算法的时间复杂度和空间复杂度-总结

合集下载

算法的时间复杂度和空间复杂度-总结分析

算法的时间复杂度和空间复杂度-总结分析

算法的时间复杂度和空间复杂度-总结通常,对于一个给定的算法,我们要做两项分析。

第一是从数学上证明算法的正确性,这一步主要用到形式化证明的方法及相关推理模式,如循环不变式、数学归纳法等。

而在证明算法是正确的基础上,第二部就是分析算法的时间复杂度。

算法的时间复杂度反映了程序执行时间随输入规模增长而增长的量级,在很大程度上能很好反映出算法的优劣与否。

因此,作为程序员,掌握基本的算法时间复杂度分析方法是很有必要的。

算法执行时间需通过依据该算法编制的程序在计算机上运行时所消耗的时间来度量。

而度量一个程序的执行时间通常有两种方法。

一、事后统计的方法这种方法可行,但不是一个好的方法。

该方法有两个缺陷:一是要想对设计的算法的运行性能进行评测,必须先依据算法编制相应的程序并实际运行;二是所得时间的统计量依赖于计算机的硬件、软件等环境因素,有时容易掩盖算法本身的优势。

二、事前分析估算的方法因事后统计方法更多的依赖于计算机的硬件、软件等环境因素,有时容易掩盖算法本身的优劣。

因此人们常常采用事前分析估算的方法。

在编写程序前,依据统计方法对算法进行估算。

一个用高级语言编写的程序在计算机上运行时所消耗的时间取决于下列因素:(1). 算法采用的策略、方法;(2). 编译产生的代码质量;(3). 问题的输入规模;(4). 机器执行指令的速度。

一个算法是由控制结构(顺序、分支和循环3种)和原操作(指固有数据类型的操作)构成的,则算法时间取决于两者的综合效果。

为了便于比较同一个问题的不同算法,通常的做法是,从算法中选取一种对于所研究的问题(或算法类型)来说是基本操作的原操作,以该基本操作的重复执行的次数作为算法的时间量度。

1、时间复杂度(1)时间频度一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。

但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。

并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。

十大经典排序算法总结

十大经典排序算法总结

⼗⼤经典排序算法总结最近⼏天在研究算法,将⼏种排序算法整理了⼀下,便于对这些排序算法进⾏⽐较,若有错误的地⽅,还请⼤家指正0、排序算法说明0.1 排序术语稳定:如果a=b,且a原本排在b前⾯,排序之后a仍排在b的前⾯不稳定:如果a=b,且a原本排在b前⾯,排序之后排在b的后⾯时间复杂度:⼀个算法执⾏所耗费的时间空间复杂度:⼀个算法执⾏完所需内存的⼤⼩内排序:所有排序操作都在内存中完成外排序:由于数据太⼤,因此把数据放在磁盘中,⽽排序通过磁盘和内存的数据传输才能进⾏0.2算法时间复杂度、空间复杂度⽐较0.3名词解释n:数据规模k:桶的个数In-place:占⽤常数内存,不占⽤额外内存Out-place:占⽤额外内存0.4算法分类1.冒泡排序冒泡排序是⼀种简单的排序算法。

