x-1,列出x,f(x)的一些对应值如下表:00若x0∈[-1,0],取区间[-1,0]的中点x1=-0.5,则f(-0.5)=1.75,因为f(-0.5)·f(0)<0,所以x0∈[-0.5,0].再取区间[-0.5,0]的中点x2=-0.25,则f(-0.25)=0.187 5,因为f(-0.25)·f(0)<0,所以x0∈[-0.25,0].同理,可得x0∈[-0.25,-0.125],x0∈[-0.25,-0.187 5],x0∈[-0.218 75,-0.187 5],区间[-0.218 75,-0.187 5]的左、右端点精确到0.1所取的近似值都是-0.2.所以把x0=-0.2作为方程3x2-4x-1=0的一个根的近似值.同理,若x0∈[1,2]时,方程的根的近似值为1.5.2±7综上,方程3x2-4x-1=0的根的精确值为x1,2=3,近似值为-0.2或1.5.。

2.4.2 求函数零点近似解的一种计算方法——二分法

2.4.2 求函数零点近似解的一种计算方法——二分法

2.4.2求函数零点近似解的一种计算方法——二分法【学习目标】1.了解函数变号零点与不变号零点的概念,会判断函数变号零点的存在.2.会用二分法求函数变号零点的近似值,并能对二分法的过程作出程式化的步骤.【重点】了解函数变号零点与不变号零点的概念,会判断函数变号零点的存在.【难点】会用二分法求函数变号零点的近似值,并能对二分法的过程作出程式化的步骤.【基础自测】1.零点存在的判定方法条件:y=f(x)在[a,b]上的图象不间断,f(a)·f(b)<0.结论:y=f(x)在[a,b]上至少有一个零点,即存在x0∈(a,b)使f(x0)=0.2.零点的分类3.二分法(1)定义对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点的方法叫做二分法.(2)求函数零点的一般步骤已知函数y=f(x)定义在区间D上,求它在D上的一个零点x0的近似值x,使它满足给定的精确度.用二分法求此函数零点的一般步骤为:①在D内取一个闭区间[a0,b0]⊆D,使f(a0)与f(b0)异号,即f(a0)·f(b0)<0,零点位于区间[a0,b0]中.②取区间[a0,b0]的中点,则此中点对应的坐标为x0=a0+b02.计算f(x0)和f(a0),并判断:a.如果f(x0)=0,则x0就是f(x)的零点,计算终止.b.如果f(a0)·f(x0)<0,则零点位于区间[a0,x0]中,令a1=a0,b1=x0. c.如果f(a0)·f(x0)>0,则零点位于区间[x0,b0]中,令a1=x0,b1=b0.③取区间[a1,b1]的中点,则此中点对应的坐标为x1=a1+b12.计算f(x1)和f(a1),并判断:a.如果f(x1)=0,则x1就是f(x)的零点,计算终止.b.如果f(a1)·f(x1)<0,则零点位于区间[a1,x1]上,令a2=a1,b2=x1.c.如果f(a1)·f(x1)>0,则零点位于区间[x1,b1]上,令a2=x1,b2=b1.……继续实施上述步骤,直到区间[a n,b n],函数的零点总位于区间[a n,b n]上,当区间的长度b n-a n不大于给定的精确度时,这个区间[a n,b n]中的任何一个数都可以作为函数y=f(x)的近似零点,计算终止.思考:二分法需要注意的问题有哪些?[提示]用二分法求方程近似解应注意的问题为:①看清题目的精确度,它决定着二分法步骤的结束.②在没有公式可用来求方程根时,可联系相关函数,用二分法求零点,用二分法求出的零点一般是零点的近似解,如求f(x)=g(x)的根,实际上是求函数y=f(x)-g(x)的零点,即求曲线y=f(x)与y=g(x)交点的横坐标.③并不是所有函数都可用二分法求零点,必须满足在区间[a,b]上连续不断,且f(a)·f(b)<0这样条件的函数才能用二分法求得零点的近似值.一、二分法的概念(1)已知函数f(x)的图象如图2-4-2所示,其中零点的个数与可以用二分法求解的个数分别为()A.4,4B.3,4C.5,4 D.4,3(2)用二分法求方程x3-2x-5=0在区间[1,3]内的根,取区间的中点为x0=2,那么下一个有根的区间是________.图2-4-2[规律方法] 二分法求函数零点的依据:其图象在零点附近是连续不断的,且该零点为变号零点,因此,用二分法求函数零点近似值的方法仅对函数的变号零点适用,对函数的不变号零点不适用.[跟踪训练] 1.下面关于二分法的叙述,正确的是( ) A .用二分法可求所有函数零点的近似值B .用二分法求方程的近似解时,可以精确到小数点后的任一位C .二分法无规律可循D .只有在求函数零点时才用二分法 二、函数零点类型的判定判断下列函数是否有变号零点:(1)y =x 2-5x -14; (2)y =x 2+x +1;(3)y =-x 4+x 3+10x 2-x +5; (4)y =x 4-18x 2+81.[规律方法] 图象连续不间断的函数f (x )在[a ,b]上,若f (a )·f (b )<0,则函数f (x )在该区间上至少有一个变号零点,也就是可能有多个变号零点,还可能有不变号零点,但至少有一个变号零点是肯定的.