9上218《二次根式的复习》课堂教学实录

合集下载

二次根式复习课教案---优质课

二次根式复习课教案---优质课

《二次根式复习课》一、教学背景二次根式属于浙教版初中数学八年级下教材中“数与代数”领域,它是在学生学习了平方根、立方根等内容的基础上进行的,是对七年级上册“实数”“代数式”等内容的延伸和补充。

本章的主要内容有二次根式的概念、性质、运算和应用。

我了解到近几年的中考,融入几何图形中的二次根式问题倍受命题者的青睐与关注,这类题往往背景鲜活,构思新颖,形式多变,给人耳目一新的感觉,它从注重考察同学们对二次根式的性质及计算发展到注重二次根式的蕴酿、构建、空间想象能力与动手操作能力的实践操作题,到直接运用二次根式的说理计算题,发展到基于二次根式应用进行探究的综合题,考查的着眼点日趋灵活,能力立意的意图日渐明显. 这对于识别和理解几何图形的能力、空间思维能力和综合解决问题的能力都提出了比以往更高的要求。

这节课通过解决几何图形中的问题,对二次根式进行复习,希望能给学生今后解题带来一定的启示与帮助。

二、教学目标1、知识与技能目标(1)理解二次根式的概念,二次根式的性质及运算法则,会运用勾股定理;(2)熟练运用二次根式的性质及运算法则解决简单的几何图形问题;2、过程与方法目标(1)经历应用二次根式的性质、运算法则以及勾股定理解决问题的过程,进一步发展学生的推理能力。

(2)在解决问题的过程中,让学生学会聆听、学会思考,同时发展学生归纳和概括能力。

3、情感、态度与价值观目标通过对几何图形问题的解决,培养学生勇于探索的精神,激发学生的学习兴趣和学习积极性。

三、教学重难点重点:利用二次根式的性质与运算法则和勾股定理解决简单的几何图形问题。

难点:利用数形结合的思想解决问题。

四、教学设计(一)创设情境情境一:中国象棋中的数学知识。

课堂预设:师:老师先调查一下我们班的同学,有多少人会下中国象棋?生(举手示意)师:同学们,能告诉老师棋子中“马”的走法吗?生:马走日的对角线。

师:很好,那同学们能根据如图“马”的位置,描述接下来它可以落下来的位置吗? 生:有8种情况。

最新华东师大版九年级数学上册《二次根式复习课》教学设计

最新华东师大版九年级数学上册《二次根式复习课》教学设计

本章复习【知识与技能】掌握本章重要知识,能熟练运用二次根式的有关运算法则进行运算.【过程与方法】通过梳理本章知识,回顾解决问题中所涉及的类比思想,分类讨论思想的过程,加深对本章知识的理解.【情感态度】在运用本章知识解决具体问题的过程中,进一步体会数学与生活的密切联系,增强数学应用意识,感受数学的应用价值,激发学生兴趣.【教学重点】回顾本章知识点,构建知识体系.【教学难点】利用二次根式的有关运算法则、性质解决实际问题.一、知识框图,整体把握【教学说明】引导学生回顾本章知识点,展示本章知识结构框图,使学生系统地了解本章知识及它们之间的关系,边回顾边建立结构图.二、释疑解感,加深理解1.二次根式的意义:形如a(a≥0)的式子叫做二次根式,注意二次根式有意义的条件是被开方数a≥0,a表示a的算术平方根,它具有双重非负性,即a ≥0(a ≥0).2.二次根式的性质:主要要理解公式的应用.①)(2a =a (a ≥0),3.二次根式的化简与运算:(1)掌握的应用.(2)掌握二次根式的乘法运算:ab b a =∙(a ≥0,b ≥0).(3)掌握积的算术平方根的运算b a ab ∙=(a ≥0,b ≥0).(4)掌握二次根式的除法运算:b a b a =(a ≥0,b >0),反过来ba b a =(a ≥0,b >0).(5)掌握二次根式的加减法运算:先化成最简二次根式再进行合并,在二次根式的运算过程中,多项式乘法法则和乘法公式仍然适用,最后结果一定要化成最简二次根式.三、典例精析,复习新知例1 若21-+x x 在实数范围内有意义,则x 的取值范围是 . 【分析】1+x 有意义的条件为x+1≥0,同时注意分母x-2≠0这一条件,所以x 的取值范围为x ≥-1且x ≠2.例2若5-a +(b+2)2=0,则a+b 的值为 .四、复习训练,巩固提高五、师生互动,课堂小结本堂课你能完整地回顾本章所学的有关二次根式的知识吗?能熟练进行二次根式的有关运算吗?你还有哪些困惑与疑问?【教学说明】教师引导学生回顾本章知识,尽可能让学生自主交流与反思,对于学生的困惑与疑问,教师应予以补充和点评.1.布置作业:从教材本章“复习题”中选取.2.完成练习册中“本章热点专题训练”.本节课通过学习归纳本章内容,以二次根式的概念及其有意义的条件、二次根式的性质及应用、二次根式的化简与运算等知识点为支撑,力求以点带面,查漏补缺,让学生对本章知识了然于胸,此外通过例题加以分析,加强对重点知识的训练,使学生在全面掌握知识点的前提下抓住重点.。

