机器视觉与视觉检测知识点归纳

合集下载

机器视觉及光学检测基础知识与应用

机器视觉及光学检测基础知识与应用

光学检测基础及选型Sam cheung 2010-06-28PDF 文件使用 "pdfFactory Pro" 试用版本创建 何为机器视觉?机器视觉是一门技术,该技术被广泛应用在生产 制造等行业。

可用来保证产品质量、控制生产 流程、感知环境等。

机器视觉系统是基于机器视觉技术为机器或自动 化生产线建立的一套视觉系统。

PDF 文件使用 "pdfFactory Pro" 试用版本创建 1、相机的分类n nn1、按照芯片类型: 1)、 CCD(Charge Coupled Device 电 荷耦合装置) 2)、CMOS(Complementary Metal Oxide Semiconductor 互补金属氧化物半导 体)PDF 文件使用 "pdfFactory Pro" 试用版本创建 CCD与COMS的区别PDF 文件使用 "pdfFactory Pro" 试用版本创建 CCD Sensor—Frame Transfer Sensor解决了Full Frame Array Sensor发生 Smear现象的问题 从感光部分转移到屏蔽存储区域的时 间约为500us 优点:在曝光时间较长的情况下, Smear现象比Full Frame Array Sensor小很多 缺点:由于需要两个Sensor,因此 成本非常高Light sensitive CCD-sensorShielded memory area...............................Readout registerPDF 文件使用 "pdfFactory Pro" 试用版本创建 CCD Sensor—Interline Transfer Sensors转移时间约为1us,因此完全不 存在Smear现象。

优点:由于转移时间非常短,因 此不需要使用机械快门或闪光灯 缺点:由于屏蔽区占用了Sensor 的部分面积,因此使得此种传感 器填充因子只能在20%~70% 添加微镜头可以增加填充因子Sensor elements Shielded (Photo diodes) vertical shift registerOutput (Amplifier) Horizontal shift registersPDF 文件使用 "pdfFactory Pro" 试用版本创建 CMOS SensorPDF 文件使用 "pdfFactory Pro" 试用版本创建 由于CMOS可直接访问 单个像素, 因此在AOI非常小的情 况下,CMOS 与CCD相比,帧率上有 较大的优势。

机器视觉检测的基础知识[大全]

机器视觉检测的基础知识[大全]

机器视觉检测的基础知识〜相机容来源网络,由“机械展(11万血2, 1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铳磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在机械展•相机都有哪些种类?我们常说的CCD就是相机么?除了2D平面相机,是否还有其他种类的相机,原理又是什么?下面这篇文章给您一一道来。

一,相机就是CCD么?通常,我们把所有相机都叫作CCD CCD B经成了相机的代名词。

正在使用被叫做CCD的很可能就是CMO S其实CCD和CMOS^称为感光元件,都是将光学图像转换为电子信号的半导体元件。

他们在检测光时都采用光电二极管,但是在信号的读取和制造方法上存在不同。

两者的区别如下:二,像素。

所谓像素,是指图像的最小构成单位。

电脑中的图像,是通过像素(或者称为PIXEL)这一规则排列的点的集合进行表现的。

每一个点都拥有色调和阶调等色彩信息,由此就可以描绘出彩色的图像。

▼例如:液晶显示器上会显示「分辨率:1280X 1024」等。

这表示横向的像素数为1280,纵向的像素数为1024。

这样的显示器的像素总数即为1280X 1024= 1,310,720。

由于像素数越多,则越可以表现出图像的细节,因此也可以说「清晰度更高」。

三,像素直径。

所谓像素直径,是指每个CCD 元件的大小,通常使用ym 作为单位。

严谨的说, 这个大小中包含了受光元件与信号传送通路。

(二像素间距,即某个像素的中心到邻近一个像素的中心的距离。

)。

也就是说,像素直径与像素间距的值是一样 的。

如果像素直径较小,则图像将通过较小的像素进行描绘, 因此可以获得更加 精细的图像。

可以通过像素直径和有效像素数,求出CCD 元件的受光部的大小。

假设某个CCD 元件的条件如下所示:•有效像素数…768 X 484•像素直径…8.4 ym X 9.8ym则受光部的大小为•横向 768 X 8.4ym = 6.4512 mm •纵向 484X 9.8ym =4.7432 mm四,CCD 勺大小。

机器视觉行业知识点总结

机器视觉行业知识点总结

机器视觉行业知识点总结在这篇文章中,我们将对机器视觉行业的一些知识点进行总结和梳理,以帮助读者更好地理解这一领域的发展和应用。

一、机器视觉的基本原理1.图像采集和传感器技术图像采集是机器视觉系统的第一步,也是至关重要的一步。

图像传感器的选择将直接影响到后续的图像处理和分析效果。

常见的图像传感器有CCD(Charge-Coupled Device)和CMOS(Complementary Metal-Oxide-Semiconductor)两种类型,它们在成本、灵敏度和分辨率等方面各有优劣。

2.图像预处理图像预处理包括对图像进行去噪、增强、滤波、边缘检测等操作,目的是减少图像中的噪声和干扰,从而提高后续的图像处理和分析效果。

3.特征提取和描述特征提取和描述是机器视觉系统中的关键步骤,它涉及到对图像中的特征进行提取和描述,常用的特征包括边缘、角点、纹理等。

特征提取和描述的质量将直接影响到后续的目标检测、识别和跟踪效果。

4.目标检测、识别和跟踪目标检测、识别和跟踪是机器视觉系统中的核心任务之一,它涉及到对图像中的目标进行定位、识别和跟踪。

常见的目标检测和识别算法包括Haar特征、HOG特征、深度学习等技术。

5.应用领域机器视觉技术在工业自动化、智能制造、医疗影像诊断、交通监控、安防监控等领域都有广泛的应用。

其中,工业自动化是机器视觉技术应用最为广泛的领域之一,它包括产品的质量检测、组装线的监控、机器人视觉导航等方面。

二、机器视觉的发展趋势1.深度学习与机器视觉深度学习作为机器学习的一种方法,在图像识别和分析领域表现出了强大的能力,因此也在机器视觉领域得到了广泛的应用。

通过深度学习技术,机器视觉系统可以更准确地识别和分析图像中的目标,实现更高水平的自动化。

2.智能传感器与机器视觉智能传感器集成了传感器、处理器和通信接口等功能,它可以直接在传感器端进行数据的处理和分析,从而减轻了计算机端的负担。

智能传感器的发展将进一步推动机器视觉系统的智能化和自动化。

机器视觉基础知识共63页文档

机器视觉基础知识共63页文档

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华Βιβλιοθήκη 谢谢!63▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

机器视觉基础知识
11、用道德的示范来造就一个人,显然比用法律来约束他更有价值。—— 希腊
12、法律是无私的,对谁都一视同仁。在每件事上,她都不徇私情。—— 托马斯
13、公正的法律限制不了好的自由,因为好人不会去做法律不允许的事 情。——弗劳德
14、法律是为了保护无辜而制定的。——爱略特 15、像房子一样,法律和法律都是相互依存的。——伯克

视觉检测基础知识

视觉检测基础知识
视觉检测基础知识
目录 1 2 3 视觉由几大主要构成部分 视觉几大硬件是怎样搭配选型 视觉具体应用于那些方面
4
主要构件 1 2
相机
镜头
3
光源
4
软件
分析各部件作用 1
相机的主要作用是:工业相机是机器视觉系统中的一个关键组件 ,其最本质的功能就是将光信号转变成有序的电信号。选择合 适的相机也是机器视觉系统设计中的重要环节,相机的选择不 仅直接决定所采集到的图像分辨率、图像质量等,同时也与整 个系统的运行模式直接相关 1、像素数:指的是工业相机CCD 传感器的最大像素数,对于 一定尺寸的 CCD 芯片,像素数越多则意味着每一像素单元的面 积越小,因而由该芯片构成的工业相机的分辨率也就越高; 2、分辨率:是衡量工业相机优劣的一个重要参数,它指的是 当工业相机摄取等间隔排列的黑白相间条纹时,在监视器上能 够看到的最多线数。 3、最低照度:也是衡量工业相机优劣的一个重要参数,有 时省掉“最低”两个字而直接简称照度。它指的是当被摄景物的 光亮度低到一定程度而使工业相机输出的视频信号电平低到某 一规定值时的景物光亮度值; 4、信噪比:也是工业相机的一个主要参数。其基本定义是信 号对于噪声的比值乘以 20log 。CCD 工业相机的信噪比的典型 值一般为 45---55dB ;
光源示例图
软件 视觉软件有 很多版本,具 体是根据客 户的需求做 开发,如我们 常用的有尺 寸测量,机器 人引导,定 位,LOGO检 测,条码检测 等等
4
4
ห้องสมุดไป่ตู้
分析各部件作用 1
5、自动光圈接口 :目前在市场上见到的标准 CCD 工业相机大 都带有驱动自动光圈镜头的接口,有些可同时提供两种驱动方 式(视频驱动、直流驱动)视频驱动方式是指工业相机将视频 信号电动机转动;直流驱动方式则是指工业相机内部增加了镜 头光圈电动机的驱动电路,可以直接输出直流控制电压到镜头 内的光圈电动机并使其转动。一般视频驱动自动光圈接口使用 3 个针,即电源正、视频、接地;而直流驱动自动光圈接口使 用 4 个针,即阻尼正、阻尼负、驱动正、驱动负 6、电子快门:是比照照相机的机械快门功能提出的一个术语 ,它相当于控制CCD 图像传感器的感光时间; 7、自动增益控制:工业相机输出的视频信号必须达到电视传 输规定的标准电平,即 0.7VPP ,为了能在不同的景物照度条件 下都能输出0.7VPP 的标准视频信号,必须使放大器的增益能够 在较大的范围内进行调节。这种增益调节通常都是通过检测视 频信号的平均电平而自动完成的,实现此功能的电路称为自动 增益控制电路,简称 AGC 电路; 8、背光补偿:也称作逆光 补偿或逆光补正,它可以有效补偿工业相机在逆光环境下拍摄 时画面主体黑暗的缺陷;

机器视觉检测的基础知识【大全】

机器视觉检测的基础知识【大全】

机器视觉检测的基础知识【大全】————————————————————————————————作者: ————————————————————————————————日期:机器视觉检测的基础知识~相机内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.相机都有哪些种类?我们常说的CCD就是相机么?除了2D平面相机,是否还有其他种类的相机,原理又是什么?下面这篇文章给您一一道来。

一,相机就是CCD么?通常,我们把所有相机都叫作CCD,CCD已经成了相机的代名词。

正在使用被叫做CCD 的很可能就是CMOS。

其实CCD和CMOS都称为感光元件,都是将光学图像转换为电子信号的半导体元件。

他们在检测光时都采用光电二极管,但是在信号的读取和制造方法上存在不同。

两者的区别如下:二,像素。

所谓像素,是指图像的最小构成单位。

电脑中的图像,是通过像素(或者称为PIXEL)这一规则排列的点的集合进行表现的。

每一个点都拥有色调和阶调等色彩信息,由此就可以描绘出彩色的图像。

▼例如:液晶显示器上会显示「分辨率:1280×1024」等。

这表示横向的像素数为1280,纵向的像素数为1024。

这样的显示器的像素总数即为1280×1024=1,310,720。

由于像素数越多,则越可以表现出图像的细节,因此也可以说「清晰度更高」。

三,像素直径。

所谓像素直径,是指每个CCD元件的大小,通常使用μm作为单位。

严谨的说,这个大小中包含了受光元件与信号传送通路。

(=像素间距,即某个像素的中心到邻近一个像素的中心的距离。

)。

也就是说,像素直径与像素间距的值是一样的。

如果像素直径较小,则图像将通过较小的像素进行描绘,因此可以获得更加精细的图像。

机器视觉与视觉检测知识点归纳上课讲义

机器视觉与视觉检测知识点归纳上课讲义

一总介使用机器视觉系统五个主要原因:1.精确性(无人眼限制)2.重复性(相同方法检测无疲惫)3.速度(更快检测)4.客观性(无情绪主观性)5.成本(一台机器可承担好几人工作)机器视觉系统构成:光学:1.相机与镜头;2.光源;过渡:3.传感器(判断被测对象位置及状态);4.图像采集卡(把相机图像传到电脑主机);电学(计算机):5.PC平台;6.视觉处理软件;7.控制单元。

机器视觉系统一般工作过程:1.图像采集;2.图像处理;3.特征提取;4.判决和控制。

机器视觉系统的特点:1.非接触测量;2.具有较宽的光谱响应范围;3.连续性;4.成本较低;5.机器视觉易于实现信息集成;6.精度高;7.灵活性。

机器视觉应用领域两大类:科学研究和工业应用科学研究主要对运动和变化的规律作分析;工业方面主要是在线检测产品,机器视觉所能提供的标准检测功能主要有:有/无判断、面积检测、方向检测、角度测量、尺寸测量、位置检测、数量检测、图形匹配、条形码识别、字符识别、颜色识别等。

二机器视觉系统的构成相机的主要特性参数:分辨率:衡量相机对物象中明暗细节的分辨能力。

最大帧率:相机采集传输图像的速率。

曝光方式和快门速度;o(* ̄) ̄*)o?像素深度:每一个像素数据的位数。

固定图像噪声:不随像素点的空间坐标改变的噪声。

动态范围等CCD相机和CMOS相机的区别:1.设计:CCD是单一感光器,CMOS是感光器连接放大器。

2.灵敏度:同样面积下,CCD灵敏度高;CMOS由于感光开口小,灵敏度低。

3.成本:CCD线路品质影响程度高,成本高;CMOS由整合集成,成本低。

4.解析度:CCD连接复杂度低,解析度高;CMOS新技术解析度高。

5.噪点比:CCD信号单一放大,噪点低;CMOS百万放大(每个像素都有各自的放大器),噪点高。

6.功耗比:CCD需外加电压,功耗高;CMOS直接放大,功耗低。

镜头主要参数:焦距:从镜头中心点到胶平面上所形成的清晰影像之间的距离,其大小决定视角大小(焦距小视角大观察范围大,焦距大视角小观察范围小)。

机器视觉与视觉检测知识点归纳

机器视觉与视觉检测知识点归纳

机器视觉与视觉检测知识点归纳
一、机器视觉概述
机器视觉是指机器通过摄像机或其他传感器抓取的图像与视频,经过
计算机算法处理得出的信息,实现有关图像的自动识别、分析、定位、测量、检测等功能的技术。

机器视觉在非破坏性检测、自动检测、测量、定位、跟踪等应用领域具有广泛的应用,如机器视觉模拟系统、机器视觉定
位系统、机器视觉检测系统等。

二、机器视觉流程
机器视觉的流程主要包括图像采集、图像预处理、视觉分析和应用等
四个步骤。

1.图像采集:首先,通过摄像机、传感器等对物体进行采集,将采集
到的图像信息输入计算机,实现照片的实时采集和存储。

2.图像预处理:然后,图像预处理的主要目的是将拍摄到的原图像进
行分割、增强、质量控制等操作,以提高图像识别的可靠性,提升视觉检
测的精度。

3.视觉分析:接下来,需要用视觉分析技术实现对图像的识别、定位、测量、比较等。

这一步骤可以通过图像分割和图像匹配来实现视觉物体的
检测。

4.应用:最后,需要根据实际情况,将机器视觉的结果应用到各种实
际场景中,如运动系统调整、自动设备控制、质量检测等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一总介使用机器视觉系统五个主要原因:1.精确性(无人眼限制)2.重复性(相同方法检测无疲惫)3.速度(更快检测)4.客观性(无情绪主观性)5.成本(一台机器可承担好几人工作)机器视觉系统构成:光学:1.相机与镜头;2.光源;过渡:3.传感器(判断被测对象位置及状态);4.图像采集卡(把相机图像传到电脑主机);电学(计算机):5.PC平台;6.视觉处理软件;7.控制单元。

机器视觉系统一般工作过程:1.图像采集;2.图像处理;3.特征提取;4.判决和控制。

机器视觉系统的特点:1.非接触测量;2.具有较宽的光谱响应围;3.连续性;4.成本较低;5.机器视觉易于实现信息集成;6.精度高;7.灵活性。

机器视觉应用领域两大类:科学研究和工业应用科学研究主要对运动和变化的规律作分析;工业方面主要是在线检测产品,机器视觉所能提供的标准检测功能主要有:有/无判断、面积检测、方向检测、角度测量、尺寸测量、位置检测、数量检测、图形匹配、条形码识别、字符识别、颜色识别等。

二机器视觉系统的构成相机的主要特性参数:分辨率:衡量相机对物象中明暗细节的分辨能力。

最大帧率:相机采集传输图像的速率。

曝光方式和快门速度;o(* ̄) ̄*)o?像素深度:每一个像素数据的位数。

固定图像噪声:不随像素点的空间坐标改变的噪声。

动态围等CCD相机和CMOS相机的区别:1.设计:CCD是单一感光器,CMOS是感光器连接放大器。

2.灵敏度:同样面积下,CCD灵敏度高;CMOS由于感光开口小,灵敏度低。

3.成本:CCD线路品质影响程度高,成本高;CMOS由整合集成,成本低。

4.解析度:CCD连接复杂度低,解析度高;CMOS新技术解析度高。

5.噪点比:CCD信号单一放大,噪点低;CMOS百万放大(每个像素都有各自的放大器),噪点高。

6.功耗比:CCD需外加电压,功耗高;CMOS直接放大,功耗低。

镜头主要参数:焦距:从镜头中心点到胶平面上所形成的清晰影像之间的距离,其大小决定视角大小(焦距小视角大观察围大,焦距大视角小观察围小)。

光圈/相对孔径:光圈即通光量,大小为f/D,相对孔径是光圈的值的倒数。

视野围:衡量镜头成像围,是相机实际拍到区域的尺寸。

景深:在被摄物体聚焦清楚后,在物体前后一定距离,其影像仍然清晰的围,其随镜头的光圈值、焦距、拍摄距离而变化。

接口、工作距离、像面尺寸、分辨率等镜头划分:根据焦距是否能调节,分为定焦与变焦两种。

依据焦距长短,定焦分为鱼眼、短焦标准、长焦。

焦距的长短划分以像角的大小为主要划分依据。

镜头的选择:机器视觉应该考虑的四个主要因素:1.波长、变焦与否确定镜头的工作波长及是否需要变焦。

2.特殊要求优先考虑是否有测量功能,是否需要使用远心镜头,成像的景深是否很大等。

3.工作距离、焦距o(* ̄) ̄*)o?4.像面大小和像质所选镜头像面大小要与相机感光面兼容,遵循“大的兼容小的”原则。

5.光圈和接口光圈影响像面亮度,镜头接口需和像面接口匹配,不能匹配就需考虑转接。

6.成本和技术成熟度基本分析如下:案例:给硬币检测成像系统选配镜头。

(详细P44)与白色LED光源配合使用,镜头应是可见光波段,定焦镜头;用于工业检测,其中带有测量功能,所以要求畸变较小;工作距离和焦距要满足一定关系;选择镜头像面应该不小于CCD尺寸,即至少2/3in;镜头的接口要C口,能配合相机使用。