它重复地⾛访过要排序的数列,⼀次⽐较两个元素,如果它们的顺序错误就把它们交换过来。

⾛访数列的⼯作是重复地进⾏直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越⼩的元素会经由交换慢慢“浮”到数列的顶端1.1算法描述⽐较相邻的元素,如果前⼀个⽐后⼀个打,就交换对每⼀对相邻元素做同样的⼯作,从开始第⼀对到结尾最后⼀对,这样在最后的元素应该会是最⼤的数针对所有的元素重复以上的步骤,除了最后⼀个重复步骤1-3,知道排序完成1.2动图演⽰1.3代码实现public static int[] bubbleSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++)for (int j = 0; j < array.length - 1 - i; j++)if (array[j + 1] < array[j]) {int temp = array[j + 1];array[j + 1] = array[j];array[j] = temp;}return array;}1.4算法分析最佳情况:T(n) = O(n) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)2.选择排序表现简单直观的最稳定的排序算法之⼀,因为⽆论什么数据都是O(n2)的时间复杂度,⾸先在未排序序列中找到最⼩(⼤)元素,与数组中第⼀个元素交换位置,作为排序序列的起始位置,然后再从剩余未排序元素中继续寻找最⼩(⼤)的元素,与数组中的下⼀个元素交换位置,也就是放在已排序序列的末尾2.1算法描述1.初始状态:⽆序区为R[1..n],有序区为空2.第i躺排序开始时,当前有序区和⽆序区R[1..i-1]、R[i..n]3.n-1趟结束,数组有序化2.2动图演⽰2.3代码实现public static int[] selectionSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++) {int minIndex = i;for (int j = i; j < array.length; j++) {if (array[j] < array[minIndex]) //找到最⼩的数minIndex = j; //将最⼩数的索引保存}int temp = array[minIndex];array[minIndex] = array[i];array[i] = temp;}return array;}2.4算法分析最佳情况:T(n) = O(n2) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)3、插⼊排序是⼀种简单直观的排序算法,通过构建有序序列,对于未排序序列,在已排序序列中从后向前扫描,找到相应位置并插⼊,需要反复把已排序元素逐步向后挪位,为最新元素腾出插⼊空间3.1算法描述1.从第⼀个元素开始,该元素可以认为已经被排序2.取出下⼀个元素(h),在已排序的元素序列中从后往前扫描3.如果当前元素⼤于h,将当前元素移到下⼀位置4.重复步骤3,直到找到已排序的元素⼩于等于h的位置5.将h插⼊到该位置6.重复步骤2-53.2动图演⽰3.3代码实现public static int[] insertionSort(int[] array) {if (array.length == 0)return array;int current;for (int i = 0; i < array.length - 1; i++) {current = array[i + 1];int preIndex = i;while (preIndex >= 0 && current < array[preIndex]) {array[preIndex + 1] = array[preIndex];preIndex--;}array[preIndex + 1] = current;}return array;}3.4算法分析最佳情况:T(n) = O(n) 最坏情况:T(n) = O(n2) 平均情况:T(n) = O(n2)4、希尔排序是简单插⼊排序经过改进之后的⼀个更⾼效的版本,也称为缩⼩增量排序,同时该算法是冲破O(n2)的第⼀批算法之⼀。