初三复习教案(二次根式)

初三复习教案(二次根式)

初三复习教案课 题:二次根式 教案设计教学目标:使学生掌握二次根式的有关概念、性质及根式的化简.教学重点:二次根式的化简与计算.教学难点:二次根式的化简与计算.教学过程:一、知识要点:1.平方根:若x 2=a(a>0),则x 叫a 做的平方根,记为a ±.注意:①正数的平方根有两个,它们互为相反数;②0的平方根是0;③负数没有平方根;2.算术平方根:一个数的正的平方根叫做算术平方根;3.立方根:若x 3=a(a>0),则x 叫a 做的立方根,记为3a .4.同类二次根式: 化简后被开方数相同的二次根式.5.二次根式的性质: ①)0(≥a a 是一个非负数; ②)0()(2≥=a a a ③⎪⎩⎪⎨⎧<-=>==)0()0(0)0(||)(2a a a a a a a ④)0,0(>≥=b a ba b a ⑤)0,0(≥≥⋅=b a b a ab6.二次根式的运算:(1)加、减;(2)乘、除二、例题分析:例1.下列二次根式27,121,211,12,其中与3是同类二次根式的个数是( ) (A)1 (B)2 (C)3 (D)4例2.若最简二次根式2431212-+-a a 与是同类二次根式,求a 的值。

例3.化简: (1)2)23(-; (2)当a≤|12|441,212-++-a a a 化简时(3)已知a 为实数,化简a a a 13---, (4)化简二次根式a 21aa +-, 例4.(1)若633-=a ,求36122+-x x 的值。

(2)已知:x=53-,求962++x x 的值。

(3) 已知:a=321+,求01222)1()211(12a a a a a a a a ++----+-- 例4:把根号外的因式移到根号内: (1)aa 1; (2)11)1(---x x ; (3)x x 1-; (4) 21)2(--x x 例5.观察下列各式及其验证过程 232232+=.验证:2322122)12(2122)22(3222233+=-+-=-+-= 3833133)13(3133)33(83833:..8338322233+=-+-=-+-==+=验证 (1) 根据上述两个等式及其验证过程的基本思路,猜想4154的变形结果并进行验证.(2) 针对上述各式反映的规律,写出用n(n 为任意自然数,且n≥2)表示的等式,并给出证明.例6.计算: ①()5.043()4483181--- ②2392393322-++++++xx x x x x (0<x<3) ③)23(6)13()26(+÷--⋅+④)2131(15+÷ ⑤y x xyy x y x xyx --+-++2三、小 结:师生共同归纳解题思路与方法四、同步练习:1. 已知.a<0,化简22)1(4)1(4aa a a -+-+-= 2.化简二次根式22a a a +-的结果是( ) A .2--a B.2---a C.2-a D.2--a 32,则a 的取值范围是( )A .a ≥4B .a ≤2C .2≤a ≤4D .a =2或a =44.化简并求值:22111a a a a a ----+,其中a = 5. 已知01132=--++b b a ,求a 3+b 3和a 2-ab+b 2的值.6.已知x=23+,求(23212+---x x x x )÷211x -的值. 7.已知:x>0,y>0,且x-xy -2y=0,求y xy x yxy x --++值. 8.若a=4+3,b=4-3,求ab a a--ab a b+的值.9. 已知x 、y 为实数,若规定x *y=4xy,(1)求2*4; (2)若x *x+2*x-2*4=0,求x 的值;(3)若不论x 是什么实数,总有a *x=x,求a 的值.10.已知:571-=x ,571+=y 求x 3+x 2y+xy 2+y 3的值。

