09第九讲 数据拟合
数据拟合

在自然科学、社会科学等领域内,为确定客观存在着的变量之间的函数关系,需根据大量的实验、观测或者社会调查所得数据建立函数关系式.这些数据中往往带有随机的误差,但有时却无法重新采集.如果利用这些数据按插值法求函数关系近似表达式,必然将不合理的误差(形象地称作“噪声。
’’) 带入函数关系式中来.如测试某物体的直线运动,得到一组数据。
,将其描在坐标平面上,如图3—3.由于测试有误差,所以数据点没能落在一条直线上.显然,再用插值法求运动方程,会得出不符合实际的结果,必须寻求新的方法.根据Ots平面上测试点的分布情况可以画出很多条靠近这些点的直线,其方程都可以表示为其中a,b为待定参数.我们要从形如(7.1)的所有直线中,找出一条用某种度量标准来衡量为最靠近所有数据点的直线.令用表示测试数据(ti,si)的重度,.称为权系数,通常用作为衡量S(t)与数据点偏离大小的度量标准,对于确定(7.1)式中的待定参数比较方便.我们将上述问题推广至一般情形.设为给定的一组数据,为各点的权系数(通常要求诸ωi>0),要求在函数类中,求一函数(7·2)满足(7.3)其中为Φ中任意函数.称按条件(7.3)求函数S*(x)的方法为数据拟合的最二乘法,简称最小二乘法.并称S*(x)为最小二乘解,S(x)为拟合函数.7-2法方程组设求最小二乘法解S*(x)的关键是求待定参数.由(7.3)式知,将在某点处取得极小值,由函数极值取得的必要条件得即令并定义内积:于是将方程组(7.4)写作称为函数系在离散点Xo,X1,…,Xm上的法方程组,表为形式,即因是函数类Φ的基,故线性无关.法方程组(7.8)的系数行列式称为由基函数组成的Graln行列式,应不为零,故法方程组(7.8)的解存在且唯一.以下证明满足条件(7.3),记则由内积性质有其中又所以由(7,7)有.类似有,从而又,于是也就是这就证明了就是最小二乘解。
称为最小二乘解S*(x)的平方误差,为均方差。
数据拟合

%%%%%%%数据拟合根据一组二维数据,即平面上的若干点,要求确定一个一元函数y =f(x),即曲线,使这些点与曲线总体来说尽量接近。
这就是数据拟合成曲线的思想,简称为曲线拟合(fitting a curve)。
曲线拟合其目的是根据实验获得的数据去建立因变量与自变量之间有效的经验函数关系,为进一步的深入研究提供线索。
本章的目的,掌握一些曲线拟合的基本方法,弄清楚曲线拟合与插值方法之间的区别,学会使用MATLAB软件进行曲线拟合。
§5.1 引例拟合问题引例一电阻问题已知热敏电阻电阻值与温度的数据:求温度为63度时的电阻值。
拟合问题引例二给药问题一种新药用于临床之前,必须设计给药方案。
药物进入机体后血液输送到全身,在这个过程中不断地被吸收、分布、代谢,最终排出体外,药物在血液中的浓度,即单位体积血液中的药物含量,称为血药浓度。
一室模型:将整个机体看作一个房室,称中心室,室内血药浓度是均匀的。
快速静脉注射后,浓度立即上升;然后迅速下降。
当浓度太低时,达不到预期的治疗效果;当浓度太高,又可能导致药物中毒或副作用太强。
临床上,每种药物有一个最小有效浓度c 1和一个最大有效浓度c 2。
设计给药方案时,要使血药浓度 保持在c 1~c 2之间。
本题设c 1=10,c 2=25(ug/ml).要设计给药方案,必须知道给药后血药浓度随时间变化的规律。
从实验和理论两方面着手:在实验方面, t=0时对某人用快速静脉注射方式一次注入该药物300mg 后,在一定时刻t(小时)采集血药,测得血药浓度c(ug/ml)如下表:1. 在快速静脉注射的给药方式下,研究血药浓度(单位体积血液中的药物含量)的变化规律。
2. 给定药物的最小有效浓度和最大治疗浓度,设计给药方案:每次注射剂量多大;间隔时间多长。
§5.2 最小二乘法给定平面上的点(x i , y i ),(i = 1,2,…,n ),进行曲线拟合有多种方法,其中最小二乘法是解决曲线拟合最常用的方法。
数据拟合

f (x, a1, a2 ,..., am ) = a11 (x) + a22 (x) + ... + amm (x)
第二步:确定参数 第二步:确定参数a1,a2, …am, , ):使 个点 个点( 其准则为(最小二乘准则):使n个点(xi,yi) 与曲 准则为(最小二乘准则): 的距离δ 线 y=f(x ,a1,a2, …,am) 的距离δi 的平方和最小 。 , , ,
dCB αA αB 1 1 ) + SK( + )CB = SK( + dt VA VB VB VA CB(0) = αB