算法分类,时间复杂度,空间复杂度,优化算法

算法分类,时间复杂度,空间复杂度,优化算法

算法分类,时间复杂度,空间复杂度,优化算法算法 今天给⼤家带来⼀篇关于算法排序的分类,算法的时间复杂度,空间复杂度,还有怎么去优化算法的⽂章,喜欢的话,可以关注,有什么问题,可以评论区提问,可以与我私信,有什么好的意见,欢迎提出.前⾔: 算法的复杂度分为时间复杂度与空间复杂度,时间复杂度指执⾏算法需要需要的计算⼯作量,空间复杂度值执⾏算法需要的内存量,可能在运⾏⼀些⼩数据的时候,⼤家体会不到算法的时间与空间带来的体验. 优化算法就是将算法的时间优化到最快,将空间优化到最⼩,假如你写的mod能够将百度游览器的搜索时间提升0.5秒,那都是特别厉害的成绩.本章内容: 1,算法有哪些 2,时间复杂度,空间复杂度 3,优化算法 4,算法实例⼀,算法有哪些 常见的算法有冒泡排序,快排,归并,希尔,插⼊,⼆分法,选择排序,⼴度优先搜索,贪婪算法,这些都是新⼿⼊门必须要了解的,你可以不会,但是你必须要知道他是怎么做到的,原理是什么,今天就给⼤家讲⼀讲我们常⽤的冒泡排序,选择排序,这两个排序算法,1,冒泡排序(Bubble Sort), 为什么叫他冒泡排序呢? 因为他就像是从海底往海⾯升起的⽓泡⼀样,从⼩到⼤,将要排序的数从⼩到⼤排序,冒泡的原理: 他会⼀次⽐较两个数字,如果他们的顺序错误,就将其调换位置,如果排序正确的话,就⽐较下⼀个,然后重复的进⾏,直到⽐较完毕,这个算法的名字也是这样由来的,越⼤的数字,就会慢慢的'浮'到最顶端. 好了该上代码了,下⾯就是冒泡排序的代码,冒泡相对于其他的排序算法来说,⽐较的简单,⽐较好理解,运算起来也是⽐较迅速的,⽐较稳定,在⼯作中也会经常⽤到,推荐使⽤# 冒泡排序def bubble_sort(alist):n = len(alist)# 循环遍历,找到当前列表中最⼤的数值for i in range(n-1):# 遍历⽆序序列for j in range(n-1-i):# 判断当前节点是否⼤于后续节点,如果⼤于后续节点则对调if alist[j] > alist[j+1]:alist[j], alist[j+1] = alist[j+1], alist[j]if__name__ == '__main__':alist = [12,34,21,56,78,90,87,65,43,21]bubble_sort(alist)print(alist)# 最坏时间复杂度: O(n^2)# 最优时间复杂度: O(n)# # 算法稳定性:稳定2,选择排序(selection sort) 选择排序(selection sort)是⼀种简单直观的排序⽅法, 他的原理是在要排序的数列中找到最⼤或者最⼩的元素,放在列表的起始位置,然后从其他⾥找到第⼆⼤,然后第三⼤,依次排序,依次类,直到排完, 选择排序的优点是数据移动, 在排序中,每个元素交换时,⾄少有⼀个元素移动,因此N个元素进⾏排序,就会移动 1--N 次,在所有依靠移动元素来排序的算法中,选择排序是⽐较优秀的⼀种选择排序时间复杂度与稳定性:最优时间复杂度: O(n2)最坏时间复杂度:O(n2)算法稳定性 :不稳定(考虑每次升序选择最⼤的时候)# if alist[j] < alist[min_index]:# min_index = j## # 判断min_index索引是否相同,不相同,做数值交换# if i != min_index:# alist[i],alist[min_index] = alist[min_index],alist[i]### if __name__ == '__main__':# alist = [12,34,56,78,90,87,65,43,21]# # alist = [1,2,3,4,5,6,7,8,9]# select_sort(alist)# print(alist)# O(n^2)# 不稳定def select_sort(alist):"""选择排序"""n = len(alist)for i in range(n - 1):min_index = i # 最⼩值位置索引、下标for j in range(i+1, n):if alist[j] < alist[min_index]:min_index = j# 判断min_index ,如果和初始值不相同,作数值交换if min_index != i:alist[i], alist[min_index] = alist[min_index],alist[i]if__name__ == '__main__':alist = [8,10,15,30,25,90,66,2,999]select_sort(alist)print(alist)这是⼀些算法的时间复杂度与稳定性时间复杂度,空间复杂度 接下来就要来说说时间复杂度与空间复杂度: 时间复杂度就是假如你泡茶,从开始泡,到你喝完茶,⼀共⽤了多长时间,你中间要执⾏很多步骤,取茶叶,烧⽔,上厕所,接电话,这些都是要花时间的,在算法中,时间复杂度分为 O(1)最快 , O(nn)最慢,O(1) < O(logn) <O(n)<O(n2)<O(n3)<O(2n) <O(nn) ⼀般游览器的速度都在O(n),做我们这⼀⾏,要注意客户体验,如果你程序的运⾏特别慢,估计别⼈来⼀次,以后再也不会来了下⾯给⼤家找了张如何计算时间复杂度的图⽚: 空间复杂度(space complexity) ,执⾏时所需要占的储存空间,记做 s(n)=O(f(n)),其中n是为算法的⼤⼩, 空间复杂度绝对是效率的杀⼿,曾经看过⼀遍⽤插⼊算法的代码,来解释空间复杂度的,觉得特别厉害,我就⽐较low了,只能给⼤家简单的总结⼀下我遇到的空间复杂度了, ⼀般来说,算法的空间复杂度值得是辅助空间,⽐如:⼀组数字,时间复杂度O(n),⼆维数组a[n][m] :那么他的空间复杂度就是O(n*m) ,因为变量的内存是⾃动分配的,第⼀个的定义是循环⾥⾯的,所以是n*O(1) ,如果第⼆个循环在外边,那么就是1*O(1) ,这⾥也只是⼀个了解性的东西,如果你的⼯作中很少⽤到,那么没有必要深究,因为⽤的真的很少优化算法这边带来了代码,你们在复制下来了python上运⾏⼀下,看⼀下⽤的时间与不同, ⾃然就懂了,这是未优化的算法''已知有a,b,c三个数,都是0-1000之内的数,且: a+b+c=1000 ⽽且 a**2+b**2=c**2 ,求a,b,c⼀共有多少种组合'''# 在这⾥加⼀个时间模块,待会好计算出结果import time# 记录开头时间start_time=time.time()# 把a,b,c循环出来for a in range(1001):for b in range(1001):for c in range(100):# 判断他主公式第⼀次,并未优化if a+b+c==1000 and a**2 + b**2 == c**2 :# 打印print("a=" ,a)print("b=" ,b)print("c=" ,c)else:passstop_time = time.time()print('⼀共耗时: %f'%(stop_time-start_time))# ⼀共耗时 156.875001秒这是第⼀次优化import time# 记录开头时间start_time=time.time()# 把a,b,c循环出来for a in range(1001):# 这⾥改成1001-a之后,他就不⽤再循环b了for b in range(1001-a):for c in range(100):# 判断他主公式第⼆次,优化了b,if a+b+c==1000 and a**2 + b**2 == c**2 :print("a=" ,a)print("b=" ,b)print("c=" ,c)else:passstop_time = time.time()print('⼀共耗时: %f'%(stop_time-start_time))# ⼀共耗时 50.557070秒最后⼀次优化import time# 记录开头时间start_time=time.time()# 把a,b,c循环出来for a in range(1001):for b in range(1001-a):c=1000 - a - b# 判断他主公式第三次,优化了b和cif a+b+c==1000 and a**2 + b**2 == c**2 :print("a=" ,a)print("b=" ,b)print("c=" ,c)else:passstop_time = time.time()print('⼀共耗时: %f'%(stop_time-start_time))# ⼀共耗时 2.551449秒从156秒优化到l2秒, 基本运算总数 * 基本运算耗时 = 运算时间这之间的耗时和你的机器有着很⼤的关系今天是12⽉30⽇,明天就要跨年了,祝⼤家2019年事业有成,⼯资直线上升,早⽇脱单,。

计算机软件技术基础知识点总结

计算机软件技术基础知识点总结

《计算机软件技术基础》第一章算法1.1算法的基本概念算法:指解题方案的准确而完整的描述算法的基本特征:能行性(算法中的每一个步骤必须能够实现;算法执行的结果要能够达到预期的目的)确定性(算法中的每一个步骤都必须是有明确定义的,不能摸棱两可,也不能有多义性)有穷性(算法必须能在执行有限个步骤之后终止)拥有足够的情报(算法执行的结果总是与输入的初始数据有关。

不同输入对应不同输出)算法:是一组严谨地定义运算顺序的规则,并且每一个规则都是有效的、明确的,此顺序将在有限的次数下终止。

算法的基本要素:1.算法中对数据的运算和操作(算术运算、逻辑运算、关系运算、数据传输【赋值、输入、输出】)2.算法的控制结构(算法中各操作之间的执行顺序)1.2算法描述语言C语言描述和简单的算法描述语言(1)符号与表达式:符号主要用以表述变量名、数组名等(2)赋值语句(3)控制转移语句:无条件转移语句形式:GOTO 标号条件转移语句形式IF C THEN SIF C THEN S1ELSE S2(4)循环语句WHILE语句:WHILE C DO SFOR语句:FOR i=init TO limit BY step DO S(5)其他语句EXIT语句:退出某个循环,使控制转到包含EXIT语句的最内层的WHILE或FOR循环后面的一个语句去执行RETURN语句:结束算法的执行(允许使用用引号括起来的注释信息)READ(INPUT)和WRITE(PRINT/OUTPUT)语句:用于输入输出(6)算法中的注释总是用一对方括号【】括起来;复合语句用一对花括号{}括起来1.3算法设计基本方法1.列举法【例1.1】基本思想:根据提出的问题,列举所有可能的情况,并用问题中给定的条件检验哪些是需要的,哪些是不需要的(通常解决“是否存在”“有多少种可能”类型问题)特点:算法比较简单,但列举情况较多时,工作量将很大寻找路径、查找、搜索等问题采用列举法有效2.归纳法基本思想:通过列举少量的特殊情况,经过分析,最后找出一般的关系3.递推法(数学例题)指从已知的初始条件出发,逐次推出所要求的各中间结果和最后结果(本质属于归纳法)4.递归基本思想:将问题逐层分解的过程,实际上并没有对问题进行求解,而只是当解决了最后那些简单的问题后,再沿着原来分解的逆过程逐步进行综合【例1.3】自己调用自己的过程称为递归调用过程递归分为直接递归:一个算法P显式地调用自己间接递归:算法P调用另一个算法Q,而算法Q又调用算法P5.减半递推技术(分治法)减半:将问题的规模减半,而问题的性质不变递推:重复“减半”的过程【例1.4】6.回溯法通过对问题的分析,找出一个解决问题的线索;然后沿着这个线索逐步试探。

算法的时间复杂度和空间复杂度

算法的时间复杂度和空间复杂度

相关知识介绍(所有定义只为帮助读者理解相关概念,并非严格定义):1、稳定排序和非稳定排序简单地说就是所有相等的数经过某种排序方法后,仍能保持它们在排序之前的相对次序,我们就说这种排序方法是稳定的。

反之,就是非稳定的。

比如:一组数排序前是a1,a2,a3,a4,a5,其中a2=a4,经过某种排序后为a1,a2,a4,a3,a5,则我们说这种排序是稳定的,因为a2排序前在a4的前面,排序后它还是在a4的前面。

假如变成a1,a4, a2,a3,a5就不是稳定的了。

2、内排序和外排序在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序;在排序过程中,只有部分数被调入内存,并借助内存调整数在外存中的存放顺序排序方法称为外排序。

3、算法的时间复杂度和空间复杂度所谓算法的时间复杂度,是指执行算法所需要的计算工作量。

一个算法的空间复杂度,一般是指执行这个算法所需要的内存空间。

功能:选择排序输入:数组名称(也就是数组首地址)、数组中元素个数算法思想简单描述:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。

选择排序是不稳定的。

算法复杂度O(n2)--[n的平方void select_sort(int *x, int n){int i, j, min, t;for (i=0; i<n-1; i++) /*要选择的次数:0~n-2共n-1次*/{min = i; /*假设当前下标为i的数最小,比较后再调整*/for (j=i+1; j<n; j++)/*循环找出最小的数的下标是哪个*/{if (*(x+j) < *(x+min)){min = j; /*如果后面的数比前面的小,则记下它的下标*/}}if (min != i) /*如果min在循环中改变了,就需要交换数据*/{t = *(x+i);*(x+i) = *(x+min);*(x+min) = t;}}/*功能:直接插入排序输入:数组名称(也就是数组首地址)、数组中元素个数算法思想简单描述:在要排序的一组数中,假设前面(n-1) [n>=2] 个数已经是排好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数也是排好顺序的。

全国计算机二级c语言_公共基础_知识点总结

全国计算机二级c语言_公共基础_知识点总结

第1章数据结构与算法经过对部分考生的调查以及对近年真题的总结分析,笔试部分经常考查的是算法复杂度、数据结构的概念、栈、二叉树的遍历、二分法查找,读者应对此部分进行重点学习。

详细重点学习知识点:1.算法的概念、算法时间复杂度及空间复杂度的概念2.数据结构的定义、数据逻辑结构及物理结构的定义3.栈的定义及其运算、线性链表的存储方式4.树与二叉树的概念、二叉树的基本性质、完全二叉树的概念、二叉树的遍历5.二分查找法6.冒泡排序法1.1算法考点1 算法的基本概念考试链接:考点1在笔试考试中考核的几率为30%,主要是以填空题的形式出现,分值为2分,此考点为识记内容,读者还应该了解算法中对数据的基本运算。

计算机解题的过程实际上是在实施某种算法,这种算法称为计算机算法。

1.算法的基本特征:可行性、确定性、有穷性、拥有足够的情报。

2.算法的基本要素:(1)算法中对数据的运算和操作一个算法由两种基本要素组成:一是对数据对象的运算和操作;二是算法的控制结构。

在一般的计算机系统中,基本的运算和操作有以下4类:算术运算、逻辑运算、关系运算和数据传输。

(2)算法的控制结构:算法中各操作之间的执行顺序称为算法的控制结构。

描述算法的工具通常有传统流程图、N-S结构化流程图、算法描述语言等。

一个算法一般都可以用顺序、选择、循环3种基本控制结构组合而成。

3.算法:解题方案准确而完整的描述。

考点2 算法复杂度考试链接:考点2在笔试考试中,是一个经常考查的内容,在笔试考试中出现的几率为70%,主要是以选择的形式出现,分值为2分,此考点为重点识记内容,读者还应该识记算法时间复杂度及空间复杂度的概念。

