2011年山东省聊城市中考数学试题(WORD版含答案)
2011年中考数学试题及解析171套试题试卷_48

山东省菏泽市二○一一年初中学业水平考试一、选择题(每小题4分,共32分)1. -32的倒数是A.32B.23C.32-D.23- 2. 为了加快3G 网络建设,我市电信运营企业将根据各自发展规划,今年预计完成3G 投资2800万元左右,将2800万元用科学记数法表示为多少元时,下列记法正确的是 A.2.8×103 B.2.8×106 C.2.8×107 D.2.8×108 3.一次数学活动课上,小聪将一副三角板按图中方式叠放,则∠α等于 A.30° B.45° C.60° D.75° 4.实数a化简后为 A. 7 B. -7 C. 2a-15 D. 无法确定5.如图所示,已知在三角形纸片ABC 中,BC =3,6AB =,∠BCA=90°在AC 上取一点E ,以BE 为折痕,使的一部分与BC 重合,A与BC 延长线上的点D 重合,则D E的长度为A.6B.3C. D. 6.定义一种运算☆,其规则为a ☆b= 1a + 1b ,根据这个规则、计算2☆3的值是 A.56 B. 15C.5D.6 7. 某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最多可打A .6折B .7折C .8折D .9折 8.如图为抛物线2y ax bx c =++的图像,A B C 为抛物线与坐标轴的交点,且OA=OC=1,则下列关系中正确的是A. 1a b +=-B. 1a b -=-C. b<2aD. ac<0 二、填空题:本大题共6小题,共18分.9. x 的取值范围是 . 10.因式分解:2a 2-4a+2= _______________ . 11. 在一次信息技术考试中,某兴趣小组8名同学的成绩(单位:分)分别是:7,10,9,8,7,9,9,8, 则这组数据的中位数是 . 12. 如图是正方体的展开图,则原正方体相对 两个面上的数字之和的最小值的是 .13.从-2、-1、0、1、2这5个数中任取一个数,作为关于x 的一元二次方程20x x k -+= 的k 值,则所得的方程中有两个不相等的实数根的概率是 .14.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值是 .30°45°α(第3题图)C (第12题图)三、解答题:本大题共7小题,共78分; 15.(本题12分,每题6分)(10(4)6cos302-π-+-(2)已知:如图,∠ABC=∠DCB ,BD 、CA 分别是∠ABC 、∠DCB 的平分线。
2011 山东省各地历年中考数学试题、模拟题集及答案

山东省中考数学试题、模拟题集及答案目录历年试题集及答案2010年山东省济南市中考数学试卷2009年山东省德州市中考数学试题及答案2008年山东省青岛市中考数学试题及答案2007年山东省淄博市中考数学试卷及答案2006年山东省烟台市中考试题数学试题和答案A. 2005年山东省临沂市中考试题数学(非课改实验区用)及答案2005年山东省临沂市中考数学试题(课改实验区用)模拟题集及答案2011山东圆精中考选试题2010~2011学年度第二学期模拟试卷济南市2010年初三年级学业水平考试数 学 试 题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分120分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.考试时间120分钟.2.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用2B 铅笔涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的地方.3.选择题选出答案后,用2B 铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,答案写在试卷上无效.4.数学考试不允许使用计算器,考试结束后,应将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共48分)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.2+(-2)的值是 A .-4B .14C .0D .42.一组数据0、1、2、2、3、1、3、3的众数是 A .0B .1C .2D .33.图中的几何体是由7个大小相同的小正方体组成的,该几何体的俯视图为4.作为历史上第一个正式提出“低碳世博”理念的世博会,上海世博会从一开始就确定以“低碳、和谐、可持续发展的城市”为主题.如今在世博场馆和周边共运行着一千多辆新能源汽车,为目前世界上规第4题图A .B .C .D .第3题图第10题图yxO -1 2 ABCDMNO 第9题图5分数人数(人)156分 020108分 10分第7题图模最大的新能源汽车示范运行,预计将减少温室气体排放约28400吨.将28400吨用科学记数法表示为A .0.284×105吨 B .2.84×104吨 C .28.4×103吨D .284×102吨5.二元一次方程组42x y x y -=⎧⎨+=⎩的解是A .37x y =⎧⎨=-⎩B .11x y =⎧⎨=⎩C .73x y =⎧⎨=⎩D .31x y =⎧⎨=-⎩6.下列各选项的运算结果正确的是A .236(2)8x x =B .22523a b a b -=C .623x x x ÷=D .222()a b a b -=- 7.在一次体育课上,体育老师对九年级一班的40名同学进行了立定跳远项目的测试,测试所得分数及相应的人数如图所示,则这次测试的平均分为 A .53分 B .354分 C .403分 D .8分8.一次函数21y x =-+的图象经过哪几个象限 A .一、二、三象限 B .一、二、四象限 C .一、三、四象限D .二、三、四象限9.如图所示,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点,则cos ∠OMN 的值为A .12B 2C 3D .110.二次函数22y x x =--的图象如图所示,则函数值y <0时x 的取值范围是A .x <-1B .x >2C .-1<x <2D .x <-1或x >2A BCDPE第12题图⑴ 1+8=?1+8+16=?⑵ ⑶1+8+16+24=?第11题图……11.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n (n 是正整数)的结果为A .2(21)n +B .2(21)n -C .2(2)n +D .2n 12.如图所示,矩形ABCD 中,AB =4,BC =43E 是折线段A -D -C 上的一个动点(点E 与点A 不重合),点P 是点A 关于BE 的对称点.在点E 运动的过程中,使△PCB 为等腰三角形的点E 的位置共有A .2个B .3个C .4个D .5个ABC DEF第14题图第16题图第17题图济南市2010年初三年级学业水平考试数 学 试 题注意事项:1.第Ⅱ卷共6页.用蓝、黑色钢笔或圆珠笔直接答在考试卷上. 2.答卷前将密封线内的项目填写清楚.第Ⅱ卷(非选择题 共72分)二、填空题(本大题共5个小题,每小题3分,共15分.把答案填在题中的横线上.)13.分解因式:221x x ++= .14.如图所示,△DEF 是△ABC 沿水平方向向右平移后的对应图形,若∠B =31°,∠C =79°,则∠D 的度数是 度.15.解方程23123x x =-+的结果是 . 16.如图所示,点A 是双曲线1y x=-在第二象限的分支上的任意一点,点B 、C 、D 分别是点A 关于x 轴、原点、y 轴的对称点,则四边形ABCD 的面积是 .ABCD第19题图17.如图所示,△ABC 的三个顶点的坐标分别为A (-1,3)、B (-2,-2)、C (4,-2),则△ABC 外接圆半径的长度为 .三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.) 18.(本小题满分7分)⑴解不等式组:224x xx +>-⎧⎨-⎩≤⑵如图所示,在梯形ABCD 中,BC ∥AD ,AB =DC ,点M 是AD 的中点. 求证:BM =CM .19.(本小题满分7分)0(3)-⑵如图所示,△ABC 中,∠C =90°,∠B =30°,AD 是△ABC 的角平分线,若AC 求线段AD 的长.BACDM第18题图第21题图20.(本小题满分8分)如图所示,有一个可以自由转动的圆形转盘,被平均分成四个扇形,四个扇形内分别标有数字1、2、-3、-4.若将转盘转动两次,每一次停止转动后,指针指向的扇形内的数字分别记为a 、b (若指针恰好指在分界线上,则该次不计,重新转动一次,直至指针落在扇形内).请你用列表法或树状图求a 与 b 的乘积等于2的概率.21.(本小题满分8分)如图所示,某幼儿园有一道长为16米的墙,计划用32120平方米的矩形草坪ABCD .求该矩形草坪BC 边的长.第20题图第22题图22.(本小题满分9分)如图所示,菱形ABCD 的顶点A 、B 在x 轴上,点A 在点B 的左侧,点D 在y 轴的正半轴上,∠BAD =60°,点A 的坐标为(-2,0).⑴求线段AD 所在直线的函数表达式.⑵动点P 从点A 出发,以每秒1个单位长度的速度,按照A →D →C →B →A 的顺序在菱形的边上匀速运动一周,设运动时间为t 秒.求t 为何值时,以点P 为圆心、以1为半径的圆与对角线AC 相切?ABCN MPAMN1 CP 2B A CMNP 1 P 2 P 2009 …… ……B第23题图2第23题图1第23题图323.(本小题满分9分)已知:△ABC 是任意三角形.⑴如图1所示,点M 、P 、N 分别是边AB 、BC 、CA 的中点.求证:∠MPN =∠A . ⑵如图2所示,点M 、N 分别在边AB 、AC 上,且13AM AB =,13AN AC =,点P 1、P 2是边BC 的三等分点,你认为∠MP 1N +∠MP 2N =∠A 是否正确?请说明你的理由.⑶如图3所示,点M 、N 分别在边AB 、AC 上,且12010AM AB =,12010AN AC =,点P 1、P 2、……、P 2009是边BC 的2010等分点,则∠MP 1N +∠MP 2N +……+∠MP 2009N =____________.(请直接将该小问的答案写在横线上.)x24.(本小题满分9分)如图所示,抛物线223y x x =-++与x 轴交于A 、B 两点,直线BD 的函数表达式为y =+l 与直线BD 交于点C 、与x 轴交于点E .⑴求A 、B 、C 三个点的坐标.⑵点P 为线段AB 上的一个动点(与点A 、点B 不重合),以点A 为圆心、以AP 为半径的圆弧与线段AC 交于点M ,以点B 为圆心、以BP 为半径的圆弧与线段BC 交于点N ,分别连接AN 、BM 、MN .①求证:AN =BM .②在点P 运动的过程中,四边形AMNB 的面积有最大值还是有最小值?并求出该最大值或最小值.济南市2010年初三年级学业水平考试数学试题参考答案及评分标准一、选择题二、填空题13. 2(1)x + 14. 70 15. 9x=-三、解答题18.(1)解:224x xx +-⎧⎨-⎩>≤解不等式①,得1x ->, ················· 1分 解不等式②,得2x ≥-, ················· 2分 ∴不等式组的解集为1x ->. ················· 3分 (2) 证明:∵BC ∥AD ,AB =DC ,∴∠BAM =∠CDM , ·················· 1分 ∵点M 是AD 的中点,∴AM =DM , ····················· 2分∴△ABM ≌△DCM , ·················· 3分 ∴BM =CM . ····················· 4分 19.