四、求解方法: 求解方法: 1. 函数拟合法 前面得到的模型是一个带初值的一阶线性微分方 解之得: 程,解之得:
αAVA + αBVB VA (αB αA ) CB (t) = + e VA + VB VA + VB
2) 注意到整个容器的溶液中含有该物质的质量不 与初始时刻该物质的含量相同, 变,与初始时刻该物质的含量相同,因此
VACA (t) + VBCB (t) = VAαA + VBαB
α 其中 αA、 B 分别表示在初始时刻两侧溶液的浓度
从而: 从而:
代入式( ) 代入式(1)得:
VB VB CA (t) = αA + αB CB (t) VA VA dCB αA αB 1 1 + SK( + )CB = SK( + ) dt VA VB VB VA
VA = VB = 1000cm3 ,S = 10cm2, 对容器的 B 部分溶液 对容器的B 设 浓度的测试结果如下表: 浓度的测试结果如下表:(浓度单位 m / cm3 ) g
数据拟合法

第四章 数据拟合法在科学实验和生产实践中,有许多函数关系仅能用由实验或观测得到的一组数据表(,)(0,1,,)i i x y i m =来表示,例如某种物质的化学反应,能够测得生成物的浓度与时间关系的一组数据表.而它们的解析表达式)(t f y =是不知道的。
但是为了要知道化学反应速度,必须要利用已知数据给出它的近似表达式,有了近似表达式,通过求导数便可知道化学反应速度。
可见已知一组数据求它的近似表达式是非常有意义的.如何求它的近似表达式呢?第二章介绍的插值方法是一种有效的方法.但是由于数据(,)(0,1,,)i i x y i m =是由测量或观测得到的,它本身就有误差,作插值时一定要通过型值点),(i i y x 似乎没有必要;其次当m 很大时,采用插值(特别是多项式插值)很不理想(会出现龙格现象),非多项式插值计算又很复杂。
为此,本章介绍一种“整体”近似的方法,即对于给定的数据(,),0,1,,i i x y i n =,选一个线性无关函数系)(,),(),(10x x x n ϕϕϕ ,以它们为基底构成的线性空间为{}0span (),,()n x x ϕϕ=Φ.在此空间内选择函数()()nj j j x x ϕαϕ==∑其中(0,1,,)j j n α=为待定常数。
要求它逼近真实函数)(x f y =的误差尽可能小,这就是数据拟合问题.§1 最小二乘法一、最小二乘法设有数据(,),0,1,,i i x y i m =,令()(),0,1,,ni i i i j j i j r y x y x i m ϕαϕ==-=-=∑.并称Tm r r r r ),,,(10 =为残向量,用)(x ϕ去拟合)(x f y =的好坏问题变成残量的大小问题。
判断残量大小的标准,常用的有下面几种:(1) 确定参数(0,1,,)j j n α=,使残量绝对值中最大的一个达到最小,即i mi r ≤≤0max 为最小。
数据分析师如何进行数据拟合和回归分析

数据分析师如何进行数据拟合和回归分析在当今信息化时代,数据分析师扮演着至关重要的角色,他们通过对数据的收集、整理和分析,为企业决策提供有力支持。
数据拟合和回归分析是数据分析师常用的技术手段之一。
本文将介绍数据分析师如何进行数据拟合和回归分析,以帮助读者更好地理解和应用这一技术。
1. 数据拟合的概念和方法数据拟合是指通过数学模型对已有数据进行拟合,以便预测未知数据或者对数据进行揭示。
数据拟合的方法有很多种,其中最常用的是最小二乘法。
最小二乘法通过使得拟合曲线与实际数据之间的残差平方和最小化来确定最佳拟合曲线。
在进行数据拟合时,数据分析师需要考虑选取合适的数学模型和合适的拟合方法,并对数据进行预处理,如去除异常值、处理缺失值等。
2. 回归分析的基本原理回归分析是一种通过建立数学模型来描述因变量与自变量之间关系的统计方法。
在回归分析中,因变量是需要预测或解释的变量,自变量是用来解释因变量变化的变量。
回归分析的基本原理是通过建立数学模型,利用已有的自变量和因变量数据,来预测未知的因变量数据。
常见的回归分析方法有线性回归、多项式回归、逻辑回归等。
3. 线性回归的应用与实践线性回归是回归分析中最简单且常用的方法之一。
它假设因变量与自变量之间存在线性关系,并通过最小化残差平方和来确定最佳拟合直线。
在进行线性回归分析时,数据分析师需要先进行数据预处理,如去除异常值、处理缺失值等。