九年级数学上册 二次根式全章复习教案 新人教版

九年级数学上册 二次根式全章复习教案 新人教版

教学三维目标知识与技能1、理解二次根式的概念。

最简二次根式的定义2、使学生会通过合并同类二次根式,进行二次根式的加减法。

3、合并同类二次根式,进行二次根式的加减法。

4、使学生复习和巩固二次根式的除法运算法则以及将分母有理化的方法,会用它熟练地进行简单的二次根式的乘除法运算。

5、使学生复习和巩固利用乘法公式化简某些二次根式的混合运算6、使学生会进行有关二次根式的简单的加减、乘除法混合运算。

过程与方法使学生通过二次根式的加减,乘除进一步了解归类的思想方法。

培养学生的运算能力。

情感态度价值观使学生通过同类二次根式的各类计算,培养从特殊中找出一般,从个性中找出共性的对立统一观点的数学思想方法。

教学重点最简二次根式的化简。

会求出二次根号下的一次式中字母的取值范围。

二次根式2a 性质以及运用。

理解并掌握积的算术平方根的性质二次根式的除法运算法则的运算以及将分母有理化的方法。

教学难点最简二次根式的识别使学生复习和巩固有关二次根式的简单的加、减、乘混合运算。

培养学生的运算能力。

分母有理化。

教具学具小黑板、实物投影、PPT等本节课预习作业题1、x 是怎样的实数时,式子在实数范围内有意义?(1)3-x; (2)2)1(+x; (3)11-x2、设 x 为任意实数,下面的化简对吗?如果不对,应怎样改正?(1) xx=2; (2)24xx=; (3)36xx=3、化简:(1)2)37(-; (2)-2)615(; (3)2)14.3(π-;(4)648t (t <0) 4、计算:(1)2710⨯(2) 15 45÷2125、计算:(1) 545161322-+;(2) )7581()3125.0(--- 教学设计: 教学 环节教学活动过程 思考与调整活动内容师生行为“15分钟温故、自学、群学”环节学生可举手回答、老师做点评 回忆、熟悉掌握几条公式()()02≥=a a a aa =2(任何实数()0,0≥≥⋅=b a b a ab 推论:()0,02≥≥=y x y x y x()0,0≥≥=b a ba ba化简:(1)12; (2)211;(3)b a 245; (4)x 3x y;(5)2)1514(- ; (6)n m 281;(m <0) (7)2)732.13(-(8))()(2n m n m <- (9))5(25102-<++m m m ; (10))1523(63-;1、教师课前检查了解学生完成复习作业情况。

九年级数学复习教案 二次根式 新课标人教版

九年级数学复习教案 二次根式 新课标人教版
4、(2005年福州市)下列各式中属于最简二次根式的是()
A、 B、 C、 D、
5、(2006年连云港市)能使等式 成立的x的取值范围是()
A.x≠2 B.x≥0 C.x>2 D.x≥2
6、(2005年长沙市)小明的作业本上有以下四题:
① =4a;② a;
③a ;④ (a≠0),做错的题是( )
A.① B.② C.③ D.④
7、对于实数a、b,若 =b-a,则()
A.a>b B.a<b C.a≥b D.a≤b
8、当1<x<2时,化简∣1-x∣+ 的结果是()
A、-1 B、2x-1 C、1 D、3-设 的整数部分为a,小数部分为b,
求a2+ ab+b2的值。
板书设计
教学后记
课题
二次根式
课的类型
复习
复备记录
课时安排
1课时
基本内容
1.二次根式的有关概念
(1)二次根式
叫做二次根式.注意被开方数只能是正数或O.
(2)最简二次根式
被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.
(3)同类二次根式
化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式.
2.二次根式的性质
3.二次根式的运算
(1)二次根式的加减
①先把各个二次根式化成最简二次根式;
②再把同类三次根式分别合并
(2)三次根式的乘法
(3)二次根式的除法
课内巩固
1、(2006年南通市)式子 有意义的x取值范围是________.
2、(2006年海淀区)下列根式中能与 合并的二次根式为()
A、 B、 C、 D、