1.算法的时间复杂度算法的时间复杂度是指执行算法所需要的计算工作量。

同一个算法用不同的语言实现,或者用不同的编译程序进行编译,或者在不同的计算机上运行,效率均不同。

这表明使用绝对的时间单位衡量算法的效率是不合适的。

撇开这些与计算机硬件、软件有关的因素,可以认为一个特定算法"运行工作量"的大小,只依赖于问题的规模(通常用整数n表示),它是问题规模的函数。

计算机科学中的算法

计算机科学中的算法

计算机科学中的算法在计算机科学中,算法是一种解决问题的步骤和规程,用于解决各种计算和操作问题。

算法作为计算机科学的基础概念,是计算机程序设计的核心和基础,也是计算机系统和应用程序开发的重要基础。

在现代社会中,计算机系统已经广泛应用于各种行业和领域,而算法的发展和优化则是保证计算机系统与应用程序性能和效率的重要保证。

算法是计算机程序设计的基础和精髓。

在计算机科学中,算法是指解决一定问题的一系列有限的计算步骤。

计算机算法的归纳和总结是计算机科学的重要组成部分。

因此,研究和发展计算机算法对于提高计算机系统和应用程序的性能和效率具有重要的意义。

一、算法的类型算法是一种具有不同类型的计算步骤和规程,常见的算法类型包括以下几种:1.排序算法:将一组数据按照一定规则进行排序的算法。

常见的排序算法有冒泡排序、选择排序、插入排序、快速排序、归并排序等。

2.查找算法:在一个数据集合中查找某一个元素的算法。

常见的查找算法有顺序查找、二分查找、哈希查找等。

3.图形算法:在图论中,解决图的构成、图的遍历、最短路径、最小生成树、网络流等问题的算法。

常见的图形算法有Dijkstra算法、Bellman-Ford算法、Prim算法等。

4.字符串算法:解决字符串处理问题的一类算法。

常见的字符串算法有KMP算法、BM算法、正则表达式等。

5.贪心算法:一种利用局部最优解来获得全局最优解的算法。

贪心算法常用于优化问题中,如NP完全问题、最优化问题等。

常见的贪心算法有贪心选择法、贪心递归法等。

6.动态规划算法:一种以直接使用计算机来研究多阶段决策过程最优化的算法。

常见的动态规划算法有背包问题、找零问题、最长公共子序列问题等。

7.递归算法:通过函数自身的调用来完成计算过程。

递归算法常用于树形结构、图形结构及数据结构等问题中。

二、算法的优化算法的优化是指对算法进行改进和修改,以获得更好的性能和效率。

算法的优化可以分为以下几类:1.时间复杂度的优化:通过改变算法的各个部分来改进算法的时间复杂度,以更快地完成任务。

常用排序算法的时间复杂度和空间复杂度

常用排序算法的时间复杂度和空间复杂度

常⽤排序算法的时间复杂度和空间复杂度以上快速排序和归并排序的空间复杂度不正确没有的参考图1,以图2为准(对,就是懒得重新画图了)排序法最差时间分析平均时间复杂度稳定度空间复杂度冒泡排序O(n2)O(n2)稳定O(1)快速排序O(n2)O(n*log2n)不稳定O(log2n)~O(n)选择排序O(n2)O(n2)稳定O(1)⼆叉树排O(n2)O(n*log2n)不稳定O(n)序插⼊排序O(n2)O(n2)稳定O(1)堆排序O(n*log2n)O(n*log2n)不稳定O(1)希尔排序O O不稳定O(1)1.插⼊排序由N-1趟排序组成,对于p=1到p=N-1趟,插⼊排序保证从位置0到位置p上的元素为已排序状态。

时间复杂度:O(N^2)代码void InsertionSort(ElementType A[],int N){int j,p;ElementType Tmp;for(p=1;p<N;p++){Tmp=A[j];//把A[j]保存下来,因为它要被插⼊到前⾯的某个位置去for(j=p;j>0&&A[j-1]>Tmp;j--)//⼤于A[j]的元素逐个后移{A[j]=A[j-1];}A[j]=Tmp;}}2.希尔排序希尔排序使⽤⼀个序列h1,h2,h3,ht,叫做增量排序。

在使⽤增量hk的⼀趟排序之后,对于每个i我们有A[i]<A[i+hk],所有相隔hk的元素被排序。

时间复杂度:O(N^(1+a)),其中0<a<1。

//代码不太好理解,使⽤了3层循环void ShellSort(ElementType A[],int N){int j,p,Increment;ElementType Tmp;for(Increment=N/2;Increment>0;Increment/=2){for(p=Increment;p<N;p++){Tmp=A[p];for(j=p;j>=Increment;j-=Increment){if(A[j]<A[j-Increment])A[j]=A[j-Increment];elsebreak;}A[j]=Tmp;}}}3. 堆排序思想:建⽴⼩顶堆,然后执⾏N次deleteMin操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