然后,选择合适的自变量和因变量,建立线性回归模型,并进行模型的拟合和评估。
最后,通过模型的系数和显著性检验,对自变量对因变量的影响进行解释和预测。
4. 多项式回归的特点和应用多项式回归是线性回归的一种扩展形式,它可以通过引入多项式项来拟合非线性关系。
多项式回归的特点是可以更好地拟合非线性数据,但也容易出现过拟合的问题。
在进行多项式回归分析时,数据分析师需要选择合适的多项式次数,并进行模型的拟合和评估。
同时,为了避免过拟合,可以使用交叉验证等方法进行模型选择和调整。
《数据拟合方法》PPT课件

n
n
记 J(a1,a2,am)
2 i
[f(xi)yi]2
i1
i1
nm
[ akrk(xi)yi]2 (2) i1 k1
问题归结为,求 a1,a2, …am 使 J(a1,a2, …am) 最小。
最小二乘法的求解:预备知识
超定方程组:方程个数大于未知量个数的方程组
r11a1r12a2 r1mamy1 (nm) rn1a1rn2a2rnmamyn
第一步:先选定一组函数 r1(x), r2(x), …rm(x), m<n, 令
f(x)=a1r1(x)+a2r2(x)+ …+amrm(x)
(1)
其中 a1,a2, …am 为待定系数。
第二步: 确定a1,a2, …am 的准则(最小二乘准则):
使n个点(xi,yi) 与曲线 y=f(x) 的距离i 的平方和最小 。
即 Ra=y
其中
r11 r12 r1m
a1
y1
R ,
a
,
y
rn1 rn2 rnm
am
yn
超定方程一般是不存在解的矛盾方程组。
n
如果有向量a使得
(ri1a1ri2a2 rim amyi)2达到最小,
i1
则称a为上述超定方程的最小二乘解。
最小二乘法的求解
所以,曲线拟合的最小二乘法要解决的问题,实际上就是 求以下超定方程组的最小二乘解的问题。
(x)
( x ) ...
(x)
0
0
11
n
n
a a a y y ( , ,...,
0
1
m
*
) (
数据拟合

适用范围:在解决实际问题的生产(或工程)实践和科学实验过程中,通常需要通过研究某些变量之间的函数关系来帮助我们认识事物的内在规律和本质属性,而这些变量之间的未知函数关系又常常隐含在从试验、观测得到的一组数据之中。
因此,能否根据一组试验观测数据找到变量之间相对准确的函数关系就成为解决实际问题的关键。
在科学计算中经常要建立实验数据的数学模型。
给定函数的实验数据,需要用比较简单和合适的函数来逼近(或拟合)实验数据。
这种逼近的特点是:(a) 适度的精度是需要的;(b) 实验数据有小的误差;(c) 对于某些问题,可能有某些特殊的信息能够用来选择实验数据的数学模型。
逼近离散数据的基本方法就是曲线拟合,常采用最小二乘拟合。
拟合以及插值还有逼近是数值分析的三大基础工具,通俗意义上它们的区别在于:拟合是已知点列,从整体上靠近它们,插值是已知点列并且完全经过点列;逼近是已知曲线,或者点列,通过逼近使得构造的函数无限靠近它们。
[原理:拟合是指已知某函数的若干离散函数值{f1,f2,…,fn},通过调整该函数中若干待定系数f(λ1, λ2,…,λn),使得该函数与已知点集的差别(最小二乘意义)最小。
如果待定函数是线性,就叫线性拟合或者线性回归(主要在统计中),否则叫作非线性拟合或者非线性回归。
表达式也可以是分段函数,这种情况下叫作样条拟合。
拟合:已知有限个数据点,求近似函数,不要求过已知数据点,只要求在某种意义下它在这些点上的总偏差最小形象的说,拟合就是把平面上一系列的点,用一条光滑的曲线连接起来。
因为这条曲线有无数种可能,从而有各种拟合方法。
拟合的曲线一般可以用函数表示。
在MATLAB中可以用polyfit来拟合多项式。
方法及步骤:Matlab曲线拟合最小二乘法 polyfit曲线拟合已知离散点上的数据集,即已知在点集上的函数值,构造一个解析函数(其图形为一曲线)使在原离散点上尽可能接近给定的值,这一过程称为曲线拟合。
数据拟合

+ +
+
已知一组(二维)数据,即平面上 n个点 (xi,yi) i=1,…n, 寻求一个函数(曲线) y=f(x), 使 f(x) 在某种准则下与所有数据点 最为接近,即曲线拟合得最好。
上一页 下一页 主 页
问题的数学模型
步骤:1) 选定一类函数 f(x,a1,a2, …,am) 2) 确定参数a1,a2, …am, 准则(最小二乘准则):使n个点(xi,yi) 与曲线 y=f(x ,a1,a2, …,am) 的距离 i 的平方和最小 。
求血药浓度随时间的变化规律c(t).