(1)解:原式0(3)- ·············· 1分2+1 ···················· 2分 -1 ····················· 3分(2)解:∵△ABC 中,∠C =90º,∠B =30º,∴∠BAC =60º,∵AD 是△ABC 的角平分线,∴∠CAD =30º, ···················· 1分①②∴在Rt△ADC 中,cos30ACAD =︒············· 2分··········· 3分=2 . ·············· 4分20.解:a 与b 的乘积的所有可能出现的结果如下表所示:····························· 6分 总共有16种结果,每种结果出现的可能性相同,其中ab=2的结果有2种, ································ 7分∴a 与 b 的乘积等于2的概率是18. (8)分21.解:设BC 边的长为x 米,根据题意得 ············· 1分 321202xx-=, ····················4分 解得:121220x x ==,, ··················· 6分∵20>16,∴220x =不合题意,舍去, ················ 7分 答:该矩形草坪BC 边的长为12米. ············ 8分 22. 解:⑴∵点A 的坐标为(-2,0),∠BAD =60°,∠AOD =90°,∴OD =OA ·tan60°=∴点D 的坐标为(0,), ··············· 1分 设直线AD 的函数表达式为y kx b =+,20k b b -+=⎧⎪⎨=⎪⎩,解得k b ⎧=⎪⎨=⎪⎩AB CM N P 1 第23题图P 21 2O xy B CDP 1P 2P 3P 4123 4 A第22题图∴直线AD 的函数表达式为33y x =+. ·········· 3分 ⑵∵四边形ABCD 是菱形, ∴∠DCB =∠BAD =60°, ∴∠1=∠2=∠3=∠4=30°,AD =DC =CB =BA =4, ···················· 5分 如图所示:①点P 在AD 上与AC 相切时,AP 1=2r =2,∴t 1=2. ························ 6分②点P 在DC 上与AC 相切时,CP 2=2r =2,∴AD +DP 2=6,∴t 2=6. ········· 7分 ③点P 在BC 上与AC 相切时,CP 3=2r =2,∴AD +DC +CP 3=10,∴t 3=10. ········· 8分 ④点P 在AB 上与AC 相切时,AP 4=2r =2,∴AD +DC +CB +BP 4=14, ∴t 4=14,∴当t =2、6、10、14时,以点P 为圆心、以1为半径的圆与对角线AC 相切. ··············· 9分23. ⑴证明:∵点M 、P 、N 分别是AB 、BC 、CA 的中点, ∴线段MP 、PN 是△ABC 的中位线,∴MP ∥AN ,PN ∥AM , ······ 1分∴四边形AMPN 是平行四边形, · 2分 ∴∠MPN =∠A . ······· 3分DCMNO A B P 第24题图lxyFE ⑵∠MP 1N +∠MP 2N =∠A 正确. ····· 4分 如图所示,连接MN , ······· 5分 ∵13AM AN AB AC ==,∠A =∠A , ∴△AMN ∽△ABC , ∴∠AMN =∠B ,13MN BC =, ∴MN ∥BC ,MN =13BC , ······· 6分∵点P 1、P 2是边BC 的三等分点,∴MN 与BP 1平行且相等,MN 与P 1P 2平行且相等,MN 与P 2C 平行且相等, ∴四边形MBP 1N 、MP 1P 2N 、MP 2CN 都是平行四边形, ∴MB ∥NP 1,MP 1∥NP 2,MP 2∥AC ,·················· 7分 ∴∠MP 1N =∠1,∠MP 2N =∠2,∠BMP 2=∠A , ∴∠MP 1N +∠MP 2N =∠1+∠2=∠BMP 2=∠A . ················· 8分 ⑶∠A . ············· 9分24.解:⑴令2230x x -++=,解得:121,3x x =-=, ∴A (-1,0),B (3,0) ······· 2分 ∵223y x x =-++=2(1)4x --+, ∴抛物线的对称轴为直线x =1,将x =1代入333y x =-+y 3 ∴C (1,3. ········ 3分 ⑵①在Rt△ACE 中,tan∠CAE =3CEAE= ∴∠CAE =60º,由抛物线的对称性可知l 是线段AB 的垂直平分线, ∴AC=BC ,∴△ABC 为等边三角形, ················· 4分 ∴AB = BC =AC = 4,∠ABC=∠ACB = 60º, 又∵AM=AP ,BN=BP , ∴BN = CM ,∴△ABN ≌△BCM ,∴AN =BM . ························ 5分 ②四边形AMNB 的面积有最小值. ············· 6分 设AP=m ,四边形AMNB 的面积为S ,由①可知AB = BC= 4,BN = CM=BP ,S △ABC ×42= ∴CM=BN= BP=4-m ,CN=m , 过M 作MF ⊥BC ,垂足为F ,则MF =MC )m -,∴S △CMN =12CN MF =12m )m -=2+,······· 7分 ∴S =S △ABC -S △CMN=2)22)m -+···················· 8分∴m =2时,S 取得最小值··············· 9分绝密★启用前 试卷类型:A德州市二○○九年中等学校招生考试数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷2页为选择题,24分;第Ⅱ卷8页为非选择题,96分;全卷共10页,满分120分,考试时间为120分钟.2.答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅰ卷(选择题 共24分)一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高(A)-10℃ (B)-6℃ (C)6℃ (D)10℃2.计算()4323b a --的结果是(A)12881b a (B )7612b a (C )7612b a - (D )12881b a -3.如图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠EFB =65°,则∠AED ′等于 (A ) 70° (B ) 65° (C ) 50°(D ) 25°4.已知点M (-2,3 )在双曲线xky =上,则下列各点一定在该双曲线上的是 (A )(3,-2 ) (B )(-2,-3 ) (C )(2,3 ) D )(3,2)5.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是EDBC′FCD ′ A(第3题图)①正方体②圆柱③圆锥④球(第5题图)(A )①②(B )②③ (C ) ②④(D ) ③④6.不等式组⎪⎩⎪⎨⎧≥--+ 2.3,21123x x x >的解集在数轴上表示正确的是7.将直径为60cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为(A )10cm (B )30cm (C )45cm (D )300cm 8.如图,点A 的坐标为(-1,0),点B 在直线y =xB 的坐标为(A )(0,0) (B )(22,22-) (C )(-21,-21) (D )(-22,-22绝密★启用前 试卷类型:A德州市二○○九年中等学校招生考试数 学 试 题第Ⅱ卷(非选择题 共96分)(A ) (B )(C ) (D ) (第8题图)注意事项:1.第Ⅱ卷共8页,用钢笔或圆珠笔直接写在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分.9.据报道,全球观看北京奥运会开幕式现场直播的观众达2 300 000 000人,创下全球直播节目收视率的最高记录.该观众人数可用科学记数法表示为____________人. 10.甲、乙两位棉农种植的棉花,连续五年的单位面积产量(千克/亩)统计如下表,则产量较稳定的是棉农_________________.11.若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为____________. 12.若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x 的解,则k的值为 .13.如图,在4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P1.则其旋转中心一定是__________.14.如图,在四边形ABCD 中,已知AB 不平行CD ,∠ABD =∠ACD ,请你添加一个条件: ,使得加上这个条件后能够推出AD ∥BC 且AB =CD . 15.将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折得 分评 卷 人B C DAO(第14题图) E(第15题图)AB ′C F B M 11(第13题图)痕为EF.已知AB=AC=3,BC=4,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是.16.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y kx b=+(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B n的坐标是______________.三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.17.(本题满分7分)化简:22222369x y x y yx y x xy y x y --÷-++++.(第16题图)得分评卷人18. (本题满分9分)某中学对全校学生60秒跳绳的次数进行了统计,全校平均次数是100次.某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如下(每个分组包括左端点,不包括右端点):求:(1)该班60秒跳绳的平均次数至少是多少?是否超过全校平均次数?(2)该班一个学生说:“我的跳绳成绩在我班是中位数”,请你给出该生跳绳成绩的所在范围.(3)从该班中任选一人,其跳绳次数达到或超过校平均次数的概率是多少?19. (本题满分9分)如图,⊙O 的直径AB =4,C 为圆周上一点,AC =2,过点C 作⊙O 的切线l ,过点B 作l 的垂线BD ,垂足为D ,BD 与⊙O 交于点 E .(1) 求∠AEC 的度数;(2)求证:四边形OBEC 是菱形.得 分评 卷 人得 分评 卷 人(第19题图)(第18题图)6080 100 120140 160 180 次数20. (本题满分9分)为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%.(1)求2007年同期试点产品类家电销售量为多少万台(部)?(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,•手机每部800元,已知销售的冰箱(含冰柜)数量是彩电数量的23倍,求彩电、冰箱、手机三大类产品分别销售多少万台(部),并计算获得的政府补贴分别为多少万元?21. (本题满分10分)如图,斜坡AC 的坡度(坡比)为1:3,AC =10米.坡顶有一旗杆BC ,旗杆顶端B 点与A 点有一条彩带AB 相连,AB =14米.试求旗杆BC 的高度.得 分 评 卷 人得 分评 卷 人ABC(第21题图)D22. (本题满分10分)某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD 是矩形,其中AB =2米,BC =1米;上部CDG 是等边三角形,固定点E 为AB 的中点.△EMN 是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN 是可以沿设施边框上下滑动且始终保持和AB 平行的伸缩横杆. (1)当MN 和AB 之间的距离为0.5米时,求此时△EMN 的面积;(2)设MN 与AB 之间的距离为x 米,试将△EMN 的面积S (平方米)表示成关于x 的函数;(3)请你探究△EMN 的面积S (平方米)有无最大值,若有,请求出这个最大值;若没有,请说明理由.23. (本题满分10分)已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG .(1)求证:EG =CG ;(2)将图①中△BEF 绕B点逆时针旋转45º,如图②所示,取DF 中点G ,连接EG ,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)得 分评 卷 人得 分评 卷 人FBD第23题图①BDE第23题图②DB第23题图③E ABC(第22题图)德州市二○○九年中等学校招生考试 数学试题参考解答及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种或两种解法,对考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一、二、填空题:(本大题共8小题,每小题4分,共32分) 9.2.3×109; 10.乙;11.-2;12.43;13.点B 14.∠DAC =∠ADB ,∠BAD =∠CDA ,∠DBC =∠ACB ,∠ABC =∠DCB ,OB =OC ,OA =OD ; 15.127或2; 16.()121,2n n --. 三、解答题:(本大题共7小题, 共64分) 17.(本小题满分7分)解:原式=3x y x y-+•222269x xy y x y ++-2yx y -+………………………1分 =3x yx y -+•()()()23x y x y x y ++-2y x y-+………………………4分 =32x y yx y x y +-++ …………………………………………6分 =x yx y++=1. ……………………………………………7分18.(本小题满分9分)解:(1)该班60秒跳绳的平均次数至少是:50216051407120191001380460⨯+⨯+⨯+⨯+⨯+⨯=100.8.因为100.8>100,所以一定超过全校平均次数. …………………3分(2)这个学生的跳绳成绩在该班是中位数,由4+13+19=36,所以中位数一定在100~120范围内. …………………………………………6分(3)该班60秒跳绳成绩大于或等于100次的有:19+7+5+2=33(人), ……………………………………………………………………………8分 6605033.=.所以,从该班任选一人,跳绳成绩达到或超过校平均次数的概率为0.66. ………………………………………………………… 9分 19.(本题满分9分)(1)解:在△AOC 中,AC =2,∵ AO =OC =2,∴ △AOC 是等边三角形.………2分 ∴ ∠AOC =60°,∴∠AEC =30°.…………………4分 (2)证明:∵OC ⊥l ,BD ⊥l .∴ OC ∥BD . ……………………5分 ∴ ∠ABD =∠AOC =60°.∵ AB 为⊙O 的直径,∴ △AEB 为直角三角形,∠EAB =30°.…………………………7分 ∴∠EAB =∠AEC .∴ 四边形OBEC 为平行四边形. …………………………………8分 又∵ OB =OC =2.∴ 四边形OBEC 是菱形. …………………………………………9分 20.(本题满分9分)解:(1)2007年销量为a 万台,则a (1+40%)=350,a =250(万台). …………………………………………………………………………3分(2)设销售彩电x 万台,则销售冰箱23x 万台,销售手机(350-25x )万台.由题意得:1500x +2000×x 23+800(35052-x )=500000. ……………6分解得x =88. ………………………………………………………7分 ∴ 31322x =,53501302x -=.所以,彩电、冰箱(含冰柜)、手机三大类产品分别销售88万台、132万台、130万部.………………………………………………………………8分 ∴ 88×1500×13%=17160(万元),132×2000×13%=34320(万元), 130×800×13%=13520(万元).获得的政府补贴分别是17160万元、34320万元、13520万元. ……9分 21.(本题满分10分)解:延长BC 交AD 于E 点,则CE ⊥AD .……1分在Rt △AEC 中,AC =10,由坡比为1:3可知:∠CAE =30°.………2分(第20题图) AB CED∴ CE =AC ·sin30°=10×21=5,………3分 AE =AC ·cos 30°=10×23=35.……5分 在Rt △ABE 中,BE =22AE AB -=()223514-=11.……………………………8分∵ BE =BC +CE ,∴ BC =BE -CE =11-5=6(米).答:旗杆的高度为6米. …………………………………………10分22.(本题满分10分) 解:(1)由题意,当MN 和AB 之间的距离为0.5米时,MN 应位于DC 下方,且此时△EMN 中MN 边上的高为0.5米. 所以,S △EMN =5.0221⨯⨯=0.5(平方米). 即△EMN 的面积为0.5平方米. …………2分 (2)①如图1所示,当MN 在矩形区域滑动,即0<x ≤1时,△EMN 的面积S =x ⨯⨯221=x ;……3分②如图2所示,当MN 在三角形区域滑动, 即1<x <31+时,如图,连接EG ,交CD 于点F ,交MN 于点H , ∵ E 为AB 中点,∴ F 为CD 中点,GF ⊥CD ,且FG =3. 又∵ MN ∥CD ,∴ △MNG ∽△DCG .∴ GF GH DC MN =,即MN =.……4分故△EMN 的面积S=12x=x x )331(332++-; …………………5分综合可得:()()⎪⎩⎪⎨⎧+⎪⎪⎭⎫ ⎝⎛++-≤=31133133102<<.<,x x x x x S ……………………………6分 (3)①当MN 在矩形区域滑动时,x S =,所以有10≤<S ;………7分②当MN 在三角形区域滑动时,S =x x )331(332++-. 因而,当2312+=-=a b x (米)时,S 得到最大值,NE A B C图2最大值S =a b ac 442-=)()(3343312-⨯+-=3321+(平方米). ……………9分∵13321>+, ∴ S 有最大值,最大值为3321+平方米. ……………………………10分23.(本题满分10分)解:(1)证明:在Rt △FCD 中,∵G 为DF 的中点,∴ CG =12FD .………… 1分 同理,在Rt △DEF 中, EG =12FD . ………………2分 ∴ CG =EG .…………………3分(2)(1)中结论仍然成立,即EG =CG .…………………………4分 证法一:连接AG ,过G 点作MN ⊥AD 于M ,与EF 的延长线交于N 点. 在△DAG 与△DCG 中,∵ AD =CD ,∠ADG =∠CDG ,DG =DG ,∴ △DAG ≌△DCG .∴ AG =CG .………………………5分在△DMG 与△FNG 中,∵ ∠DGM =∠FGN ,FG =DG ,∠MDG =∠NFG ,∴ △DMG ≌△FNG .∴ MG =NG在矩形AENM 中,AM =EN . ……………6分 在Rt △AMG 与Rt △ENG 中, ∵ AM =EN , MG =NG , ∴ △AMG ≌△ENG . ∴ AG =EG .∴ EG =CG . ……………………………8分证法二:延长CG 至M ,使MG =CG ,连接MF ,ME ,EC , ……………………4分在△DCG 与△FMG 中,∵FG =DG ,∠MGF =∠CGD ,MG =CG , ∴△DCG ≌△FMG .∴MF =CD ,∠FMG =∠DCG .∴MF ∥CD ∥AB .………………………5分∴EF MF ⊥.在Rt △MFE 与Rt △CBE 中,∵ MF =CB ,EF =BE , ∴△MFE ≌△CBE .∴MEF CEB ∠=∠.…………………………………………………6分 ∴∠MEC =∠MEF +∠FEC =∠CEB +∠CEF =90°. …………7分DFB 图 ①B D N 图 ②(一)B D 图 ②(二)∴ △MEC 为直角三角形. ∵ MG = CG , ∴ EG =21MC .∴ EG CG =.………………………………8分 (3)(1)中的结论仍然成立,即EG =CG .其他的结论还有:EG ⊥CG .……10分2008年山东省青岛市中考数学试题(考试时间:120分钟;满分120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功! 1.请务必在指定位置填写座号,并将密封线内的项目填写清楚.2.本试题共有24道题,其中1—7题为选择题,请将所选答案的标号,写在第7题后面给出表格的相应位置上:8—14题为填空题,请将做出的答案填写在第14题后面给出表格的相应位置上;15—24题请在试题给出的本题位置上做答. 一、选择题(本题满分21分,共有7道小题,每小题3分)下列每小题都给出标号为A ,B ,C ,D 的四个结论,其中只有一个是正确的.每小题选对得分;不选,选错或选出的标号超过一个的不得分,请将1—7各小题所选答案的标号填写在第7小题后面表格的相应位置上.1.14-的相反数等于( ) A .14 B .14- C .4D .4-2.下列图形中,轴对称图形的个数是( )A.1 B.2 C.3 D.4 3.已知1O 和2O 的半径分别为3cm 和2cm ,圆心距124O O =cm ,则两圆的位置关系是( )A .相切B .内含C .外离D .相交4.某几何体的三种视图如右图所示,则该几何体可能是( )A .圆锥体B .球体C .长方体D .圆柱体5.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有( ) A .18个 B .15个 C .12个 D .10个主视图 左视图 俯视图6.如果点11()A x y ,和点22()B x y ,是直线y kx b =-上的两点,且当12x x <时,12y y <,那么函数ky x=的图象大致是( )7.如图,把图①中的ABC △经过一定的变换得到图②中的A B C '''△,如果图①中ABC △上点P 的坐标为()a b ,,那么这个点在图②中的对应点P '的坐标为( ) A .(23)a b --,B .(32)a b --,C .(32)a b ++,D .(23)a b ++,请将1—7各小题所选答案的标号填写在下表的相应位置上:题号 1 2 3 4 5 6 7 答案二、填空题(本题满分21分,共有7道小题,每小题3分)请将8—14各小题的答案填写在第14小题后面表格的相应位置上. 8.计算:0122-+= .9.化简:293x x -=- .10.如图,在矩形ABCD 中,对角线AC BD ,相交于点O ,若60AOB ∠=,4AB =cm ,则AC 的长为 cm .11.如图,AB 是O 的直径,弦CD AB ⊥于E ,如果10AB =,8CD =,那么AE 的长为 .12.为了帮助四川地震灾区重建家园,某学校号召师生自愿捐款.第一y x O y x O y x O y x O A . C . D . 3 2 1 -1 O -2 -3 -3 -2 -1 1 2 3 x y 图① 3 21 -1 O -2 -3-3 -2 -1 1 2 3 xy 图② P A B C A ' B 'C ' P '次捐款总额为20000元,第二次捐款总额为56000元,已知第二次捐款人数是第一次的2倍,而且人均捐款额比第一次多20元.求第一次捐款的人数是多少?若设第一次捐款的人数为x ,则根据题意可列方程为 .13.某市广播电视局欲招聘播音员一名,对A B ,两名候选人进行了两项素质测试,两人的两项测试成绩如右表所示.根据实际需要,广播电视局将面试、综合知识测试的得分按3:2的比例计算两人的总成绩,那么 (填A 或B )将被录用.14.如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF 长为10cm .母线()OE OF 长为10cm .在母线OF 上的点A 处有一块爆米花残渣,且2FA =cm ,一只蚂蚁从杯口的点E 处沿圆锥表面爬行到A 点.则此蚂蚁爬行的最短距离为 cm .请将8—14各小题的答案填写在下表的相应位置上:题号 8 9 10 11 答案题号 12 13 14 答案三、作图题(本题满分6分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.如图,AB AC ,表示两条相交的公路,现要在BAC ∠的内部建一个物流中心.设计时要求该物流中心到两条公路的距离相等,且到公路交叉处A 点的距离为1000米.(1)若要以1:50000的比例尺画设计图,求物流中心到公路交叉处A 点的图上距离; (2)在图中画出物流中心的位置P .解:(1)测试项目测试成绩A B 面试 90 95 综合知识测试 85 80 AFE O 第14题图ACB (2) 1cm四、解答题(本题满分72分,共有9道小题) 16.(本小题满分6分)用配方法解一元二次方程:2220x x --=.17.(本小题满分6分)某市为调查学生的视力变化情况,从全市九年级学生中抽取了部分学生,统计了每个人连续三年视力检查的结果,并将所得数据处理后,制成折线统计图和扇形统计图如下:解答下列问题:(1)该市共抽取了多少名九年级学生?(2)若该市共有8万名九年级学生,请你估计该市九年级视力不良(4.9以下)的学生大约有多少人?(3)根据统计图提供的信息,谈谈自己的感想(不超过30字).18.(本小题满分6分)小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色.此时小刚得1分,否则小明得1分.这个游戏对双方公平吗?请说明理由.若你认为不公平,如何修改规则才能使游戏对双方公平?时间(年) 02006 2007 2008 被抽取学生视力在4.9以下 的人数变化情况统计图 A40% B30%C 20%D 10% A :4.9以下B :4.9-5.1C :5.1-5.2D :5.2以上 (每组数据只含最低值不含最高值) 被抽取学生2008年的视 力分布情况统计图19.(本小题满分6分) 在一次课题学习课上,同学们为教室窗户设计一个遮阳蓬,小明同学绘制的设计图如图所示,其中,AB 表示窗户,且2AB =米,BCD 表示直角遮阳蓬,已知当地一年中在午时的太阳光与水平线CD 的最小夹角α为18.6,最大夹角β为64.5.请你根据以上数据,帮助小明同学计算出遮阳蓬中CD 的长是多少米?(结果保留两个有效数字)(参考数据:sin18.60.32=,tan18.60.34=,sin 64.50.90=,tan 64.5 2.1=)20.(本小题满分8分)2008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A 种船票600元/张,B 种船票120元/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A ,B 两种船票共15张,要求A 种船票的数量不少于B 种船票数量的一半.若设购买A 种船票x 张,请你解答下列问题: (1)共有几种符合题意的购票方案?写出解答过程; (2)根据计算判断:哪种购票方案更省钱?21.(本小题满分8分) 已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE CG =,连接BG 并延长交DE 于F .(1)求证:BCG DCE △≌△;(2)将DCE △绕点D 顺时针旋转90得到DAE '△, 判断四边形E BGD '是什么特殊四边形?并说明理由.ABCDEF E 'G22.(本小题满分10分)某服装公司试销一种成本为每件50元的T 恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y (件)与销售单价x (元)的关系可以近似的看作一次函数(如图).(1)求y 与x 之间的函数关系式;(2)设公司获得的总利润(总利润=总销售额-总成本)为P 元,求P 与x 之间的函数关系式,并写出自变量x 的取值范围;根据题意判断:当x 取何值时,P 的值最大?最大值是多少?23.(本小题满分10分)实际问题:某学校共有18个教学班,每班的学生数都是40人.为了解学生课余时间上网情况,学校打算做一次抽样调查,如果要确保全校抽取出来的学生中至少有10人在同一班级,那么全校最少需抽取多少名学生?建立模型:为解决上面的“实际问题”,我们先建立并研究下面从口袋中摸球的数学模型: 在不透明的口袋中装有红、黄、白三种颜色的小球各20个(除颜色外完全相同),现要确保从口袋中随机摸出的小球至少有10个是同色的,则最少需摸出多少个小球? 为了找到解决问题的办法,我们可把上述问题简单化:(1)我们首先考虑最简单的情况:即要确保从口袋中摸出的小球至少有2个是同色的,则最少需摸出多少个小球?假若从袋中随机摸出3个小球,它们的颜色可能会出现多种情况,其中最不利的情况就是它们的颜色各不相同,那么只需再从袋中摸出1个小球就可确保至少有2个小球同色,即最少需摸出小球的个数是:134+=(如图①);(2)若要确保从口袋中摸出的小球至少有3个是同色的呢?我们只需在(1)的基础上,再从袋中摸出3个小球,就可确保至少有3个小球同色,即最少需摸出小球的个数是:1327+⨯=(如图②)(3)若要确保从口袋中摸出的小球至少有4个是同色的呢?我们只需在(2)的基础上,再从袋中摸出3个小球,就可确保至少有4个小球同色,即最少需摸出小球的个数是:13310+⨯=(如图③):(10)若要确保从口袋中摸出的小球至少有10个是同色的呢?我们只需在(9)的基础上,再从袋中摸出3个小球,就可确保至少有10个小球同色,即最少需摸出小球的个数是:13(101)28+⨯-=(如图⑩)60 70y (件) 红黄 红 黄白白 红 黄 白红 红 红白白白 黄 黄黄红 红红白白白 黄 黄黄 白 … 红 黄9个9个...。
2011年中考数学试题及答案(Word版)

A OBCD A B C ED 中考数学试题一、选择题(本题共32分,每小题4分)1.- 34的绝对值是【 】A .- 4 3B . 4 3C .- 3 4D . 342.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为【 】A .66.6×107B .0.666×108C .6.66×108D .6.66×107 3.下列图形中,即是中心对称又是轴对称图形的是【 】A .等边三角形B .平行四边形C .梯形D .矩形 4.如图,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O , 若AD =1,BC =3,则OAOC的值为【 】 A . 1 2 B . 1 3 C . 1 4 D . 195则这10个区县该日最高气温的人数和中位数分别是【 】A .32,32B .32,30C .30,32D .32,316.一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为【 】 A .5 18 B . 1 3 C . 2 15 D . 1157.抛物线y =x 2-6x +5的顶点坐标为【 】A .(3,-4)B .(3,4)C .(-3,-4)D .(-3,4)8.如图,在△ABC 中,∠ACB =90°,∠BAC =30°,AB =2,D 是AB 边上的一个动点(不与点A 、B 重合),过点D 作CD 的垂线交射线CA 于点E .设AD =x ,CE =y ,则下列图象中,能表示y 与x 的函数关系图象大致是【 】二、填空题(本题共16分,每小题4分)9.若分式x ―8x的值为0,则x 的值等于________. 10.分解因式:a 3―10a 2+25a =______________.11.若右图是某几何体的表面展开图,则这个几何体是__________.12.在右表中,我们把第i 行第j 列的数记为a ij (其中i ,j 都是不大于5的正整数),对于表中的每个数a ij ,规定如下:当i ≥j 时,a ij =1;当i <j 时,a ij =0.例如:当i =2,j =1时,a =a =1.按此规定,a =_____;表中的25个数中,共有_____A .B .C .D .FE x13.计算:01)2(2730cos 221π-++-⎪⎭⎫⎝⎛- .14.解不等式:4(x -1)>5x -6.15.已知a 2+2ab +b 2=0,求代数式a (a +4b )-(a +2b )(a -2b )的值.16.如图,点A 、B 、C 、D 在同一条直线上,BE ∥DF ,∠A =∠F ,AB =FD .求证:AE =FC .17.如图,在平面直角坐标系xOy 中,一次函数y =-2x 的图象与反比例函数y = kx 的图象的一个交点为A (-1,n ).(1)求反比例函数y = kx的解析式;(2)若P 是坐标轴上一点,且满足P A =OA ,直接写出点P 的坐标.18.列方程或方程组解应用题:京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的 37.小王用自驾车方式上班平均每小时行驶多少千米?A B C D19.如图,在△ABC 中,∠ACB =90°,D 是BC 的中点,DE ⊥BC ,CE ∥AD .若AC =2,CE =4,求四边形ACEB 的周长.21.以下是根据北京市国民经济和社会发展统计公报中的相关数据,绘制统计图的一部分.请根据以上信息解答下列问题:(1)2008年北京市私人轿车拥有是多少万辆(结果保留三个有效数字)? (2)补全条形统计图;(3)汽车数量增多除造成交通拥堵外,还增加了碳排放量,为了了解汽车碳排放量的情况,小明同学通过网络了解到汽车的碳排放量与汽车排量有关.如:一辆排量为1.6L 的轿车,如果一年行驶1万千米,这一年,它碳排放量约为2.7吨.于是他调查了他所居住小区的150辆私人轿车,不同排量的轿车数量如下表所示.如果按照小明的统计数据,请你通过计算估计,2010年北京市仅排量为1.6L 的这类私人轿车(假设每辆车平均一行行驶1万千米)的碳排放总量约为多少万吨? 北京市2001~2010年私人轿车拥有量的年增长率统计图 北京市2001~2010年 私人轿车拥有量统计图A E F 图3 22.阅读下面材料:小伟遇到这样一个问题:如图1,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O .若梯形ABCD 的面积为1,试求以AC 、BD 、AD +BC 的长度为三边长的三角形的面积.小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他先后尝试了翻折、旋转、平移的方法,发现通过平移可以解决这个问题.他的方法是过点D 作AC 的平行线交BC 的延长线于点E ,得到的△BDE 即是以AC 、BD 、AD +BC 的长度为三边长的三角形(如图2).参考小伟同学的思考问题的方法,解决下列问题:如图3,△ABC 的三条中线分别为AD 、BE 、CF .(1)在图3中利用图形变换画出并指明以AD 、BE 、CF的长度为三边长的一个三角形(保留画图痕迹); (2)若△ABC 的面积为1,则以AD 、BE 、CF 的长度为三边长的三角形的面积等于_______.24.(7分)在□ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F .(1)在图1中,证明:CE =CF ; (2)若∠ABC =90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数; (3)若∠ABC =120°,FG ∥CE ,FG =CE ,分别连结DB 、DG (如图3),求∠BDG 的度数.B BADADC C EE G FABC DE GF 图1图2图3BBCADOADCEO图2图1数学试卷答案及评分参考13、解:()0122730221π-++-⎪⎭⎫⎝⎛- cos=1332322++⨯- =13332++- =332+.14、解:去括号,得6544->-x x移项, 得6454->-x x合并, 得2->-x 解得 2<x所以原不等式的解集是2<x . 15、解:()()()b a b a b a a 224-+-+ =()22244b a ab a --+ =244b ab +∵0222=++b ab a ∴0=+b a∴原式=()b a b +4=0. 16、证明:∵BE ∥DF , ∴∠ABE=∠D .在△ABE 和△FDC 中,∴△ABE ≌△FDC . ∴AE =FC .17、解(1)∵A (-1,n )在一次函数x y 2-=∴n =2-×(1-)=2.∴点A 的坐标为(-1,2).∵点A 在反比例函数xky =的图象上,∴2-=k .∴反比例函数的解析式为xy 2-=. ∠ABE=∠D AB=FD∠A=∠F18、解:设小王用自驾车方式上班平均每小时行使x 千米. 依题意,得xx 18739218⨯=+ 解得 27=x .经检验,27=x 是原方程的解,且符合题意. 答;小王用自驾车方式上班平均每小时行使27千米. 四、解答题19、解:∵∠ACB=90°,DE ⊥BC , ∴AC ∥DE .又∵CE ∥AD ,∴四边形ACED 的是平行四边形. ∴DE=AC=2.在Rt △CDE 中,由勾股定理得3222=-=DE CE CD . ∵D 是BC 的中点, ∴BC=2CD=34.在Rt △ABC 中,由勾股定理得13222=+=BC AC AB . ∵D 是BC 的中点,DE ⊥BC , ∴EB=EC=4.∴四边形ACEB 的周长= AC+CE+EB+BA=10+132. 21、解(1)146×(1+19%) =173.74≈174(万辆).∴2008年北京市私人轿车拥有量约是174万辆.(2)如右图. (3)276×15075×2.7=372.6(万吨) 估计2010年北京市仅排量为1.6L的这类私人轿车的碳排放总量约为372.6万吨.22、解:△BDE 的面积等于1 . (1)如图.以AD 、BE 、CF 的长度为三边长的一个三角形是 △CFP . (2)以AD 、BE 、CF 的长度为三边长的三角形的面积等于43. . 24、(1)证明:如图1. ∵AF 平分∠BAD , ∴∠BAF=∠DAF .∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD .∴∠DAF=∠CEF ,∠BAF=∠F .E∴CE =CF .(2)∠BDG =45°.(3)分别连结GB 、GE 、GC (如图2) ∵AB ∥DC ,∠ABC =120°, ∴∠ECF=∠ABC=120°.∵FG ∥CE 且FG =CE ,∴四边形CEGF 是平行四边形. 由(1)得CE =CF , ∴□CEGF 是菱形.∴EG =EC ,∠GCF=∠GCE=21∠ECF= 60°.∴△ECG 是等边三角形.∴EG =CG , ① ∠GEC=∠EGC=60°. ∴∠GEC=∠GCF .∴∠BEG=∠DCG . ②由AD ∥BC 及AF 平分∠BAD 可得∠BAE =∠AEB . ∴AB=BE .在□ABCD 中,AB=DC . ∴BE=DC . ③ 由①②③得△BEG ≌△DCG . ∴BG=DG ,∠1=∠2.∴∠BGD=∠1+∠3=∠2+∠3=∠EGC=60°. ∴∠BDG=2180BGD∠- =60°.图2。
2011山东聊城中考数学试题.doc

12abc 山东省聊城市2011年中考数学试题一、选择题(本大题共12小题,每小题3分,满分36分)1.-3的绝对值是( )A .-3B .3C . 1 3D .- 132.如图,空心圆柱的左视图是( )3.今年5月,我市第六次人口普查办公室发布了全市常住人口为578.99万人,用科学记数法可表示(保留2个有效数字)为( )A .58×105人B .5.8×105人C .5.8×106人D .0.58×107人 4.如图,已知a ∥b ,∠1=50º,则∠2=( ) A .40º B .50º C .120º D .130º 5.下列运算不正确的是( ) A .a 5+a 5=2a 5 B .(-2a 2)3=-2a 6 C .2a 2·a -1=2a D .(2a 3-a 2)÷a 2=2a -1 6.下列事件属于必然事件的是( ) A .在1个标准大气压下,水加热到100ºC 沸腾 B .明天我市最高气温为56ºC C .中秋节晚上能看到月亮 D .下雨后有彩虹7.已知一个菱形的周长是20cm ,两条对角线的比为4∶3,则这个菱形的面积是( ) A .12cm 2 B .24cm 2 C .48cm 2 D .96cm 2 8.某小区20户家庭的日用电量(单位:千瓦时)统计如下:日用电量(单位:千瓦时)4567810户数1 3 6 5 4 1这20户家庭日用电量的众数、中位数分别是( )A .6,6.5B .6,7C .6,7.5D .7,7.59.下列四个图象表示的函数中,当x <0时,函数值y 随自变量x 的增大而减小的是( )10.如图,用围棋子按下面的规律摆图形,则摆第n 个图形需要围棋子的枚数为( ) A .5nB .5n -1C .6n -1D .2n 2+111.如图,矩形OABC 的顶点O 是坐标原点,边OA 在x 轴上,边OC 在y 轴上.若矩形OA 1B 1C 1与矩形OABC 关于点O 位似,且矩形OA 1B 1C 1的面积等于矩形OABCx x x x yyyyO O O O A .B .C .D .A .B .C .D . n =1 n =2 n =3 …AB O A B α O A BC y x46 面积的14,则点B 1的坐标是( )A .(3,2)B .(-2,-3)C .(2,3)或(-2,-3)D .(3,2)或(-3,-2) 12.某公园草坪的防护栏由100段形状相同的抛物线形构件组成,为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m (如图),则这条防护栏需要不锈钢支柱的总长度至少为( )A .50mB .100mC .160mD .200m二、填空题(本大题共5小题,每小题3分,满分15分)13.化简:20-5= .14.如图,在□ABCD 中,AC 、BD 相交于点O ,点E 是AB 的中点.若OE =3cm ,则AD 的长是 cm .15.化简: a 2-b 2 a 2+2ab +b 2÷ 2a -2ba +b= . 16.如图,圆锥的底面半径OB =10cm ,它的侧面展开图的扇形的半径AB =30cm ,则这个扇形圆心角α的度数是 .17.某校举行物理实验操作测试,共准备了三项不同的实验,要求每位学生只参加其中的一项实验,由学生自己抽签确定做哪项实验.在这次测试中,小亮和大刚恰好做同一项实验的概率是 .三、解答题(本大题共8小题,满分69分)18.(7分)解方程:x (x -2)+x -2=0.19.(8分)今年“世界水日”的主题是“城市用水:应对都市化挑战”.为了解城市居民用水量的情况,小亮随机抽查了阳光小区50户居民去年每户每月的用水量,将得到的数据整理并绘制了这50户居民去年每月总用水量的折线统计图和频数、频率分布表如下: (1)表中a = ,d = .(2)这50户居民每月总用水量超过550m 3的月份占全年月份的百分率是多少(精确到1%)? (3)请根据折线统计图提供的数据,估计该小区去年每户居民平均月用水量是多少?组别频数 频率350<x ≤400 1112400<x ≤450 1 112450<x ≤500 216500<x ≤550 a b 550<x ≤600 cd 600<x ≤650 1 112650<x ≤700 216x 表示50户居民月总用水量(m 3) 月份1 2 3 4 5 6 7 8 9 10 11 12 月总用水量(m 3) O350 400 450 500 550 600 650 700 378648489 456345550 574423689 536669600 A EBCDO20.5 0.4 单位:mA P C O BED 20.(8分)将两块大小相同的含30º角的直角三角板(∠BAC =∠B 1A 1C =30º)按图1的方式放置,固定三角板A 1B 1C ,然后将三角板ABC 绕直角顶点C 顺时针方向旋转(旋转角小于90º)至图2所示的位置,AB 与A 1C 交于点E ,AC 与A 1B 1交于点F ,AB 与A 1B 1交于点O . (1)求证:△BCE ≌△B 1CF ; (2)当旋转角等于30º时,AB 与A 1B 1垂直吗?请说明理由.21.(8分)被誉为东昌三宝之首的铁塔,始建于北宋时期,是我市现存的最古老的建筑.铁塔由塔身和塔座两部分组成.为了测得铁塔的高度,小莹利用自制的测角仪,在C 点测得塔顶E 的仰角为45º,在D 点测得塔顶E 的仰角为60º.已知测角仪AC 的高为1.6m ,CD 的长为6m ,CD 所在的水平线CG ⊥EF 于点G .求铁塔EF 的高(精确到0.1m ).22.(8分)徒骇河风景区建设是今年我市重点工程之一.某工程公司承担了一段河底清淤任务,需清淤4万方,清淤1万方后,该公司为提高施工进度,又新增一批工程机械参与施工,工效提高到原来的2倍,共用25天完成任务.问该工程公司新增工程机械后每天清淤多少方?23.(8分)如图,AB 是半圆的直径,点O 是圆心,点C 是OA 的中点,CD ⊥OA 交半圆于点D ,点E 是BD⌒的中点,连接AE 、OD ,过点D 作DP ∥AE 交BA 的延长线于点P .(1)求∠AOD 的度数;(2)求证:PD 是半圆O 的切线.24.(10分)如图,已知一次函数y =kx +b 的图象交反比例函数42(0)my x x-=>的图象于点A 、B ,交x轴于点C .(1)求m 的取值范围;(2)若点A 的坐标是(2,-4),且BC AB = 13,求m 的值和一次函数的解析式.CBB 1A (A 1)A 1AEFC BB 1图1图2A B F C D GE45º 60º25.(12分)如图,在矩形ABCD 中,AB =12cm ,BC =8cm .点E 、F 、G 分别从点A 、B 、C 同时出发,沿矩形的边按逆时针方向移动,点E 、G 的速度均为2cm/s ,点F 的速度为4cm/s ,当点F 追上点G (即点F 与点G 重合)时,三个点随之停止移动.设移动开始后第t s 时,△EFG 的面积为S cm 2. (1)当t =1s 时,S 的值是多少?(2)写出S 与t 之间的函数解析式,并指出自变量t 的取值范围;(3)若点F 在矩形的边BC 上移动,当t 为何值时,以点B 、E 、F 为顶点的三角形与以C 、F 、G 为顶点的三角形相似?请说明理由。
山东聊城中考数学试题.doc

12abc O A B C y x4 6 山东省聊城市2011年中考数学试题一、选择题(本大题共12小题,每小题3分,满分36分)1.-3的绝对值是( )A .-3B .3C . 1 3D .- 132.如图,空心圆柱的左视图是( )错误!未指定书签。
3.今年5月,我市第六次人口普查办公室发布了全市常住人口为578.99万人,用科学记数法可表示(保留2个有效数字)为( )A .58×105人B .5.8×105人C .5.8×106人D .0.58×107人 4.如图,已知a ∥b ,∠1=50º,则∠2=( ) A .40º B .50º C .120º D .130º 5.下列运算不正确的是( ) A .a 5+a 5=2a 5 B .(-2a 2)3=-2a 6 C .2a 2·a -1=2a D .(2a 3-a 2)÷a 2=2a -1 6.下列事件属于必然事件的是( ) A .在1个标准大气压下,水加热到100ºC 沸腾 B .明天我市最高气温为56ºC C .中秋节晚上能看到月亮 D .下雨后有彩虹7.已知一个菱形的周长是20cm ,两条对角线的比为4∶3,则这个菱形的面积是( ) A .12cm 2 B .24cm 2 C .48cm 2 D .96cm 2 8.某小区20户家庭的日用电量(单位:千瓦时)统计如下:日用电量(单位:千瓦时)4567810户数1 3 6 5 4 1这20户家庭日用电量的众数、中位数分别是( )A .6,6.5B .6,7C .6,7.5D .7,7.59.下列四个图象表示的函数中,当x <0时,函数值y 随自变量x 的增大而减小的是( ) 错误!未指定书签。
10.如图,用围棋子按下面的规律摆图形,则摆第n 个图形需要围棋子的枚数为( ) A .5nB .5n -1C .6n -1D .2n 2+111.如图,矩形OABC 的顶点O 是坐标原点,边OA 在x 轴上,边OC 在y 轴上.若矩形OA 1B 1C 1与矩形OABC 关于点O 位似,且矩形OA 1B 1C 1的面积等于矩形OABC面积的 14,则点B 1的坐标是( )A .(3,2)B .(-2,-3)C .(2,3)或(-2,-3)D .(3,2)或(-3,-2) 12.某公园草坪的防护栏由100段形状相同的抛物线形构件组成,为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m (如图),则这条防护栏需要不锈钢支柱的总长度至少为( )A .50mB .100mC .160mD .200m二、填空题(本大题共5小题,每小题3分,满分15分)A D 20.5 0.4 单位:m n =1 n =2 n =3 …A P C O BED AB O A B α 13.化简:20-5= .14.如图,在□ABCD 中,AC 、BD 相交于点O ,点E 是AB 的中点.若OE =3cm ,则AD 的长是 cm .15.化简: a2-b2 a2+2ab +b2 ÷ 2a -2ba +b= .16.如图,圆锥的底面半径OB =10cm ,它的侧面展开图的扇形的半径AB =30cm ,则这个扇形圆心角α的度数是 .17.某校举行物理实验操作测试,共准备了三项不同的实验,要求每位学生只参加其中的一项实验,由学生自己抽签确定做哪项实验.在这次测试中,小亮和大刚恰好做同一项实验的概率是 .三、解答题(本大题共8小题,满分69分)18.(7分)解方程:x (x -2)+x -2=0.19.(8分)今年“世界水日”的主题是“城市用水:应对都市化挑战”.为了解城市居民用水量的情况,小亮随机抽查了阳光小区50户居民去年每户每月的用水量,将得到的数据整理并绘制了这50户居民去年每月总用水量的折线统计图和频数、频率分布表如下: (1)表中a = ,d = .(2)这50户居民每月总用水量超过550m 3的月份占全年月份的百分率是多少(精确到1%)? (3)请根据折线统计图提供的数据,估计该小区去年每户居民平均月用水量是多少? 错误!未指定书签。
山东省聊城市中考数学真题试题(含解析)

一、选择题(共12小题,每小题3分,满分36分) 1. ( 3分)(2015?聊城)-丄的绝对值等于()3考平行线的判定与性质.• 占: 八、、♦分 根据同位角相等,两直线平行这一定理可知 a // b ,再根据两直线平行,同旁内角互补析:即可解答.解 解:•••/ 仁/ 2=58°, 答:••• a / b ,•••/ 3+Z 5=180°,即/5=180°—/ 3=180°- 70° =110°,•••/ 4=/ 5=110°, 故选C.A . -3 B. 3 C.—D.1考 绝对值..占:分 根据当a 是负有理数时,a 的绝对值是它的相反数-a 可得答案.析:解 解:-丄的绝对值等于J1,答:33故选D.占 八本题主要考查了绝对值,关键是掌握①当 a 是正有理数时, a 的绝对值是它本身 a ; 评: 当a 是负有理数时,a 的绝对值是它的相反数- a ;③当a 是零时, a 的绝对”值是零2.( 3分)(2015?聊城)直线a 、b 、c 、d 的位置如图所示,如果/ 1=58°, / 2=58°, / 3=70° 那么/4等于( )②C. 110D. 116点本题主要考查了平行线的判定和性质,对顶角相等,熟记定理是解题的关键.评:3. (3分)(2015?聊城)电视剧《铁血将军》在我市拍摄,该剧展示了抗日英雄范筑先的光辉形象•某校为了了解学生对“民族英雄范筑先”的知晓情况,从全校2400名学生中随机抽取了100名学生进行调查•在这次调查中,样本是()A. 2400名学生B. 100名学生C. 所抽取的100名学生对“民族英雄范筑先”的知晓情况D. 每一名学生对“民族英雄范筑先”的知晓情况考点:总体、个体、样本、样本容量.分析:首先判断出这次调查的总体是什么,然后根据样本的含义:从总体中取出的一部分个体叫做这个总体的一个样本,可得在这次调查中,样本是所抽取的100名学生对“民族英雄范筑先”的知晓情况,据此解答即可.解答:解:根据总体、样本的含义,可得在这次调查中,总体是:2400名学生对“民族英雄范筑先”的知晓情况,样本是:所抽取的100名学生对“民族英雄范筑先”的知晓情况.故选:C.点评:此题主要考查了总体、个体、样本、样本容量的含义和应用,要熟练掌握,解答此题的关键是要明确:①总体:我们把所要考察的对象的全体叫做总体;②个体:把组成总体的每一个考察对象叫做个体;③样本:从总体中取出的一部分个体叫做这个总体的一个样本;④样本容量:一个样本包括的个体数量叫做样本容量.4. (3分)(2015?聊城)某几何体的三视图如图所示,这个几何体是()A. 圆锥B.圆柱C.三棱柱D.三棱锥考由三视图判断几何体.•占:八、、♦分由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状. 析:解解:由主视图和左视图为三角形判断出是锥体,答:由俯视图是圆形可判断出这个几何体应该是圆锥.故选:A.点考查了由三视图判断几何体,主视图和左视图的大致轮廓为三角形的几何体为锥体, 评:俯视图为圆就是圆锥.5. (3分)(2015?聊城)下列运算正确的是()2 3 5 3、 2 6A. a +a =aB. ( - a )=aC. ab2?3a2b=3a2b2D. - 2a6-a2=- 2a3考点:单项式乘单项式;合并同类项;幕的乘方与积的乘方;整式的除法. 分析:根据合并同类项法则、幕的乘方、单项式乘除法的运算方法,利用排除法求解. 解答:解:A a2与a3不是同类项,不能合并,故本选项错误;B、(- a3)2=a6,正确;C、应为ab2?3a2b=3a3b3,故本选项错误;D、应为-2a6+a2=- 2a4,故本选项错误.故选:B.点评:本题主要考查了合并同类项的法则,幕的乘方的性质,单项式的乘除法法则,熟练掌握运算法则是解题的关键.6. (3分)(2015?聊城)不等式x-3W 3x+1的解集在数轴上表示如下,其中正确的是()考在数轴上表示不等式的解集;解一元一次不等式.占:八、、♦分不等式移项,再两边同时除以2,即可求解.析:解答.解:不等式得:x>- 2,其数轴上表示为:-故选B点本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号评:这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.7. (3分)(2015?聊城)下列命题中的真命题是()A. 两边和一角分别相等的两个三角形全等B. 相似三角形的面积比等于相似比C. 正方形不是中心对称图形D. 圆内接四边形的对角互补考点:命题与定理.•分析:直接根据全等三角形的判定定理、相似三角形的性质、中心对称图形的定义以及圆内接四边形的性质对各个选项作出判断即可.解答:解:A、两边和一角分别相等的两个三角形全等,这个角不一定是已知两边的夹角,此选项错误;B、相似三角形的面积比等于相似比的平方,此选项错误;C、正方形是中心对称图形,此选项错误;D圆内接四边形的对角互补,此选项正确;故选D.点评:本题主要考查了命题与定理的知识,解答本题的关键是熟练掌握全等三角形的判定、相似三角形的性质、中心对称图形的定义以及圆内接四边形的性质,此题难度不大.& ( 3分)(2015?聊城)为了了解一路段车辆行驶速度的情况,交警统计了该路段上午7::0至9:00来往车辆的车速(单位:千米/时),并绘制成如图所示的条形统计图.这些车速的众数、中位数分别是()A. 众数是80千米/时,中位数是60千米/时B. 众数是70千米/时,中位数是70千米/时C. 众数是60千米/时,中位数是60千米/时D. 众数是70千米/时,中位数是60千米/时考点:众数;条形统计图;中位数.分析:在这些车速中,70千米/时的车辆数最多,则众数为70千米/时;处在正中间位置的车速是60千米/时,则中位数为60千米/时•依此即可求解.解答:解:70千米/时是出现次数最多的,故众数是70千米/时,这组数据从小到大的顺序排列,处于正中间位置的数是60千米/时,故中位数是60千米/时.故选:D.点评:本题考查了条形统计图;属于基础题,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.9. (3分)(2015?聊城)图(1)是一个小正方体的表面展开图,小正方体从图(2)所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上一面的字是()A. 梦B.水C.城D.美考专题:正方体相对两个面上的文字.占:八、、♦分根据两个面相隔一个面是对面,再根据翻转的规律,可得答案.析:解解:第一次翻转梦在下面,第二次翻转中在下面,第三次翻转国在下面,第四次翻转答:城在下面,城与梦相对,故选:A.点本题考查了正方体相对两个面上的文字,两个面相隔一个面是对面,注意翻转的顺序评:确定每次翻转时下面是解题关键.10. (3分)(2015?聊城)湖南路大桥于今年5月1日竣工,为徒骇河景区增添了一道亮丽的风景线.某校数学兴趣小组用测量仪器测量该大桥的桥塔高度,在距桥塔AB底部50米的C处,测得桥塔顶部A的仰角为41.5。
山东省十三地市2011年中考数学试卷汇编(共8份有详解)-1

2011年山东省菏泽市中考数学试卷—解析版一、选择题(下列各题的四个选项中,只有一顶符合题意,每小题4分,共32分)1、﹣的倒数是()A、B、C、﹣D、﹣考点:倒数。