算法的时间复杂度和空间复杂度-总结通常,对于一个给定的算法,我们要做两项分析。

第一是从数学上证明算法的正确性,这一步主要用到形式化证明的方法及相关推理模式,如循环不变式、数学归纳法等。

而在证明算法是正确的基础上,第二部就是分析算法的时间复杂度。

算法的时间复杂度反映了程序执行时间随输入规模增长而增长的量级,在很大程度上能很好反映出算法的优劣与否。

因此,作为程序员,掌握基本的算法时间复杂度分析方法是很有必要的。

算法执行时间需通过依据该算法编制的程序在计算机上运行时所消耗的时间来度量。

而度量一个程序的执行时间通常有两种方法。

一、事后统计的方法这种方法可行,但不是一个好的方法。

该方法有两个缺陷:一是要想对设计的算法的运行性能进行评测,必须先依据算法编制相应的程序并实际运行;二是所得时间的统计量依赖于计算机的硬件、软件等环境因素,有时容易掩盖算法本身的优势。

二、事前分析估算的方法因事后统计方法更多的依赖于计算机的硬件、软件等环境因素,有时容易掩盖算法本身的优劣。

因此人们常常采用事前分析估算的方法。

在编写程序前,依据统计方法对算法进行估算。

一个用高级语言编写的程序在计算机上运行时所消耗的时间取决于下列因素:(1). 算法采用的策略、方法;(2). 编译产生的代码质量;(3). 问题的输入规模;(4). 机器执行指令的速度。

一个算法是由控制结构(顺序、分支和循环3种)和原操作(指固有数据类型的操作)构成的,则算法时间取决于两者的综合效果。

为了便于比较同一个问题的不同算法,通常的做法是,从算法中选取一种对于所研究的问题(或算法类型)来说是基本操作的原操作,以该基本操作的重复执行的次数作为算法的时间量度。

1、时间复杂度(1)时间频度一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。

但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。

并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。

一个算法中的语句执行次数称为语句频度或时间频度。

记为T(n)。

(2)时间复杂度在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。

但有时我们想知道它变化时呈现什么规律。

为此,我们引入时间复杂度概念。

一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。

记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度,简称时间复杂度。

另外,上面公式中用到的Landau符号其实是由德国数论学家保罗·巴赫曼(Paul Bachmann)在其1892年的著作《解析数论》首先引入,由另一位德国数论学家艾德蒙·朗道(Edmund Landau)推广。

Landau符号的作用在于用简单的函数来描述复杂函数行为,给出一个上或下(确)界。

在计算算法复杂度时一般只用到大O符号,Landau符号体系中的小o符号、Θ符号等等比较不常用。

这里的O,最初是用大写希腊字母,但现在都用大写英语字母O;小o符号也是用小写英语字母o,Θ符号则维持大写希腊字母Θ。

T (n) = Ο(f (n))表示存在一个常数C,使得在当n趋于正无穷时总有T (n) ≤ C * f(n)。

简单来说,就是T(n)在n趋于正无穷时最大也就跟f(n)差不多大。

也就是说当n趋于正无穷时T (n)的上界是C * f(n)。

其虽然对f(n)没有规定,但是一般都是取尽可能简单的函数。

例如,O(2n2+n +1) = O (3n2+n+3) = O (7n2 + n) = O ( n2 ),一般都只用O(n2)表示就可以了。

注意到大O符号里隐藏着一个常数C,所以f(n)里一般不加系数。

如果把T(n)当做一棵树,那么O(f(n))所表达的就是树干,只关心其中的主干,其他的细枝末节全都抛弃不管。

在各种不同算法中,若算法中语句执行次数为一个常数,则时间复杂度为O(1),另外,在时间频度不相同时,时间复杂度有可能相同,如T(n)=n2+3n+4与T(n)=4n2+2n+1它们的频度不同,但时间复杂度相同,都为O(n2)。

按数量级递增排列,常见的时间复杂度有:常数阶O(1),对数阶O(log2n),线性阶O(n),线性对数阶O(nlog2n),平方阶O(n2),立方阶O(n3),...,k次方阶O(n k),指数阶O(2n)。

随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低。

从图中可见,我们应该尽可能选用多项式阶O(n k)的算法,而不希望用指数阶的算法。

常见的算法时间复杂度由小到大依次为:Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…<Ο(2n)<Ο(n!)一般情况下,对一个问题(或一类算法)只需选择一种基本操作来讨论算法的时间复杂度即可,有时也需要同时考虑几种基本操作,甚至可以对不同的操作赋予不同的权值,以反映执行不同操作所需的相对时间,这种做法便于综合比较解决同一问题的两种完全不同的算法。

(3)求解算法的时间复杂度的具体步骤是:⑴找出算法中的基本语句;算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。