9上218《二次根式的复习》课堂教学实录.doc

9上218《二次根式的复习》课堂教学实录.doc

二次根式的复习师:同学们好!生:老师好!师:同学们,在课前我布置了儿道练习题,我想大家都已经完成了,下面我请各组的小组长 冋报各组完成的情况及在解题屮遇到的一些问题。

生:各组组长汇报完成情况及遇到的问题师:根据完成情况请四个同学到黑板板演,请其他同学们注意观察黑板板演的过程生:计算。

(1) 3V3 -2V3 (2) 一2罷+3長(3) — V12 x V6 (4) A /3X x师:根据板演情况进行讲解【评析】教师通过活动1,让学生进一步巩固二次根式的解法 师:二次根式的乘法及除法的法则是什么?用式了表示岀来. 生:(1)(V^)2 = ci(a > 0)与° =(V^)2(« n 0)(2) J~ab = 4a •丽(a > 0,b > 0)与需=4cib(ci > 0,b > 0);师:你说得对.请看下面的化简.(投彩) 例如,化简召,可以用3种方法: ⑴直接约分存字5⑵分母有理化2.=船⑶看作二次根式的除法寻==药・【评析】通过不同的计算方法让学生懂得解题的方法并不唯一,激发学生在今后的学习中, 要多动脑筋勤思考。

师:要注意不一定能化成(需)2 •课堂教学实录(a>0, b > 0)与4by[a当go 时,女n (V5)2 = V5T =(V5)\(V O )2 = A /O 7 =(V O )\ 此时护 =(yfa )2^a < 0时,J (-2)2 = 41^ = (V2)\ 但&T 无意义,所以 』(-2)2丰(V^I )2,此时 乔7工(亦)〔【评析】通过分析板演,让学生知道在计算二次根式的时候把握法则。

让学生进一步巩固二 次根式的混合运算。

师:看下而的题冃:X 取什么值时,下列各式在实数范围内有意义:(投影)(3) -------------------------------- 丁2兀 + J — 2兀;(4)— . 3兀生 1: 2EW3生 2: xH±l生 3: x=0生4:心・2且伴0.师:同学们回答得很好。

二次根式第一课时课堂实录

二次根式第一课时课堂实录

2.7二次根式 第一课时一. 教学目标1.认识二次根式和最简二次根式的概念,并能用二次根式的性质进行化简。

2.用类比的方法,引入二次根式的性质、公式。

3.通过二次根式的化简,培养学生抓住问题的关键来解决问题的基本思路。

二.教学重难点正确运用公式b a b a ∙=⋅(a ≥0,b ≥0),b ab a=(a ≥0, b >0)并能进行熟练地运算,理解法则中b a b a ∙=⋅(a ≥0,b ≥0),b aba=(a ≥0, b >0)a 、b各满足什么条件。

三.新旧只是连接运用二次根式是在平方根,立方根,实数的基础上,进一步研究二次根式的概念和性质。

与已学内容实数,整式和勾股定理联系紧密,同时也是以后将要学习的锐角三角函数,一元二次方程和二次函数等内容的重要基础。

本课时研究的内容是下一课时二次根式的运算的基础和依据。

做一做:填空:(1)94⨯94⨯2516⨯2516⨯=,94=;9425162516=,=;=,=;=,=.66202023234545有何发现:49⨯=1625⨯=49=1625=49⨯,1625⨯,49,1625.=,6.48067⨯76⨯=;76(2)用计算器计算:=,=.6.4800.92550.9255有何发现:6776⨯7649⨯=,49⨯1625⨯=,1625⨯49=,491625=.1625观察上面的结果你可得出什么规律?=67⨯,=67.知识巩固•例1 化简•(1);•(2);•(3)。