这一结论可直接应用于函数变号零点判定之中提醒:1当fa ·f b>0时,不要轻率地判定f x 在a ,b 上没有零点,如fx =x 2-2x +12,有f0·f 2=14>0,但x =1±22∈0,2是fx的两个变号零点2初始区间的选定一般在两个整数间,如3选的是0和5.[跟踪训练] 2.对于函数f (x )=x 2+mx +n ,若f (a )>0,f (b )>0,则函数f (x )在区间(a ,b )内( )A .一定有零点B .一定没有零点C .可能有两个零点D .至多有一个零点三、用二分法求方程的近似解 [探究问题]1.函数y=f(x)的零点与方程f(x)=0的解有何关系?提示:函数y=f(x)的零点就是方程f(x)=0的解.2.如何把求方程的近似解转化为求函数零点的近似解?提示:设方程为f(x)=g(x),构造函数F(x)=f(x)-g(x),求方程f(x)=g(x)的近似解问题就可转化为求函数F(x)=f(x)-g(x)零点的近似解问题.用二分法求方程2x3+3x-3=0的一个正实数近似解(精确度为0.1).[规律方法] 1.根据函数的零点与相应方程的解的关系,求函数的零点与求相应方程的解是等价的.求方程f(x)=0的近似解,即按照用二分法求函数零点近似值的步骤求解.2.对于求形如f(x)=g(x)的方程的近似解,可以通过移项转化成求形如F(x)=f(x)-g(x)=0的方程的近似解,然后按照用二分法求函数零点近似值的步骤求解.[跟踪训练] 3.用二分法求函数f(x)=x3+5的零点可以取的初始区间是() A.[-2,1] B.[-1,0] C.[0,1] D.[1,2]1.下列函数中能用二分法求零点的是()2.用二分法求函数f(x)在(a,b)内的唯一零点时,精确度为0.001,则结束计算的条件是()A.|a-b|<0.1B.|a-b|<0.001C.|a-b|>0.001 D.|a-b|=0.0013.图象连续不间断的函数f(x)的部分对应值如表所示4.若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法计算,参考数据如下:5.指出方程x3-2x-1=0的正根所在的大致区间;一、选择题1.用“二分法”可求近似解,对于精确度ε说法正确的是()A.ε越大,零点的精确度越高B.ε越大,零点的精确度越低C.重复计算次数就是εD.重复计算次数与ε无关2.已知连续函数f(x)的部分对应值如下表:则函数f(x)在区间[1,9]上的零点至少有() 【导学号:60462178】A.2个B.3个C.4个D.5个3.函数f(x)=x3-2x2+3x-6在区间[-2,4]上的零点必定属于()A.[-2,1] B.[2.5,4] C.[1,1.75] D.[1.75,2.5]4.在用二分法求函数f(x)的一个正实数零点时,经计算,f(0.64)<0,f(0.72)>0,f(0.68)<0,则函数的一个精确到0.1的正实数零点的近似值为() A.0.68 B.0.72 C.0.7 D.0.65.若a<b<c,则函数f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)两个零点分别位于区间()A.(a,b)和(b,c)内B.(-∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(-∞,a)和(c,+∞)内二、填空题6.若函数f(x)的图象是连续不间断的,根据下面的表格,可以断定f(x)的零点所在的区间为________.(只填序号) 【导学号:60462179】①(-∞,1]②[1,2]③[2,3]④[3,4]⑤[4,5]⑥[5,6]⑦[6,+∞)8.已知函数f(x)的图象是连续不断的,且有如下的对应值表:①函数f(x)在区间(-1,0)内有零点;②函数f(x)在区间(2,3)内有零点;③函数f(x)在区间(5,6)内有零点;④函数f(x)在区间(-1,7)内有三个零点.三、解答题9.已知函数f(x)=x2+x+a(a<0)在区间(0,1)上有零点,求实数a的取值范围.10.用二分法求方程x2-5=0的一个近似正解(精确度为0.1)[冲A挑战练]一、选择题1.若函数y=f(x)在区间(-2,2)上的图象是连续的,且方程f(x)=0在(-2,2)上仅有一实根0,则f(-1)·f(1)的值()A.大于0B.小于0 C.等于0 D.无法判断2.下列关于函数y=f(x),x∈[a,b]的叙述中,正确的个数为()①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;③函数f(x)的零点是方程f(x)=0的根,但f(x)=0的根不一定是函数f(x)的零点;④用二分法求方程的根时,得到的都是近似值.A.0 B.1 C.3 D.4二、填空题3.下面是连续函数f(x)在[1,2]上的一些函数值,如表:4.已知f(x)的一个零点x0∈(2,3),用二分法求精确度为0.01的x0近似值时,判断各区间中点的函数值的符号最多需要的次数为________.三、解答题5.已知函数f(x)=3ax2+2bx+c,a+b+c=0,f(0)>0,f(1)>0,证明a>0,并利用二分法证明方程f(x)=0在[0,1]内有两个实根.。