分析:根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:∵﹣×()=1,,∴﹣的倒数是.故选D.点评:此题主要考查了倒数的定义,需要掌握并熟练运用.2、(2011•菏泽)为了加快3G网络建设,我市电信运营企业将根据各自发展规划,今年预计完成3G投资2800万元左右,将2800万元用科学记数法表示为多少元时,下列记法正确的是()A、2.8×103B、2.8×106C、2.8×107D、2.8×108考点:科学记数法—表示较大的数。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将2800万元用科学记数法表示为2.8×107元.故选C.点评:本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、(2010•枣庄)将一副三角板按图中方式叠放,则角α等于()A、30°B、45°C、60°D、75°考点:三角形的外角性质;平行线的性质。
专题:计算题。
分析:利用两直线平行,内错角相等和三角形的一个外角等于与它不相邻的两个内角的和计算.解答:解:如图,根据两直线平行,内错角相等,∴∠1=45°,根据三角形的一个外角等于与它不相邻的两个内角的和,∴∠α=∠1+30°=75°.故选D.点评:本题利用了两直线平行,内错角相等和三角形的一个外角等于与它不相邻的两个内角的和.4、(2011•菏泽)实数a在数轴上的位置如图所示,则化简后为()A、7B、﹣7C、2a﹣15D、无法确定考点:二次根式的性质与化简;实数与数轴。
2011山东聊城中考数学及答案

2011年山东省聊城市初中学业水平统一考试数学试题亲爱的同学,伴随着考试的开始,你又走到了一个新的人生驿站.请你在答题之前,一定要仔细阅读以下说明:1..试题由第Ⅰ卷和第Ⅱ卷组成,共6页,第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分,共120分,考试时间为120分钟.2..答第Ⅰ卷前,请将姓名、考试号、考试科目填涂在答题卡上,每题选出答案后,都必须用2B铅笔把答题卡上赌赢题目的答案标号(ABCD)涂黑.如需改动,必须用橡皮擦干净,再改涂其他答案.3..将第Ⅱ卷试题的答案直接写在答卷上,考试结束,将答题卡、答卷和试题一并交回.4..可以使用计算器.愿你放松心情,认真审题,慎密思考,细心演算,交一份满意的答卷.第Ⅰ卷(选择题共36分)一、选择题(本题共12个小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)1.(2011山东聊城,1,3分)-3的绝对值是()A.-3 B.3 C.13D.13【答案】B2.(2011山东聊城,2,3分)如图,空心圆柱的左视图是()【答案】C3.(2011山东聊城,3,3分)今年5月,我市第六次人口普查办公室发布了全市常住人口为578.99万人,用科学记数法(保留2个有效数字)可以表示为()A.58×105人B.5.8×105人C. 5.8×106人D.0.58×107人【答案】C4.(2011山东聊城,4,3分)如图,已知a∥b,∠1=50°,则∠2的度数是()A.40°B.50°C.120°D.130°【答案】D5. (2011山东聊城,5,3分)下列运算不正确的是( )A .5552a a a +=B .()32622aa -=- C .2122a a a -⋅= D .()322221a a a a -÷=- 【答案】B6. (2011山东聊城,6,3分)下列事件属于必然事件的是( )A .在1个标准大气压下,水加热到100℃沸腾;B .明天我市最高气温为56℃;C .中秋节晚上能看到月亮D .下雨后有彩虹【答案】A7. (2011山东聊城,7,3分)已知一个菱形的周长是20cm ,两条对角线的比是4∶3,则这个菱形的面积是( )A .12cm 2B . 24cm 2C . 48cm 2D . 96cm 2【答案】B8. (这 A . 6,6.5 B . 6,7 C . 6,7.5 D . 7,7.5【答案】A9. (2011山东聊城,9,3分)下列四个函数图象中,当x<0时,函数值y 随自变量x的增大而减小的是( )【答案】D10. (2011山东聊城,10,3分)如图,用围棋子按下面的规律摆图形,则摆第n 个图形需要围棋子的枚数是( )A.5n B.5n-1 C.6n-1 D.2n2+1【答案】C11.(2011山东聊城,11,3分)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的14,那么点B′的坐标是()A.(3,2)B.(-2,-3)C.(2,3)或(-2,-3)D.(3,2)或(-3,-2)【答案】D12.(2011山东聊城,12,3分)某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A.50m B.100mC.160m D.200m【答案】C第Ⅱ卷(非选择题共84分)二、填空题(本题共5个小题,每小题3分,共15分,只要求填写最后结果)13.(2011山东聊城,13,3_____________.【答案】514.(2011山东聊城,14,3分)如图,在□ABCD中,AC、BD相交于点O,点E是AB 的中点,OE=3cm,则AD的长是__________cm.【答案】615. (2011山东聊城,15,3分)化简:2222222a b a b a ab b a b--÷+++=__________________. 【答案】21 16. (2011山东聊城,16,3分)如图,圆锥的底面半径OB 为10cm ,它的展开图扇形的半径AB 为30cm ,则这个扇形的圆心角a 的度数为____________.【答案】120°17. (2011山东聊城,17,3分)某学校举行物理实验操作测试,共准备了三项不同的实验,要求每位学生只参加其中的一项实验,由学生自己抽签确定做哪项试验.在这次测试中,小亮和大刚恰好做同一项实验的概率是______________. 【答案】31 三、解答题(本题共8个小题,共69分,解答题应写出文字说明、证明过程或推演步骤)18.(2011山东聊城,18,7分)解方程:()220x x x -+-=【答案】(x -2)(x +1)=0,解得x =2或x =-119.(2011山东聊城,19,8分)今年“世界水日”的主题是“城市用水:应对都市化挑战”.为了解城市居民用水量的情况,小亮随机抽查了阳光小区50户居民去年每户每月的用水量,将得到的数据整理并绘制了这50户居民去年每月总用水量的折线图和频数、频率分布表如下:注:x 表示50户居民月总用水量(m)(1)表中的a =________;d =___________.(2)这50户居民每月总用水量超过550m3的月份占全年月份的百分率是多少(精确到1%)?(3)请根据折线统计图提供的数据,估计该小区去年每户居民平均月用水量是多少?【答案】(1)3,61;(2)这50户居民月总用水量超过550m 3的月份有5个,占全年月份的百分率为(5÷12)×100%=42%(3)(378+641+456+543+550+667+693+600+574+526+423)÷50÷12=109m 320.(2011山东聊城,20,8分)将两块大小相同的含30°角的直角三角板(∠BAC =∠B ′A ′C=30°)按图①方式放置,固定三角板A ′B ′C ,然后将三角板ABC 绕直角顶点C 顺时针方向旋转(旋转角小于90°)至图②所示的位置,AB 与A ′C 交于点E ,AC 与A ′B ′交于点F ,AB 与A ′B ′相交于点O .(1)求证:△BCE ≌△B ′CF ;(2)当旋转角等于30°时,AB 与A ′B ′垂直吗?请说明理由.【答案】(1)因∠B =∠B /,BC =B /C ,∠BCE =∠B /CF ,所以△BCE ≌△B ′CF ;(2)AB 与A ′B ′垂直,理由如下:旋转角等于30°,即∠ECF =30°,所以∠FCB /=60°,又∠B =∠B /=60°,根据四边形的内角和可知∠BOB /的度数为360°-60°-60°-150°=90°,所以AB 与A ′B ′垂直21.(2011山东聊城,21,8分)被誉为东昌三宝之首的铁塔,始建于北宋时期,是我市现存的最古老的建筑,铁塔由塔身和塔座两部分组成(如图①).为了测得铁塔的高度,小莹利用自制的测角仪,在C 点测得塔顶E 的仰角为45°,在D 点测得塔顶E 的仰角为60°,已知测角仪AC 的高为1.6米,CD 的长为6米,CD 所在的水平线C G ⊥EF 于点G (如图②),求铁塔EF 的高(结果精确到0.1米).【答案】设E G =x 米,在Rt △CE G 中,∵∠EC G =45°,∴∠CE G =45°,∴∠EC G =∠CE G ,∴C G =E G ,=x 米,在Rt △DE G 中,∠ED G =60°,t an ∠EDB =DG EG ,∴D G =360tan x x =,∵C G -D G =CD =6, ∴3x x -=6,解得x =9+33,∴EF =E G +F G =9+33+16≈158,所以铁塔高约为158米22.(2011山东聊城,22,8分)徒骇河风景区建设是今年我市重点工程之一,某工程公司承担了一段河底清淤任务,需清淤4万方,清淤1万方后,该公司为提高施工进度,又新增一批工程机械参与施工,工效提高到原来的2倍,共用25天完成任务,问该工程公司新增工程机械后每天清淤多少方?【答案】设新增机械后每天清淤x 万方,依题意有:2514211=-+x x ,解得x =0.2,检验可知x =0.2是方程的根,所以该工程新增工程机械后每天清淤2000方23.(2011山东聊城,23,8分)如图,AB 是半圆的直径,点O 是圆心,点C 是OA 的中点,CD ⊥OA 交半圆于点D ,点E 是 BD的中点,连接OD 、AE ,过点D 作D P ∥AE 交BA 的延长线于点P ,(1)求∠AOD 的度数;(2)求证:P D 是半圆O 的切线;【答案】(1)∵点C 是OA 的中点,∴OC =21OA =21OD ,∵CD ⊥OA ,∴∠OCD =90°,在Rt △OCD 中,cos ∠COD =21=OD OC ,∴∠COD =60°,即∠AOD =60°, (2)证明:连接OC ,点E 是BD 弧的中点,DE 弧=BE 弧,∴∠BOE =∠DOE =21∠DOB =21 (180°-∠COD )=60°,∵OA =OE ,∴∠EAO =∠AEO ,又∠EAO +∠AEO =∠EOB =60°,∴∠EAO =30°,∵P D ∥AE ,∴∠P =∠EAO =30°,由(1)知∠AOD =60°,∴∠P DO =180°-(∠P +∠P OD )=180°-(30°+60°)=90°,∴P D 是圆O 的切线24.(2011山东聊城,24,10分)如图,已知一次函数y =kx +b 的图象交反比例函数42m y x-=(x>0)图象于点A 、B ,交x 轴于点C . (1)求m 的取值范围; (2)若点A 的坐标是(2,-4),且13BC AB =,求m 的值和一次函数的解析式;【答案】(1)因反比例函数的图象在第四象限,所以4-2m <0,解得m >2;(2)因点A (2,-4)在反比例函数图象上,所以-4=224m -,解得m =6,过点A 、B 分别作A M ⊥OC 于点M ,B N ⊥OC 于点N ,所以∠B N C =∠A M C =90°,又因为∠BC N =∠A M C ,所以△BC N ∽△AC M ,所以AC BC AM BN =,因为31=AB BC ,所以41=AC BC ,即41=AM BN ,因为A M =4,所以B N =1,所以点B 的纵坐标为-1,因为点B 在反比例函数的图象上,所以当y =-1时,x =8,所以点B 的坐标为(8,-1),因为一次函数y =kx +b 的图象过点A (2,-4),B (8,-1),所以⎩⎨⎧-=+-=+1842b k b k ,解得⎪⎩⎪⎨⎧-==521b k ,所以一次函数的解析式为y =21x -525.