教师首先讲解第一个例题。

师:【根号下是81乘以64,我们应用第一个公式,就等于728964816481=⨯=⨯=⨯】教师要注意格式。

师:【就是这样简单的应用我们的公式,下面两个题同学们在课堂本上写,我找两个同学来做。

】 学生能很快地写出正确答案。

学生得出答案.35.....65.....72. 师:【我们为什么要学习二次根式的性质呢?是想去化简二化简下面的二次根式.化简:4527319816125。

初中数学二次根式复习课教案

初中数学二次根式复习课教案

二次根式复习课教案一、教学背景二次根式属于人教版初中数学九年级上教材中“数与代数”领域,它是在学生学习了平方根、立方根等内容的基础上进行的,是对七年级上册“实数”“代数式”等内容的延伸和补充。

本章的主要内容有二次根式的概念、性质、运算和应用。

二、教学目标1、知识与技能目标(1)理解二次根式的概念,二次根式的性质及运算法则。

(2)熟练运用二次根式的性质及运算法则。

2、过程与方法目标(1)夯实二次根式的性质、运算法则(2)在解决问题的过程中,让学生学会聆听、学会思考,同时发展学生归纳和概括能力。

3、情感、态度与价值观目标培养学生勇于探索的精神,激发学生的学习兴趣和学习积极性。

三、教学重难点重点:二次根式的性质与运算法则难点:利用数形结合的思想解决问题。

四、教学设计(一)创设情境学生利用思维导图对知识点进行系统复习,各组展示。

(二)探究复习1.基础达标:1(y>0)化为最简二次根式结果是().A(y>0)B y>0)C y>0)D.以上都不对2().A.①和②B.②和③C.①和④D.③和④3. 当x 在实数范围内有意义?4.已知,求x y的值.5,求a 2004+b 2004的值.6.计算(1)(2(231⎛+ ⎝(3)(08,荆门)(4)(08,庆阳).()5()6⎛÷ ⎝2.能力提升1._________.2. 已知〉xy 0,化简二次根式_________.3.如果 , 则x 的取值范围是 。

1=-4.n m 、n 的值. (三)拓展思维如图所示的Rt △ABC 中,∠B=90°,点P 从点B 开始沿BA 边以1厘米/•秒的速度向点A 移动;同时,点Q 也从点B 开始沿BC 边以2厘米/秒的速度向点C 移动.问:几秒后△PBQ 的面积为35平方厘米?PQ 的距离是多少厘米?(结果用最简二次根式表示)(四)小结通过这节课的学习,(1)谈谈你的收获;(2)提提你的疑惑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课堂教学实录
二次根式的复习
师:同学们好!
生:老师好!
师:同学们,在课前我布置了几道练习题,我想大家都已经完成了,下面我请各组的小组长
回报各组完成的情况及在解题中遇到的一些问题。

生:各组组长汇报完成情况及遇到的问题
师:根据完成情况请四个同学到黑板板演,请其他同学们注意观察黑板板演的过程 生:计算。

(1)33-23 (2) -2a +3a
(3) -12×6 (4)3x ×6y
师:根据板演情况进行讲解
【评析】教师通过活动1,让学生进一步巩固二次根式的解法
师:二次根式的乘法及除法的法则是什么?用式子表示出来.
生:
)0()()0())(1(22≥=≥=a a a a a a 与
)0,0()0,0(2≥≥=⋅≥≥⋅=b a ab b a b a b a ab 与)(;
)00()00()3(>≥=>≥=,b a b a b
a ,
b a b a b a 与 师:你说得对.请看下面的化简.(投影)
【评析】通过不同的计算方法让学生懂得解题的方法并不唯一,激发学生在今后的学习中,
要多动脑筋勤思考。

师:要注意
22)(a a 不一定能化成.
.
)(,)2()2(2)2(2)2(0;)()0(0)0()5(5)5(0222222222222222a a ,,,a a a ,,,a ≠-≠--==-<=====≥此时所以无意义但时当此时如时当
【评析】通过分析板演,让学生知道在计算二次根式的时候把握法则。

让学生进一步巩固二
次根式的混合运算。

师:看下面的题目:x 取什么值时,下列各式在实数范围内有意义:(投影)
23)1(-+-x x ;212)2(x x
-;
x x 22)3(-+;x
x 32)
4(+.
生1:2≤x ≤3
生2: x ≠±1
生3: x =0
生4: x ≥-2且x ≠0.
师:同学们回答得很好。

再看看 例2. 的值求且满足为实数已知n m n n n m n m 36,3
499,,22--+-+-=(投影) .
,,090999.36::2222的值从而确定的值从中求得及有意义的条件分别是与二次根式的值再求多项式的值与先根据已知条件求出分析师m n n n n n n m ,n m ≥-≥----
生:板演:
解: 因为n 2-9≥0,9-n 2≥0,且n -3≠0,所以n 2=9且n ≠3,所以
3
2643499,322-=-=-+-+-=-=n n n m n , 5)3(3)3
2(636=---⨯=-n m 师:要使二次根式有意义必须a ≥0
【评析】通过分析进一步让学生理解二次根式的运算。

师:下面请看例3 a
a a a a a a -+--⋅+-+-1123344422计算(投影)
师: 分析:第一个二次根式的被开方数的分子与分母都可以分解因式.把它们分别分解因
式后,再利用二次根式的基本性质把式子化简,化简中应注意利用题中的隐含条件3-a ≥0和1-a >0.
生:板演:
a
a a a a a a a a a a a a -+--⋅---=-+--⋅+-+-1123)3)(1()2(11233444222计算 a
a a a a a -+--⋅---=1123)3)(1()2(2 0
111111233121123)3)(1(2=-+--=-+--⋅-⋅--=-+--⋅---=
a
a a a a a
a a a a a a a a
学生板演,其他学生在下面练习,老师巡视,发现错误及时指正。

师:这位同学做得很正确,由于二次根式的基本性质要由a 的取值范围确定。

即:
⎩⎨⎧<-≥=).
0()0(a a a a a , 这些性质化简含二次根式的式子时,要注意上述条件,并要阐述清楚是怎样满足这些条件的。

师:我们再看看:
.4141,23142
2的值求已知例-⎪⎭⎫ ⎝
⎛+-+⎪⎭⎫ ⎝⎛-+=a a a a a (投影)
师:上面的代数式中的两个二次根式的被开方数的式子如何化为完全平方式?
生: .12141,12141:22222222⎪⎭⎫ ⎝
⎛-=-+=-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=++=+⎪⎭⎫ ⎝⎛-a a a a a a a a a a a a 答 生:板演:
2222114141⎪⎭⎫ ⎝
⎛--⎪⎭⎫ ⎝⎛+=-⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛-a a a a a a a a 解
a
a
a
a
a
a
a
a
a
2
1 1
1 1
=
-
+
+
=
-
-
+
=
.2
2
3
2
)2
3
(
2
2
3
1
-
=
-
=
=
+
=a

a原式


【评析】教师深入到小组,重点关注:①学生在解题时所存在的问题,尤其关注基础薄弱的学生;②学生在解题时有没有创新意识;③学生能否找到解
决问题的方法。

师:通过这几个例子同学们已经掌握二次根式的混合运用了,下面我们来做几条巩固练习。

生1:板演

师:在做这条题时要注意:
.1
,0
1
1
.12≠

+
-
-x
x
x因此

因为第二个式子中的分
所以在化简过程中,分子与分母可以同除以x -1.
.
)0()(0,0(5.22算进行二次根式的混合运关系式和
本性质中运用了二次根式的基例≥=≥≥⋅=a a a b a b a ab
生2:板演:
例6 .4242424
22222-++--++--+-++n n n n n n n n 计算
.2)2()2(42)(2)(),
2(4)4()2(),2(2,42,422
22222222n n n ab b a ab
ab b a ab b a a b b a n n n ab n b a n n b n n a =-++=-+=-+=+=+=+=--+=+=+--+=-++=所以原式那么
解设
师:很好,这位同学能根据式子额结构特点,分别把两个式子的分母看成一个整体,用换元
法把式子变形 ,从而使运算变得简捷。

我们要学习他善于观察,肯动脑筋的做法。

【评析】教师通过启发,让学生能够自由发挥,运用自己独特的方法解决问题,同时教师
不忘关注个体的发展,这样更能引起学生的学习注意,侧面地激发了学生的学习积极性;同时教师在评讲问题时有详有略,主次分明,不光关注了学生解决问题的结果,更主要的是关注了学生的思维过程;另外教师可以巧妙地结合问题对学生进行情感的教育。

师:今天的家庭作业:完成课后提升的练习。

这节课到这里,下课。

同学们再见。

生:老师再见。

相关文档
最新文档