二分法求函数零点教案(可编辑修改word版)

二分法求函数零点教案(可编辑修改word版)

1、二分法的概念用二分法求方程的近似解对于在区间[a, b]上连续不断且 f (a ) · f (b ) < 0 的函数 y = f (x ) , 通过不断把函数f (x ) 的零点所在的区间一分为二, 使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫二分法。

2、用二分法求函数 f (x ) 的零点的近似值的步骤:(1)确定区间[a, b], 验证: f (a ) · f (b ) < 0,确定精确度(2)求区间(a , b)的中点 x 1(3)计算 f (x 1 )若 f (x 1 ) =0, 则就 x 1 是函数的零点若 f (a ) · f (x 1 ) <0,则令 b = x 1 (此时零点 x 0∈(a,x 1 ))若 f (x 1 ) · f (b ) <0,则令 a = x 1 (此时零点 x 0∈( x 1 , b)) (4)判断是否达到精确度即若 | a – b | <, 则得到零点的近似值为 a (或 b ),否则重复(2)~(4) 3、用二分法求函数零点的条件:若函数零点左右两侧函数值符号相反,则此零点为函数的变号零点,从图象来看,若图象穿过零点,则此零点为变号零点。

否则为不变号零点。

二分法只能求函数的变号零点。

例题讲解:例 1:下列函数图象与 x 轴均有交点,其中不能用二分法求图中函数零点的是( )解:应选 B ,利用二分法求函数零点必须满足零点两侧函数值异号。

1 例 2、 利用二分法求方程 x= 3 - x 的一个近似解(精确到 0.1)。

解:设 f (x ) = 1 + x - 3 ,则求方程 1= 3 - x 的一个近似解,即求函数 f (x ) 的一个近似零x x点。

∵ f (2) = - 1 < 0 , f (3) = 1> 0 ,∴取区间[2,3]作为计算的初始区间。

数学2.4.2《二分法》教案(新人教B版必修1)

数学2.4.2《二分法》教案(新人教B版必修1)

2.4.2求函数零点近似解的一种计算方法——二分法教案
教学目标:
1.通过具体实例理解二分法的概念及其适用条件;
2.了解二分法是求方程近似解的常用方法,从中体会函数与方程之间的联系及其在实际问题中的应用.
3.能借助计算器用二分法求方程的近似解,并了解这一数学思想,为学习算法做准备.重点,难点:
重点通过用二分法求方程的近似解,体会函数的零点与方程根之间的联系.
难点恰当地使用信息技术工具,利用二分法求给定精确度的方程的近似解.
教学过程。