上一页
下一页
主 页
作图观察
10
2
10
1
10
0
0
2
4
6
8
半对数坐标系(semilogy)下的图形
Log10c(t)=a t + b, c(t ) c0e kt
c, k为待定系数
上一页 下一页 主 页 返 回
曲线拟合的基本原理
y + + i (x+ i,yi) + y=f(x) + + x i 为点(xi,yi) 与曲线 y=f(x) 的距离
上一页
下一页
主 页
返 回
假设
1)薄膜两侧的溶液始终是均匀的; 2)平均每单位时间通过单位面积薄 膜的物质分子量与膜两侧溶液的浓度 差成正比。
3)薄膜是双向同性的即物质从膜的任 何一侧向另一侧渗透的性能是相同的。
上一页
下一页
主 页
返 回
解决问题的思路
第一步:通过机理分析确定容器一 侧的浓度随时间的变化规律:
上一页 下一页 主 页
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合
对于情况较复杂的实际问题(因素不易化简,作用 机理不详)可直接使用数据组建模,寻找简单的因果变 量之间的数量关系, 从而对未知的情形作预报。这样组 建的模型为拟合模型。 拟合模型的组建主要是处理好观 测数据的误差,使用数学表达式从数量上近似因果变量 之间的关系。拟合模型的组建是通过对有关变量的观测 数据的观察、分析和选择恰当的数学 表达方式得到的。
1)输入以下命令: x=0:0.1:1;
y=[-0.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2]; R=[(x.^2)' x' ones(11,1)];
MATLAB(zxec1)
A=R\y'
2)计算结果: A = -9.8108 20.1293 -0.0317
Rnmam1 yn1 (m n) ,用 a R \ y
可得最小二乘意义下的解。 3.多项式在x处的值y可用以下命令计算:
y=polyval(a,x)
例1 对下面一组数据作二次多项式拟合
xi yi 0.1 1.978 0.2 3.28 0.4 6.16 0.5 7.34 0.6 7.66 0.7 9.58 0.8 9.48 0.9 1
9.30 11.2
即要求 出二次多项式:
f ( x) a1x 2 a2 x a3
中 的 A (a1 , a2 , a3 ) 使得:
2 [ f ( x ) y ] i i i 1 11
最小
解法1.用解超定方程的方法
此时 x12 R x2 11 1 x11 1 x1
+
+
+ i (x+ i,yi)
+ +
+
y=f(x)
x
i 为点(xi,yi) 与曲线 y=f(x) 的距离
拟合与插值的关系 问题:给定一批数据点,需确定满足特定要求的曲线或曲面 解决方案: •若要求所求曲线(面)通过所给所有数据点,就是插值问题; •若不要求曲线(面)通过所有数据点,而是要求它反映对象 整体的变化趋势,这就是数据拟合,又称曲线拟合或曲面拟合。
f=a1+a2/x + + +
f=aebx +
+
-bx f=ae + +
+ +
+ + +
+
+ +
用MATLAB解拟合问题
1、线性最小二乘拟合
2、非线性最小二乘拟合
用MATLAB作线性最小二乘拟合
1. 作多项式f(x)=a1xm+ …+amx+am+1拟合,可利用已有程序: a=polyfit(x,y,m) 输出拟合多项式系数 a=[a1, …am , am+1] (数组)) 2. 对超定方程组 输入同长度 的数组X,Y 拟合多项 式次数
x=0:0.1:1 y=[-0.447,1.978,3.28,6.16,7.08,7.34,7.66,9.56,9.48,9.3,11.2] plot(x,y,'k.','markersize',25) axis([0 1.3 -2 16]) p3=polyfit(x,y,3) p6=polyfit(x,y,6) t=0:0.1:1.2 s=polyval(p3,t) s1=polyval(p6,t) hold on plot(t,s,'r-','linewidth',2) plot(t,s,'b--','linewidth',2) grid
n
即 Ra=y
r1m a1 y1 , y , a rnm am yn
超定方程一般是不存在解的矛盾方程组。
2 ( r a r a r a y ) 如果有向量a使得 i1 1 i 2 2 达到最小, im m i i 1
例3 用切削机床进行金属品加工时, 为了适当地调整 机床, 需要测定刀具的磨损速度. 在一定的时间测量刀 具的厚度, 得数据如表所示:
切削时间 t/h
0 1 2 3 4 5 6 7 8
刀具厚度 y/cm 30.0 29.1 28.4 28.1 28.0 27.7 27.5 27.2 27.0 切削时间 t/h