图像采集卡:概述:将摄像机的图像视频信号,以帧为单位,送到计算机的存和VGA帧存。

一般连接在台式机的PCI扩展槽上。

基本原理与技术参数:图像采集卡基本结构大致相同,其基本组成模块各个部分主要构成及功能:视屏输入模块:是图像采集卡的前端,直接与相机相连。

A/D转换模块:图像采集卡核心部分,将输入的模拟视屏信号转换为计算机可以识别的数字信号。

时序及采集控制模块:包括图像采集卡中整个时序、同步、采集控制电路。

图像处理模块:对A/D转换后的数字信号进行处理。

(实时转换数字信号为数据图像等,尽管可由主机来完成,但用图像采集卡硬件可获得更高的处理速度)。

PCI总线接口及控制模块:完成对数字图像数据的传输。

相机控制模块:提供相机的设置及其控制信号o(* ̄) ̄*)o?数字输入、输出模块:用于控制和响应外部信号。

分类:按图像采集卡主要特性分:可分为彩色图像采集卡与黑白图像采集卡、模拟图像采集卡与数字图像采集卡、面阵图像采集卡和线阵图像采集卡。

按用途划分:可分为广播级(分辨率高,支持高清和标准,但所需硬盘空间大),专业级(性能比广播级稍低,分辨率相同,但压缩比稍大一些),民用级(动态分辨率一般较低)。

机器视觉系统的核心是图像采集和处理,选择机器视觉光源时应该考虑的主要特性:1.亮度:最佳选择是最亮的那个。

2.光源均匀性:不均匀的光会造成不均匀的反射。

3.光谱特征:光源颜色及物体表面颜色决定反射到摄像头的光能大小及波长。

4.寿命特性:为使图像处理保持一致的精确,视觉系统必须保证长时间获得稳定一致的图像(光源一般需要持续使用)。

5.对比度:对比度对机器视觉来说非常重要。

机器视觉应用的照明的最重要的任务就是使需要被观察的特征与需要被忽略的图像特征之间产生最大的对比度,从而易于特征的区分。

光源的选型:1.选择光照角度:根据期望的图像效果,选择不同入射角度的光源。

高角度照射,图像整体较亮,适合表面不反光物体;低角度照射,图像背景为黑,特征为白,可以突出被测物轮廓及表面凹凸变化;多角度照射,整体效果柔和,适合曲面问题检测;背光照射,图像效果为黑白分明的被测物轮廓,常用于尺寸测量;同轴光照射,图像效果为明亮背景上的黑色特征,用于反光强烈的平面物体检测。

2.选择光源的颜色:使用与被测物同色系的光会使图像变亮(如红红);使用与被测物相反色系的光会使图像变暗(如红蓝);波长越长,穿透能力越强;波长越短,扩散能力越强。

红外的穿透能力强,可进行棕色玻璃瓶杂质检测(透光性差);紫外扩散能力强,对表面细微特征敏感,可进行食用油瓶上的文字检测(对比不明显)。

3.选择光源的形状和尺寸:通常情况下选与被测物体形状相同的光源。

尺寸选择,要求保障整个视野光线均匀,略大于视野为佳。

4.选择是否使用漫射光源:如被测物体表面反光,最好用漫反射光源。

三机器视觉成像技术光源的作用,就是获得对比鲜明的图像,具体有:1.将感兴趣部分和其他部分的灰度值差异加大。

2.尽量消隐不感兴趣部分。

3.提高信噪比,利于图像处理。

4.减少因材质、照射角度对成像的影响。

适当的照明设计,有能使图像中的目标信息与背景信息得到最佳分离,以降低图像处理算法的难度等优点。

最佳照明方法和光源的选择往往需要大量的试验。

光源的种类:1.自然光源:即太源。

2.人工光源:即灯光光源,大多在自然光照度很低和夜晚摄像使用。

人工光源有:1.荧光灯:主要优点发光效能高,光线较分散,广泛用于较柔和的照明。

2.卤素灯:金属卤素灯最大优点是发光效能高,其不能立即点亮。

又名冷光源,适合对环境温度比较敏感的场合。

O(* ̄) ̄*)o?3.气体放电光源o(* ̄) ̄*)o?4.发光二极管:简称LED,与传统光源相比优点:寿命长、启动时间短、结构牢固、发光效能高、能耗小、模型简单、发光的方向性很强。

5.激光光源o(* ̄) ̄*)o?选择光源应考虑的系统特性:1.对比度(非常重要);2.亮度;3.鲁棒性;4.光源可预测;5.物体表面;6.控制反射;7.表面纹理;8.表面形状等。

合适的光源应该能够产生最大的对比度、亮度足够,且对部件的位置变化不敏感。

机器视觉关心的是反射光(使用背光除外),光源控制的诀窍归结到一点就是如何控制光源反射。

如果能控制好光源的反射,那么就可以获得优质图像。

六种照明技术:1.一般目的:通用一般采用环状或点状照明。

2.背光照明:产生很强对比度,常用于检测轮廓。

3.同轴照明:对于实现扁平物体且有镜面特征的表面的均匀照明很有用。

4.连续漫反射照明o(* ̄) ̄*)o?5.暗域照明:相对于物体表面提供低角度照明;6.结构光:可测量相机到光源的距离。

彩色照明技术:颜色三种基本属性:亮度、色调、饱和度。

真彩色:R,G,B三波段的合成显示图,假彩色:任意非R,G,B波段的合成图,伪彩色:只含有一个任意波段的图像显示四机器视觉核心算法图像预处理:图像预处理主要目的是消除图中无关的信息,恢复有用的真实信息,增强有关信息的可检测性和最大限度地简化数据。

预处理过程一般有数字化、几何变换、归一化、平滑、复原和增强等步骤。

由于外界环境或设备本身原因,通常所获取的原始数字图像质量不是非常高,因此在对图像进行边缘检测、图像分割等操作前,一般都需要对原始数字图像进行增强处理(改善视觉效果和突出特征),图像增强是数字图像处理技术中最基本的容之一,也是图像预处理的方法之一。

图像增强可分为:基于空间域的(直接处理图像像素)如均值滤波,中值滤波;基于频率域(修改图像傅里叶变换为基础)的如低通滤波,高频滤波器。

空间滤波的基本步骤:1.建立一个掩模;2.在待处理的图像中逐点移动掩模;3.在每一点(x,y)处作相应的运算频域滤波的基本步骤:1.傅里叶变换;2.频率域滤波处理:3.傅里叶反变换(低频的信号包含了图像的粗糙背景信息,高频的信号携带了图像的细节部分信息)数学形态学:即是用具有一定形态的结构元素去度量和提取图像中的对应形状以达到对图像分析和识别的目的。

基本运算有:膨胀、腐蚀、开运算和闭运算(形态运算实质上是一种二维卷积运算)。

灰度均衡的目的是为了校正不均匀照射。

灰度直方图反映一副图像中各灰度级与各灰度级像素出现的频率之间的关系。

边缘检测:计算机视觉模仿人类视觉认识目标过程(先分离边缘,再知觉、辨认),检测物体边缘时,先对其轮廓点进行粗略检测,然后通过规则把原来检测到的轮廓点连接起来,再作相应处理。

图像的边缘是图像的重要特征。

边缘检测算法四个步骤:1.滤波:主要基于图像强度的导数,导数计算对噪声敏感;2.增强:一般通过计算梯度幅值,凸显邻域强度有显著变化的点;3检测:通过梯度幅值阈值,检测出凸显的点中的边缘点;4.定位o(* ̄) ̄*)o?边缘检测算法:梯度算子、方向算子、拉普拉斯算子和坎尼算子等。

相关文档
最新文档