2.4.2求函数零点近似解的一种方法——二分法

2.4.2求函数零点近似解的一种方法——二分法
bqr6401@
通 高
它的两个端点处的函数值异号,即 f (a) • f (b) 0
中 则,这个函数在这个区间上至少有一个零点,即
课 程
存在一点 x0 (a,b) 使得 f (x0 ) 0 。 不变号零点
标 准 如果函数图像通
y
过零点时没有穿
过x轴,则成这 a
样的零点叫不变 x0 b
x1
号零点。
bqr6401@
y=2x
y
4
y=4-x
1
x
012 4
提问:能否不画图确定根所在的区间?
bqr6401@
四、应用举例
例1:利用计算器,求方程2x=4-x的近似解(精确到0.1)
解:设函数f (x)=2x+x-4
普 则f (x)在R上是增函数∵f (0)= -3<0, f (2)=2>0
通 ∴ f (x)在(0,2)内有惟一零点,
普 通 高 中 课 程 标 准
良乡中学数学组 任宝泉 bqr6401@
书少成天勤劳才功山小才的就=有艰孩是不在苦子百路展分学于的勤之望劳习勤一为未动,的来径奋+老灵,正,感确学来努但,的懒百海徒力方惰分无法的之伤才+孩崖九少悲能子十苦谈享九成空作受的话现汗舟功在水!!!!!
普通高中课程标准数学1(必修)

区间


(2,3)


(2.5,3)

(2.5,2.75)


(2.5,2.625)
中点的值
2.5 2.75 2.625 2.5625
中点函数近似值
-0.084 0.512 0.215 0.066
区间长度

2.4.2求函数零点近似解的一种计算方法----二分法学生版

2.4.2求函数零点近似解的一种计算方法----二分法学生版

1 / 12.4.2 求函数零点近似解的一种计算方法——二分法一、基础过关1.用“二分法”可求近似解,对于精确度ε说法正确的是( )A .ε越大,零点的精确度越高B .ε越大,零点的精确度越低C .重复计算次数就是εD .重复计算次数与ε无关 2.下列图象与x 轴均有交点,其中不能用二分法求函数零点的是( )3.对于函数f(x)在定义域内用二分法的求解过程如下:f(2 011)<0,f(2 012)<0,f(2 013)>0,则下列叙述正确的是 ( ) A .函数f(x)在(2 011,2 012)内不存在零点 B .函数f(x)在(2 012,2 013)内不存在零点 C .函数f(x)在(2 012,2 013)内存在零点,并且仅有一个 D .函数f(x)在(2 011,2 012)内可能存在零点 4.用二分法求函数f(x)=x 3+5的零点可以取的初始区间是 ( ) A .[-2,1]B .[-1,0]C .[0,1]D .[1,2] 5.若函数f(x)的图象是连续不间断的,根据下面的表格,可以断定f(x)的零点所在的区间为______.(只填序号) ①(-∞,1]6.用“二分法”求方程x 3-2x -5=0在区间[2,3]内的实根,取区间中点为x 0=2.5,那么下一个有根的区间是______. 7.用二分法求方程x 3-x -1=0在区间[1.0,1.5]内的实根.(精确到0.1) 8.已知函数f(x)=x 2+x +a (a<0)在区间(0,1)上有零点,求实数a 的取值范围. 二、能力提升9.设f(x)=3x +3x -8,用二分法求方程3x +3x -8=0在x ∈(1,2)内近似解的过程中得f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间( )A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能确定10那么方程2x =x 2的一个根位于下列哪个区间内( ) A .(0.6,1.0)B .(1.4,1.8)C .(1.8,2.2)D .(2.6,3.0)11.函数f(x)的图象如下图所示,则该函数变号零点的个数是________.12.在26枚崭新的金币中,混入了一枚外表与它们完全相同的假币(重量稍轻),现在只有一台天平,请问:你最多称几次就可以发现这枚假币?三、探究与拓展13.已知函数f(x)=3ax 2+2bx +c ,a +b +c =0,f(0)>0,f(1)>0,证明a>0,并利用二分法证明方程f(x)=0在[0,1]内有两个实根.。

二分法(2)

二分法(2)

2.4.2求函数零点近似解的一种方法——二分法教学设计辽宁省鞍山一中周兴奎一、教学目标知识与技能:1、了解二分法是求函数零点近似解的常用方法.2、理解二分法求函数零点的适用范围,并能借助计算器或计算机用二分法求函数零点近似值.过程与方法:采用问题探究式的教学方法,从实例入手,引领学生理解“二分法”求方程近似解的过程和步骤,并得到相应结论.情感态度价值观:培养学生的数学思想。

包括数形结合和数学逼近思想,同时培养学生的数学文化,增强数学认同感,提高学习兴趣.二、教学重难点重点:用二分法求方程的近似解,体会函数与方程的思想.难点:正确理解二分法求函数零点的原理和思想;在利用二分法求方程的近似解的过程中,由于数值计算较为复杂,因此对获得给定精确度的近似解增加了困难;用二分法求方程的近似解时,初始区间的选择.三、学情分析和教学内容分析学情分析:知识上学生通过函数性质和上节课函数零点的学习,已经有了初步的函数思想,已有了函数与方程相联系的认知。

意识上学生对解方程非常熟悉,可以从解方程入手来进一步学习函数的零点.教材内容分析:本节课位于人教B版教材第二章2.4.2,本章的最后一节新课,本节内容是新教材为了体现注重思想和联系的宗旨,特别设计的一节探究课。

目的是通过教师引导、学生自主学习探究后增加对数学学习的兴趣,同时通过对数学文化的渗透和计算机可以来处理复杂数学计算问题等,让学生在数学修养上在上一个台阶.四、教学过程1. 数学史的引入和数学问题情境的创设由上节课学习的函数的零点入手,回顾函数零点和方程的关系。

得到求方程的根的问题就是求函数的零点,求函数与x轴交点横坐标的问题,进而过渡到事实上求方程的根的问题是19世纪之前数学研究的主要课题,进而教师给出一些重要的时间段,以及对应的方程的根的求解进展情况。

并让学生发现一元五次和五次以上的方程没有求根公式。

进而引出问题:一个一般的五次方程的根我们是没有办法求出去具体值的,那么我们能不能求这类方程的近似解呢?如:求方程x5+2x2-x-1=0的根2. 求函数近似零点下面进一步引导学生来求上述函数的一个零点,不妨求[0,1]上的零点,能否借助函数图像,找到一种方法可以使函数的零点和零点近似值之间可以任意接近?可以选择的给出一个具体实例:在一个风雨交加的夜里,某防洪指挥部的电话线路发生故障,线路长达10Km,问维修工人应该如何迅速找到故障所在?并采用动画的形式展示维修工人的操作过程,这就是二分法的思想,这是一个探究的环节。

用二分法求方程的近似解学案

用二分法求方程的近似解学案

y1*A—J 0③ 用二分法求图象是连续不断的函数f(1.25)<0,则函数的零点落在区间(④ 方程log s x x 3的近似解所在区间是( ⑤ 下列函数,在指定范围内存在零点的是(A.y=x -x,x (- g ,0)B.y= | x | -2,x⑥ 方程2x 「1+ x = 5的解所在的区间是( ⑦ 设f(x)=3 x+3x-8,用二分法求方程0,f(1.25) v 0,则方程的根落在区间(⑧ 方程2x+ 1.5x-3 = 0的解在区间( 2.填空题(x )在x € (1,2)内零点的近似值的过程中,得到 f (1) <0, f(1.5)>0 ,)A 、( 1 , 1.25 ) B 、( 1.25 , 1.5 ) C 、( 1.5 , 2) D 、无法确定(3, 4))A (0, 2) B )3[-1,1] C.y=x +x-5,x )A . (0,1) B .(1, 2) C (2, 3) D [1,2] D. y=x -1,x (1,2) C . (2,3) D 3x +3x-8=0在x € (1,2)内近似解的过程中,计算得A . (1,1.25) B. (1.25,1.5) C . (1.5,2) D. (0,1 )内B (1,2 )内C (2,3 )内 D(2,3 ).(3,4)f(1) v 0,f(1.5) >不确定以上均不对②(0,1),③(1,2),④(2,3)有实数解的是(填序号) _____________K-1 0i 23-0.3673,011 5,4327.651 Z Ixl-0.5309.451 4.E90£ 2416.E92用二分法求方程的近似解学习目标:理解用二分法求函数零点的原理,能借助计算器用二分法求出给定函数满足一定精度要求的零点的近 似解;通过具体实例的求解,总结用二分法求函数零点近似解的过程与步骤,感受、体验二分法中的算法思想 学习重点:学会用二分法求函数零点的近似解学习难点:对用二分法求函数零点近似解的步骤的概括和理解;对精确度要求的理解 学习过程: 一探究新知 1. 有12个小球,质量均匀,只有一个是比别的球重的,你用天平称几次可以找出这个球的,要求次数越少越好 解法:第一次,两端各放 个球,低的那一端一定有重球;第二次,两端各放 个球,低的那一端 一定有重球;第三次,两端 — 个球,如果平衡,剩下的就是重球,否则,低的就是重球 .以上的方法其 实这就是一种二分法的思想,采用类似的方法,如何求 y In x 2x 6的零点所在区间?如何找出这个零点?2. 对于在区间〔a , b 〕上连续不断且f(a) • f(b) v 0的函数y f(x),通过不断的把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点, 进而得到零点近似值的方法叫二分法•3. 给定精度£,用二分法求函数 f(x)的零点近似值的步骤如何呢?①确定区间〔a , b 〕,验证f (a ) • f (b ) v 0,给定精度「②求区间(a ,b )的中点x i ;③计算f(xj :若f (x i )0,则x i 就是函数的零点;若f (a ) • f(X i )v 0,则令b X i (此时零点x o (a, xj );若f (x i ) • f (b ) v 0,则令a 捲(此时零点x ° (X i ,b));④ 判断是否达到精度「即若 |a b|,则得到零点零点值 a (或b );否则重复步骤②〜④4. 二分法是通过不断地将选择的区间一分为二,逐步逼近零点,直到满足精确度的要求.判定一个函数能否用二分法求其零点的依据是: 只有函数的图象在零点附近是连续不断且在该零点左右函数值异号时, 才可以用二分法 求函数的零点的近似值,即该零点为变号零点.因此,用二分法求函数的零点近似值的方法仅对函数的变号零点 适用,对函数的不变号零点不适用.5. 在用二分法求方程的近似解时,若初始区间是(i , 5),精确度要求是 O.OOi ,则需要计算的次数是 ___________根据计算精确度与区间长度和计算次数的关系确定 •设需计算n 次,则n 满足4/2n v O.OOi ,即2n >4000.由于2ii =2048, 2i2=4096,故计算i2次就可以满足精确度要求.故填 i2二课内自测1.①下列函数中能用二分法求零点的是()x ①根据表,判断f(x)=g(x)在四个区间①(-1,0),②估算方程5x-7x-仁0的正根所在的区间是 ______ 」.(0,1) B . (1,2) C . (2,3) D . (3,4)③用二分法求f(x)=0 的近似解,f(1) 2, f (1.5)― .625, f (1.25) 0.984, f (1.375) 0.260,下一个求f(m), 则m=④用二分法求X4-5X-8=0在区间[2,3]上的实根,取区间中点X1=2.5,则下一个有解区间为 ________________⑤已知函数f(x) a x 2过点(1,0),则方程f(x)=x的解为_____________⑥函数f (x) lg x 2x 7的零点个数为,大致所在区间为⑦已知函数y=f(x)的零点在区间〔0, 1丨内,欲使零点的近似值精确度达到0.01,则用二分法取的中点的次数的最小值为___________⑧方程5x2-7x-1=0的负根所在的区间是 _____________3•借助计算器或计算机,利用二分法求方程—2x 3x 7的近似解4.求方程log3x x 3的解的个数及其大致所在区间5•借助图象求方程lnx x 2的近似解区间6.求函数 f (x) x3 x22x 2的一个正数零点(精确到0.1)7.求函数f(x)=lnx+2x-6 在区间(2,3)内零点的近似值(精确到0.01)附:有关函数f(x)=l nx+2x-6 的一些自变量与对应函数值表三课堂达标1.选择题①若函数f (x)在区间〔a, b〕上为减函数,则 f (x)在〔a, b]±()A.至少有一个零点B.只有一个零点C.没有零点D.至多有一个零点②下列函数图象与x轴均有交点,其中不能用二分法求函数零点近似值的是( )③下列函数的图象中,其中能用二分法求其零点的有( )个 A . 2 B . 3 C . 4 D. 5④函数f(x) 2xln(x 2) 3 的零点所在区间为( )A. (2,3) B. (3,4) C. (4,5) D. (5,6)⑤求方程f(x)=0在区间0,1内的近似根,用二分法计算到x io=0.445到达精确度要求,那么所取误差&是()A、0.05 B 、0.005 C 、0.0005 D 、0.00005⑥方程log a x x 1( 0 a 1 )的实数解的个数是f ) A 0个 B 1 个 C 2 个 D 3 个⑦已知f(x) = 1 /x —lnx在区间(1,2)内有一个零点X。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档