(2011山东聊城,25,12分)如图,在矩形ABCD 中,AB =12cm ,BC =8cm ,点E 、F 、G 分别从点A 、B 、C 三点同时出发,沿矩形的边按逆时针方向移动,点E 、G 的速度均为2cm/s ,点F 的速度为4cm/s ,当点F 追上点G (即点F 与点G 重合)时,三个点随之停止移动.设移动开始后第t 秒时,△EF G 的面积为S (cm2).(1)当t =1秒时,S 的值是多少?(2)写出S 和t 之间的函数解析式,并指出自变量t 的取值范围.(3)若点F 在矩形的边BC 上移动,当t 为何值时,以点E 、B 、F 为顶点的三角形与以F 、C 、G 为顶点的三角形相似?请说明理由.【答案】(1)如图甲,当t =1秒时,AE =2,EB =10,BF =4,FC =4,C G =2,由S =S 梯形E G C G -S EBF -S FC G =21(10+2)×8-21×10×4-21×4×2=24(2)如图(甲),当0≤t ≤2时,点E 、F 、G 分别在AB 、BC 、CD 上移动,此时AE =2t ,EB =12-2t ,BF =4t ,FC =8-4t ,S =8t 2-32t +48(0≤t≤2)(3)如图乙,当点F 追上点G 时,4t =2t =8,解得t =4,当2<t≤4时,CF =4t -8,C G =2t ,F G =C G -CF =8-2t ,即S =-8t +32(2<t≤4),(3)如图(甲),当点F 在矩形的边BC 上移动时,0≤t≤2,在EFF 和FC G 中,B =C=90,,①若CG BF FC EB =,即t t t t 2448212=--,解得t =32,又t =32满足0≤t≤2,所以当t =32时△EBF ∽△G CF ②若CF BF GC EB =,即t t t t 4842212-=-,解得t =23,又t =23满足0≤t≤2,所以当t =23时△EBF ∽△G CF ,综上知,当t =32或23时,以点E 、B 、F 为顶点的三角形与以F 、C 、G 为顶点的三角形相似。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12a bc 2011年山东省聊城市中考数学试题一、选择题(本大题共12小题,每小题3分,满分36分)1.-3的绝对值是( )A .-3B .3C . 1 3D .- 132.如图,空心圆柱的左视图是( )3.今年5月,我市第六次人口普查办公室发布了全市常住人口为578.99万人,用科学记数法可表示(保留2个有效数字)为( )A .58×105人B .5.8×105人C .5.8×106人D .0.58×107人4.如图,已知a ∥b ,∠1=50º,则∠2=( ) A .40º B .50º C .120º D .130º 5.下列运算不正确的是( )A .a 5+a 5=2a 5B .(-2a 2)3=-2a 6C .2a 2·a -1=2a D .(2a 3-a 2)÷a 2=2a -1 6.下列事件属于必然事件的是( ) A .在1个标准大气压下,水加热到100ºC 沸腾 B .明天我市最高气温为56ºC C .中秋节晚上能看到月亮 D .下雨后有彩虹 7.已知一个菱形的周长是20cm ,两条对角线的比为4∶3,则这个菱形的面积是( ) A .12cm 2 B .24cm 2 C .48cm 2 D .96cm 2 8.某小区20户家庭的日用电量(单位:千瓦时)统计如下:日用电量(单位:千瓦时)4567810 户数1 3 6 5 41这20户家庭日用电量的众数、中位数分别是( )A .6,6.5B .6,7C .6,7.5D .7,7.59.下列四个图象表示的函数中,当x <0时,函数值y随自变量x 的增大而减小的是()10.如图,用围棋子按下面的规律摆图形,则摆第n个图形需要围棋子的枚数为( ) A .5n B .5n -1x x x x yyyyO O O O A .B .C .D .A .B .C .D .n =1n =2n =3…A B OABαO A B C y x4 6 C .6n -1D .2n 2+111.如图,矩形OABC 的顶点O 是坐标原点,边OA 在x 轴上,边OC 在y 轴上.若矩形OA 1B 1C 1与矩形OABC 关于点O 位似,且矩形OA 1B 1C 1的面积等于矩形OABC面积的 14,则点B 1的坐标是( )A .(3,2)B .(-2,-3)C .(2,3)或(-2,-3)D .(3,2)或(-3,-2)12.某公园草坪的防护栏由100段形状相同的抛物线形构件组成,为了牢固起见,每段护栏需要间距0.4m 加设一根不锈钢的支柱,防护栏的最高点距底部0.5m (如图),则这条防护栏需要不锈钢支柱的总长度至少为( ) A .50m B .100m C .160m D .200m二、填空题(本大题共5小题,每小题3分,满分15分)13.化简:20-5= .14.如图,在□ABCD 中,AC 、BD 相交于点O ,点E 是AB 的中点.若OE =3cm ,则AD 的长是 cm .15.化简: a 2-b 2a 2+2ab +b 2 ÷2a -2ba +b = . 16.如图,圆锥的底面半径OB =10cm ,它的侧面展开图的扇形的半径AB =30cm ,则这个扇形圆心角α的度数是 .17.某校举行物理实验操作测试,共准备了三项不同的实验,要求每位学生只参加其中的一项实验,由学生自己抽签确定做哪项实验.在这次测试中,小亮和大刚恰好做同一项实验的概率是 .三、解答题(本大题共8小题,满分69分)18.(7分)解方程:x (x -2)+x -2=0.19.(8分)今年“世界水日”的主题是“城市用水:应对都市化挑战”.为了解城市居民用水量的情况,小亮随机抽查了阳光小区50户居民去年每户每月的用水量,将得到的数据整理并绘制了这50户居民去年每月总用水量的折线统计图和频数、频率分布表如下: (1)表中a = ,d = .(2)这50户居民每月总用水量超过550m 3的月份占全年月份的百分率是多少(精确到1%)?(3)请根据折线统计图提供的数据,估计该小区去年每户居民平均月用水量是多少?A EB CD O20.50.4单位:m20.(8分)将两块大小相同的含30º角的直角三角板(∠BAC =∠B 1A 1C =30º)按图1的方式放置,固定三角板A 1B 1C ,然后将三角板ABC 绕直角顶点C 顺时针方向旋转(旋转角小于90º)至图2所示的位置,AB 与A 1C 交于点E ,AC 与A 1B 1交于点F ,AB 与A 1B 1交于点O .(1)求证:△BCE ≌△B 1CF ;(2)当旋转角等于30º时,AB 与A 1B 1垂直吗?请说明理由.21.(8分)被誉为东昌三宝之首的铁塔,始建于北宋时期,是我市现存的最古老的建筑.铁塔由塔身和塔座两部分组成.为了测得铁塔的高度,小莹利用自制的测角仪,在C 点测得塔顶E 的仰角为45º,在D 点测得塔顶E 的仰角为60º.已知测角仪AC 的高为1.6m ,CD 的长为6m ,CD 所在的水平线CG ⊥EF 于点G .求铁塔EF 的高(精确到0.1m ). 组别 频数 频率350<x ≤400 11 12400<x ≤450 1 1 12450<x ≤500 21 6500<x ≤550 a b 550<x ≤600 cd 600<x ≤650 1 1 12650<x ≤700 21 6x 表示50户居民月总用水量(m 3) 月份1 2 3 4 5 6 7 8 9 10 11 12 月总用水量(m 3) O350 400 450 500 550 600 650 700 378648489 456345550574423689 536669600 C BB 1A (A 1)A 1AEFC BB 1图1图2ABFC D G E45º 60ºA P C O BED22.(8分)徒骇河风景区建设是今年我市重点工程之一.某工程公司承担了一段河底清淤任务,需清淤4万方,清淤1万方后,该公司为提高施工进度,又新增一批工程机械参与施工,工效提高到原来的2倍,共用25天完成任务.问该工程公司新增工程机械后每天清淤多少方?23.(8分)如图,AB 是半圆的直径,点O 是圆心,点C 是OA 的中点,CD ⊥OA 交半圆于点D ,点E 是BD ⌒的中点,连接AE 、OD ,过点D 作DP ∥AE 交BA 的延长线于点P . (1)求∠AOD 的度数;(2)求证:PD 是半圆O 的切线.24.(10分)如图,已知一次函数y =kx +b 的图象交反比例函数42(0)m y x x-=>的图象于点A 、B ,交x 轴于点C .(1)求m 的取值范围;(2)若点A 的坐标是(2,-4),且BC AB = 13,求m 的值和一次函数的解析式.25.(12分)如图,在矩形ABCD 中,AB =12cm ,BC =8cm .点E 、F 、G 分别从点A 、B 、C 同时出发,沿矩形的边按逆时针方向移动,点E 、G 的速度均为2cm/s ,点F 的速度为4cm/s ,当点F 追上点G (即点F 与点G 重合)时,三个点随之停止移动.设移动开始后第t s 时,△EFG 的面积为S cm 2.(1)当t =1s 时,S 的值是多少?(2)写出S 与t 之间的函数解析式,并指出自变量t 的取值范围; (3)若点F 在矩形的边BC 上移动,当t 为何值时,以点B 、E 、F A EBFCGDO CBAxy2 -4为顶点的三角形与以C 、F 、G 为顶点的三角形相似?请说明理由。
2011年山东省聊城市中考数学答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B CCDBABADCDC二、填空题13.514. 6 15. 1216. 120° 17. 13三、解答题18. 解:把方程左边因式分解,得(2)(1)0x x -+=. 从而,得20x -=,或10x += 所以1221x x ==-,。
19. 解:(1)3;16(2)这50户居民月总用水量超过5503m 的月份有5个,占全年月份的百分率为5100%42%12⨯≈.(3)(378+641+489+456+543+550+667+693+600+574+526+423)÷50÷12=10.9(3m ). 所以估计该小区去年每户居民平均月用水量约是l0.93m .20.(1)证明:∵在△BCE 和△B'CF 中,∠B=∠B'=60°,BC=B'C ,∠BCE=90°-∠A'CA=∠B'CF , ∴△BCE ≌△B'CF(ASA).(2)当∠A'CA=30°时,AB ⊥A'B'. 理由如下:∵∠A'CA=30°,∴∠B'CF=90°-30°=60°.∴∠B'FC=180°-∠B'CF-∠B'=180°-60°-60°=60°∴∠AFO=∠B'FC=60°,∵∠A=30°,∴∠AOF=180°-∠A-∠AFO=180°-30°-60°=90°, ∴AB ⊥A'B'。
21. 解:设EG=x 米.在Rt △CEG 中,∵∠ECG=45°,∴∠CEG=45°, ∴∠ECG=∠CEC ,∴CG=EG=x 米. 在Rt △DEC 中,∠EDG=60°,tan ∠EDG=E G D G,∴tan 603x x D G ==︒∵6C G D G C D -==.∴63x x -=,解得933x =+∴EF=EG+GF= 933 1.615.8++≈ (米). 所以铁塔的高约为l5.8米.22. 解:设该工程公司新增工程机械后每天清淤x 万方,根据题意,得1412512xx -+=解这个方程,得0.2x =.检验可知,0.2x =是方程的根.所以该公程公司新增工程机械后每天清淤2000 方. 23. (1)解:∵点C 时OA 的中点,∴OC=12OA=12OD∵CD ⊥OA ,∴∠OCD=90°。
在Rt △OCD 中,cos ∠COD=12O C O D=∴∠COD=60°,即∠AOD=60°。