⑵计算基本语句的执行次数的数量级;只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。

这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。

⑶用大Ο记号表示算法的时间性能。

将基本语句执行次数的数量级放入大Ο记号中。

如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。

例如:[java]view plaincopy1.for (i=1; i<=n; i++)2. x++;3.for (i=1; i<=n; i++)4.for (j=1; j<=n; j++)5. x++;第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。

Ο(1)表示基本语句的执行次数是一个常数,一般来说,只要算法中不存在循环语句,其时间复杂度就是Ο(1)。

其中Ο(log2n)、Ο(n)、Ο(nlog2n)、Ο(n2)和Ο(n3)称为多项式时间,而Ο(2n)和Ο(n!)称为指数时间。

计算机科学家普遍认为前者(即多项式时间复杂度的算法)是有效算法,把这类问题称为P(Polynomial,多项式)类问题,而把后者(即指数时间复杂度的算法)称为NP(Non-Deterministic Polynomial, 非确定多项式)问题。

一般来说多项式级的复杂度是可以接受的,很多问题都有多项式级的解——也就是说,这样的问题,对于一个规模是n的输入,在n^k的时间内得到结果,称为P问题。

有些问题要复杂些,没有多项式时间的解,但是可以在多项式时间里验证某个猜测是不是正确。

比如问4294967297是不是质数?如果要直接入手的话,那么要把小于4294967297的平方根的所有素数都拿出来,看看能不能整除。

还好欧拉告诉我们,这个数等于641和6700417的乘积,不是素数,很好验证的,顺便麻烦转告费马他的猜想不成立。

大数分解、Hamilton 回路之类的问题,都是可以多项式时间内验证一个“解”是否正确,这类问题叫做NP问题。

(4)在计算算法时间复杂度时有以下几个简单的程序分析法则:(1).对于一些简单的输入输出语句或赋值语句,近似认为需要O(1)时间(2).对于顺序结构,需要依次执行一系列语句所用的时间可采用大O下"求和法则"求和法则:是指若算法的2个部分时间复杂度分别为T1(n)=O(f(n))和T2(n)=O(g(n)),则T1(n)+T2(n)=O(max(f(n), g(n)))特别地,若T1(m)=O(f(m)), T2(n)=O(g(n)),则T1(m)+T2(n)=O(f(m) + g(n))(3).对于选择结构,如if语句,它的主要时间耗费是在执行then字句或else字句所用的时间,需注意的是检验条件也需要O(1)时间(4).对于循环结构,循环语句的运行时间主要体现在多次迭代中执行循环体以及检验循环条件的时间耗费,一般可用大O下"乘法法则"乘法法则: 是指若算法的2个部分时间复杂度分别为T1(n)=O(f(n))和T2(n)=O(g(n)),则T1*T2=O(f(n)*g(n))(5).对于复杂的算法,可以将它分成几个容易估算的部分,然后利用求和法则和乘法法则技术整个算法的时间复杂度另外还有以下2个运算法则:(1) 若g(n)=O(f(n)),则O(f(n))+ O(g(n))= O(f(n));(2) O(Cf(n)) = O(f(n)),其中C是一个正常数(5)下面分别对几个常见的时间复杂度进行示例说明:(1)、O(1)Temp=i; i=j; j=temp;以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。

算法的时间复杂度为常数阶,记作T(n)=O(1)。

注意:如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。

此类算法的时间复杂度是O(1)。

(2)、O(n2)2.1. 交换i和j的内容[java]view plaincopy1.sum=0;(一次)2.for(i=1;i<=n;i++) (n+1次)3.for(j=1;j<=n;j++) (n2次)4. sum++;(n2次)解:因为Θ(2n2+n+1)=n2(Θ即:去低阶项,去掉常数项,去掉高阶项的常参得到),所以T(n)= =O(n2);2.2.[java]view plaincopy1.for (i=1;i<n;i++)2. {3. y=y+1; ①4.for (j=0;j<=(2*n);j++)5. x++; ②6. }解:语句1的频度是n-1语句2的频度是(n-1)*(2n+1)=2n2-n-1f(n)=2n2-n-1+(n-1)=2n2-2;又Θ(2n2-2)=n2该程序的时间复杂度T(n)=O(n2).一般情况下,对步进循环语句只需考虑循环体中语句的执行次数,忽略该语句中步长加1、终值判别、控制转移等成分,当有若干个循环语句时,算法的时间复杂度是由嵌套层数最多的循环语句中最内层语句的频度f(n)决定的。

相关文档
最新文档