x=0:0.1:1 y=[-0.447,1.978,3.28,6.16,7.08,7.34,7.66,9.56,9.48,9.3,11.2] plot(x,y,'k.','markersize',25) axis([0 1.3 -2 16]) p3=polyfit(x,y,3) p6=polyfit(x,y,6)
则称a为上述超定方程的最小二乘解。
线性最小二乘法的求解 所以,曲线拟合的最小二乘法要解决的问题,实际上就是 求以下超定方程组的最小二乘解的问题。 Ra=y (3) r1 ( x1 ) rm ( x1 ) a1 y1 , a , y R am yn r1 ( xn ) rm ( xn )
9 10 11
12
13
14
15
16
刀具厚度 y/cm 26.8 26.5 26.3 26.1 25.7 25.3 24.8 24.0 拟合曲线为: y=-0.3012t+29.3804
例4 一个15.4cm×30.48cm的混凝土柱在加压实验中的 应力-应变关系测试点的数据如表所示
/ N / m2
40
60
80
100
拟 合 问 题 引 例 2 已知一室模型快速静脉注射下的血药浓度数据(t=0注射300mg) t (h) 0.25 0.5 1 1.5 2 3 4 6 8
c (g/ml) 19.21 18.15 15.36 14.10 12.89 9.32 7.45 5.24 3.01
求血药浓度随时间的变化规律c(t). 作半对数坐标系(semilogy)下的图形
其中
定理:当RTR可逆时,超定方程组(3)存在最小二乘解, 且即为方程组
RTRa=RTy
的解:a=(RTR)-1RTy
线性最小二乘拟合 f(x)=a1r1(x)+ …+amrm(x)中 函数{r1(x), …rm(x)}的选取 1. 通过机理分析建立数学模型来确定 f(x); 2. 将数据 (xi,yi) i=1, …n 作图,通过直观判断确定 f(x): f=a1+a2x + + + + + f=a1+a2x+a3x2 + + + + + f=a1+a2x+a3x2 + + + + +
解: 描出散点图, 在命令窗口输入: t=[0:1:16] y=[30.0 29.1 28.4 28.1 28.0 27.7 27.5 27.2 27.0 26.8 26.5 26.3 26.1 25.7 25.3 24.8 24.0] plot(t,y,'*')
a=polyfit(t,y,1) a= -0.3012 29.3804 hold on
使n个点(xi,yi) 与曲线 y=f(x) 的距离i 的平方和最小 。
记
J (a1 , a2 , am ) i2 [ f ( xi ) yi Leabharlann 2i 1 n i 1n
n
[ ak rk ( xi ) yi ]2
i 1 k 1
m
(2)
问题归结为,求 a1,a2, …am 使 J(a1,a2, …am) 最小。
f ( x) 9.8108x 2 20.1293x 0.0317
12 10
解法2.用多项式拟合的命令
1)输入以下命令:
8 6 4 2 0 -2
x=0:0.1:1;
0
0.2
0.4
0.6
0.8
1
y=[-0.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2]; A=polyfit(x,y,2) z=polyval(A,x); plot(x,y,'k+',x,z,'r')
线性最小二乘法的求解:预备知识 超定方程组:方程个数大于未知量个数的方程组
r11a1 r12 a2 r1m am y1 ( n m) r a r a r a y nm m n n1 1 n 2 2
r11 R 其中 rn1 r 12 rn 2
y1=-0.3012*t+29.3804
plot(t, y1), hold off
例3 用切削机床进行金属品加工时, 为了适当地调整机 床, 需要测定刀具的磨损速度. 在一定的时间测量刀具 的厚度, 得数据如表所示:
切削时间 t/h
0 1 2 3 4 5 6 7 8
刀具厚度 y/cm 30.0 29.1 28.4 28.1 28.0 27.7 27.5 27.2 27.0 切削时间 t/h
MATLAB(zxec2)
%作出数据点和拟合曲线的图形 20.1293 -0.0317
2)计算结果: A = -9.8108
f ( x) 9.8108x 2 20.1293x 0.0317
例2 已知观测数据点如表所示
x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 y -0.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.3 11.2 分别用3次和6次多项式曲线拟合这些数据点. 编写Matlab程序如下: