2020高考数学 课后作业 9-5 线面、面面垂直的判定及性质 新人教A版
高中数学新课标人教A版必修2:直线、平面垂直的判定与性质 课件

1.与平行、垂 直有关命题 的判断. 2.直线与平面 垂直的判定 与性质. 3.平面与平面 垂直的判定 与性质
1.逻辑推理. 2.直观想象
目录
01 知 识 逐 点 夯 实 重点准 逐点清 结论要牢记
02 考 点 Biblioteka 类 突 破 理解透 规律明 变化究其本
03 课 时 检 测
课前自修 课堂讲练
01
①若 α∥β,则 m⊥l;②若 α⊥β,则 m∥l;③若 m⊥l,则 α⊥
β;④若 m∥l,则 α⊥β. 其中是真命题的是
()
A.①④
B.③④
C.①②
D.①③
解析:对于①,若 α∥β,m⊥α,l⊂β,则 m⊥l,故①是真命题, 排除 B;对于④,若 m∥l,m⊥α,则 l⊥α,又因为 l⊂β,所以 α⊥β.故④是真命题,故选 A.
2.三种垂直关系的转化
判定定理
判定定理
线线垂直 性质定理 线面垂直 性质定理 面面垂直.
[提速度]
1.已知 m 和 n 是两条不同的直线,α 和 β 是两个不重合的平面,
下面给出的条件中一定能推出 m⊥β 的是
()
A.α⊥β 且 m⊂α
B.m⊥n 且 n∥β
C.m∥n 且 n⊥β
D.m⊥n 且 α∥β
保证该直线与平面垂直的是
()
A.①
B.②
C.③
D.④
解析:根据直线与平面垂直的判定定理,平面内这两条直线必
须是相交的,①③中给定的平面内的两直线一定相交,能保证
直线与平面垂直.而②中梯形的两边可能是上、下底边,它们
互相平行,④中正六边形的两边可能是互相平行的两边,不满
足定理条件.
答案:AC
高一数学必修2线、面垂直的判定与性质

α β a A 线、面垂直的判定与性质一、线、面垂直的判定与性质1.线面垂直的定义:如果直线 l 与平面α内的任意一条直线都垂直,我们说直线 l 与平面α 互相垂直.2.线面垂直的判定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直. 直线与平面垂直3.(1)的射影所成的角(2)(3一条直线与平面所成的角的取值范围是 4.二面角相关概念:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角. ∠AOB即为二面角α-AB-β的平面角注意:二面角的平面角必须满足:(1)角的顶点在棱上.(2)角的两边分别在两个面内. (3)角的边都要垂直于二面角的棱.二面角的取值范围 5.面面垂直的定义:一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.记为β⊥α6.判定定理:如果一个平面经过另一个平面的垂线,则这两个平面垂直.7.直线与平面垂直的性质定理:垂直于同一个平面的两条直线平行8.面面垂直的性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直. 面面垂直⇒线面垂直二、例题解析 α⊥l 记为⇒⎪⎪⎭⎪⎪⎬⎫l a l ⊥b l ⊥α⊂a α⊂b A b a = 斜线PA 与平面所成的角为PAB ]90,0[0[]]0[180,000π,或a β⊂a α⊥面⇒βα⊥ //a a b b αα⊥⎫⇒⎬⊥⎭a b αa bl a a l αβαββ⊥⎫⎪=⎪⎬⊂⎪⎪⊥⎭a α⇒⊥题型一、判断问题例1、直线l与平面α内的无数条直线垂直,则直线l与平面α的关系是()A.l和平面α相互平行B.l和平面α相互垂直C.l在平面α内D.不能确定变式:如果一条直线垂直于一个平面内的:①三角形的两边;②梯形的两边;③圆的两条直径;④正六边形的两条边.则能保证该直线与平面垂直()A.①③B.①②C.②④D.①④例2、已知直线a∥平面α,a⊥平面β,则( )A.α⊥βB.α∥βC.α与β不垂直D.以上都有可能变式:下列命题中错误的是( )A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β例3、已知b⊥平面α,a⊂α,则直线a 与直线 b 的位置关系是( )A.a∥b B.a⊥b C.直线a 与直线b 垂直相交D.直线a 与直线b 垂直且异面变式1:下面四个命题,其中真命题的个数为( )①如果直线l 与平面α内的无数条直线垂直,则l⊥α;②如果直线l 与平面α内的一条直线垂直,则l⊥α;③如果直线l 与平面α不垂直,则直线l 和平面α内的所有直线都不垂直;④如果直线l 与平面α不垂直,则平面α内也可以有无数条直线与直线l 垂直.A.1 个B.2 个C.3 个D.4 个变式2:已知平面α⊥平面β,则下列命题正确的个数是()①α内的直线必垂直于β内的无数条直线;②在β内垂直于α与β的交线的直线必垂直于α内的任意一条直线;③α内的任何一条直线必垂直于β;④过β内的任意一点作α与β交线的垂线,则这条直线必垂直于α. A.4 B.3C.2D.1题型二:求角问题(线面角、面面角)例1、在正方体ABCD-A1B1C1D1中,(1)求直线A1C与平面ABCD所成的角的正切值.(2)求直线A1B与平面BDD1B1所成的角.变式:如图所示,Rt△BMC中,斜边BM=5且它在平面ABC上的射影AB长为4,∠MBC=60°,求MC与平面ABC所成角的正弦值.例2、在长方体ABCD-A1B1C1D1中,二面角A-BC-A1的平面角是()A.∠ABC B.∠ABB1C.∠ABA1D.∠ABC1变式:如图所示,在四棱锥P -ABCD 中,底面ABCD 为平行四边形,P A ⊥平面ABCD ,且P A =3,AB =1,BC =2,AC =3,求二面角P -CD -B 的大小.题型三:证明问题例1、如图,在三棱锥 A-BCD 中,AD ,BC ,CD 两两互相垂直,M ,N分别为 AB ,AC 的中点.(1)求证:BC ∥平面 MND ;(2)求证:平面 MND ⊥平面 ACD .变式: 如图,四棱锥P-ABCD 的底面是矩形,AB=2,,侧面PAB 是等边三角形,且侧面PAB ⊥底面ABCD. (1)证明:侧面PAB ⊥侧面PBC ;(2)求侧棱PC 与底面ABCD 所成的角.三、巩固练习1.在三棱锥V -ABC 中,VA =VC ,AB =BC ,则下列结论一定成立的是( )A .VA ⊥BCB .AB ⊥VCC .VB ⊥ACD .VA ⊥VBBC A B C D P2.若A ∈α,B ∈α,A ∈l ,B ∈l ,P ∈l ,则( )A .P ⊂αB .P αC .l αD .P ∈α3.一条直线若同时平行于两个相交平面,则这条直线与这两个平面的交线的位置关系是( )A .异面B .相交C .平行D .不能确定4.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为( )A.63B.2 65C.155D.1055.设x ,y ,z 是空间不同的直线或平面,对下列四种情形:①x ,y ,z 均为直线;②x ,y 是直线,z 是平面;③z 是直线,x ,y 是平面;④x ,y ,z 均为平面.其中使“x ⊥z ,且y ⊥z ⇒x ∥y ”为真命题的是( )A .③④B .①③C .②③D .①②6.如图,正方体ABCD -A 1B 1C 1D 1中,异面直线BD 1与A 1D 所成的角等于__________.7如图,已知正方体ABCD -A 1B 1C 1D 1,则二面角C 1-BD -C 的正切值为________.8.如图,在边长为1的等边三角形ABC 中,D ,E 分别是AB ,AC 边上的点,AD =AE ,F 是BC 的中点,AF 与DE 交于点G ,将△ABF 沿AF 折起,得到如图所示的三棱锥A -BCF ,其中BC =22. (1)证明:DE ∥平面BCF ;(2)证明:CF ⊥平面ABF ;(3)当AD =23时,求三棱锥F -DEG 的体积V F -DEG .。
2020版高考数学一轮复习第七章立体几何第五节直线、平面垂直的判定与性质学案理(含解析)新人教A版

第五节直线、平面垂直的判定与性质2019考纲考题考情1.直线与平面垂直(1)直线和平面垂直的定义直线l与平面α内的任意一条直线都垂直,就说直线l与平面α互相垂直。
(2)直线与平面垂直的判定定理及性质定理2.平面与平面垂直的判定定理与性质定理续表1.与线面垂直相关的两个常用结论:(1)两平行线中的一条与平面垂直,则另一条也与这个平面垂直。
(2)一条直线垂直于两平行平面中的一个,则与另一个平面也垂直。
2.三种垂直关系的转化:线线垂直判定定理性质线面垂直判定定理性质定理面面垂直一、走进教材1.(必修2P 73A 组T 1改编)下列命题中不正确的是( )A .如果平面α⊥平面β,且直线l ∥平面α,则直线l ⊥平面βB .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βC .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD .如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l ,那么l ⊥γ解析 根据面面垂直的性质,知A 不正确,直线l 可能平行平面β,也可能在平面β内。
故选A 。
答案 A2.(必修2P 67练习T 2改编)在三棱锥P -ABC 中,点P 在平面ABC 中的射影为点O 。
(1)若PA =PB =PC ,则点O 是△ABC 的________心;(2)若PA ⊥PB ,PB ⊥PC ,PC ⊥PA ,则点O 是△ABC 的________心。
解析(1)如图,连接OA,OB,OC,OP,在Rt△POA,Rt△POB和Rt△POC中,PA=PB=PC,所以OA=OB=OC,即O为△ABC的外心。
(2)如图,延长AO,BO,CO分别交BC,AC,AB于H,D,G。
因为PC⊥PA,PB⊥PC,PA∩PB =P,所以PC⊥平面PAB,又AB⊂平面PAB,所以PC⊥AB,因为AB⊥PO,PO∩PC=P,所以AB⊥平面PGC,又CG⊂平面PGC,所以AB⊥CG,即CG为△ABC边AB上的高。
人教A版2020版新一线高考理科数学一轮复习教学案:第7章第4节直线、平面垂直的判定与性质含答案

第四节 直线、平面垂直的判定与性质[考纲传真] 1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.1.直线与平面垂直(1)定义:如果直线l 与平面α内的任意一条直线都垂直,则直线l 与平面α垂直. (2)判定定理与性质定理2.(1)平面的一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角. (2)当直线与平面垂直和平行(或直线在平面内)时,规定直线和平面所成的角分别为90°和0°. (3)范围:⎣⎢⎡⎦⎥⎤0,π2.3.二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角. (3)范围:[0,π]. 4.平面与平面垂直(1)定义:如果两个平面所成的二面角是直二面角,就说这两个平面互相垂直. (2)判定定理与性质定理[1.直线与平面垂直的五个结论(1)若一条直线垂直于一个平面,则这条直线垂直于这个平面内的任意直线.(2)若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(3)垂直于同一条直线的两个平面平行.(4)一条直线垂直于两平行平面中的一个,则这条直线与另一个平面也垂直.(5)两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.2.三种垂直关系的转化线线垂直判定定理性质线面垂直判定定理性质定理面面垂直[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)直线l与平面α内的无数条直线都垂直,则l⊥α.()(2)垂直于同一个平面的两平面平行.()(3)直线a⊥α,b⊥α,则a∥b.()(4)若α⊥β,a⊥β⇒a∥α.()[答案](1)×(2)×(3)√(4)×2.设l,m,n均为直线,其中m,n在平面α内,则“l⊥α”是“l⊥m且l⊥n”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件A[l⊥α⇒l⊥m,l⊥n;反之,不一定成立,因为m,n不一定相交,故选A.]3.(教材改编)下列命题中不正确的是()A.如果平面α⊥平面β,且直线l∥平面α,则直线l⊥平面βB.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βC.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γA[A错误,l与β可能平行或相交,其余选项均正确.]4.(教材改编)如图所示,已知PA⊥平面ABC,BC⊥AC,则图中直角三角形的个数为________.4[∵PA⊥平面ABC,∴PA⊥AB,PA⊥AC,PA⊥BC,则△PAB,△PAC为直角三角形.由BC⊥AC,且AC∩PA=A,∴BC⊥平面PAC,从而BC⊥PC.因此△ABC,△PBC也是直角三角形.]5.(教材改编)在三棱锥P-ABC中,点P在平面ABC中的射影为点O.(1)若PA=PB=PC,则点O是△ABC的________心;(2)若PA⊥PB,PB⊥PC,PC⊥PA,则点O是△ABC的________心.(1)外(2)垂[(1)如图,∵PO⊥平面ABC,连接OA,OB,OC,在Rt△POA中,OA2=PA2-PO2,同理OB2=PB2-PO2,OC2=PC2-PO2.又PA=PB=PC,故OA=OB=OC,∴O是△ABC的外心.(2)由PA⊥PB,PA⊥PC可知PA⊥平面PBC,∴PA⊥BC,又PO⊥BC,∴BC⊥平面PAO,∴AO⊥BC,同理BO⊥AC,CO⊥AB.故O是△ABC的垂心.]直线与平面垂直的判定与性质【例1】如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.[证明](1)在四棱锥P-ABCD中,∵PA⊥底面ABCD,CD⊂平面ABCD,∴PA⊥CD.又∵AC ⊥CD ,PA ∩AC =A , PA ,AC ⊂平面PAC , ∴CD ⊥平面PAC .而AE ⊂平面PAC ,∴CD ⊥AE .(2)由PA =AB =BC ,∠ABC =60°,可得AC =PA . ∵E 是PC 的中点,∴AE ⊥PC . 由(1)知AE ⊥CD ,且PC ∩CD =C , PC ,CD ⊂平面PCD , ∴AE ⊥平面PCD ,而PD ⊂平面PCD ,∴AE ⊥PD . ∵PA ⊥底面ABCD ,AB ⊂平面ABCD , ∴PA ⊥AB .又∵AB ⊥AD ,且PA ∩AD =A , ∴AB ⊥平面PAD ,而PD ⊂平面PAD , ∴AB ⊥PD .又∵AB ∩AE =A , AB ,AE ⊂平面ABE , ∴PD ⊥平面ABE .如图所示,已知AB 为圆O 的直径,点D 为线段AB 上一点,且AD=13DB ,点C 为圆O 上一点,且BC =3AC ,PD ⊥平面ABC ,PD =DB . 求证:PA ⊥CD .[证明] 因为AB 为圆O 的直径,所以AC ⊥CB ,在Rt △ACB 中,由3AC =BC ,得∠ABC =30°.设AD =1,由3AD =DB ,得DB =3,BC =23,由余弦定理得CD 2=DB 2+BC 2-2DB ·BC cos 30°=3,所以CD 2+DB 2=BC 2,即CD ⊥AB . 因为PD ⊥平面ABC ,CD ⊂平面ABC ,所以PD ⊥CD ,由PD ∩AB =D ,得CD ⊥平面PAB ,又PA ⊂平面PAB ,所以PA ⊥CD .平面与平面垂直的判定与性质【例2】 (2018·北京高考节选)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,E 是AD 的中点.求证: (1)PE ⊥BC ;(2)平面PAB ⊥平面PCD .[证明] (1)∵PA =PD ,E 是AD 的中点, ∴PE ⊥AD .又ABCD 为矩形,∴AD ∥BC , ∴PE ⊥BC .(2)因为ABCD 为矩形,所以AB ⊥AD .又平面PAD ⊥平面ABCD ,所以AB ⊥平面PAD , 所以AB ⊥PD .又PA ⊥PD ,所以PD ⊥平面PAB . 又PD ⊂平面PCD , 所以平面PAB ⊥平面PCD .BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E -ACD 的体积为63,求该三棱锥的侧面积. [解] (1)证明:因为四边形ABCD 为菱形,所以AC ⊥BD . 因为BE ⊥平面ABCD ,所以AC ⊥BE . 故AC ⊥平面BED . 又AC ⊂平面AEC , 所以平面AEC ⊥平面BED .(2)设AB =x ,在菱形ABCD 中,由∠ABC =120°,可得AG =GC =32x ,GB =GD =x 2. 因为AE ⊥EC ,所以在Rt △AEC 中,可得EG =32x .由BE ⊥平面ABCD ,知△EBG 为直角三角形,可得BE =22x . 由已知得,三棱锥E -ACD 的体积V E -ACD =13×12AC ·GD ·BE =624x 3=63,故x =2.从而可得AE =EC =ED =6.所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为5. 故三棱锥E -ACD 的侧面积为3+25.平行与垂直的综合问题【例3】 如图1,在直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =2CD ,DE ⊥AB ,沿DE 将△AED 折起到△A 1ED 的位置,连接A 1B ,A 1C ,M ,N 分别为A 1C ,BE 的中点,如图2.图1 图2(1)求证:DE ⊥A 1B ; (2)求证:MN ∥平面A 1ED ;(3)在棱A 1B 上是否存在一点G ,使得EG ⊥平面A 1BC ?若存在,求出A 1GGB 的值;若不存在,说明理由.[解] (1)证明:∵在直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =2CD ,DE ⊥AB , 沿DE 将△AED 折起到△A 1ED 的位置,∴DE ⊥A 1E ,DE ⊥BE , ∵A 1E ∩BE =E ,∴DE ⊥平面A 1BE , ∵A 1B ⊂平面A 1BE ,∴DE ⊥A 1B . (2)证明:取CD 中点F ,连接NF ,MF , ∵M ,N 分别为A 1C ,BE 的中点, ∴MF ∥A 1D ,NF ∥DE ,又DE ∩A 1D =D ,NF ∩MF =F ,DE ⊂平面A 1DE ,A 1D ⊂平面A 1DE ,NF ⊂平面MNF ,MF ⊂平面MNF .∴平面A 1DE ∥平面MNF ,∴MN ∥平面A 1ED .(3)取A 1B 的中点G ,连接EG , ∵A 1E =BE , ∴EG ⊥A 1B ,由(1)知DE ⊥平面A 1BE ,∵DE∥BC,∴BC⊥平面A1BE,∴EG⊥BC,又A1B∩BC=B,∴EG⊥平面A1BC.故棱A1B上存在中点G,使得EG⊥平面A1BC,此时A1GGB=1.点D),延长AE交BC于点F,将△ABD沿BD折起,得到三棱锥A1-BCD,如图2所示.图1图2(1)若M是FC的中点,求证:直线DM∥平面A1EF;(2)求证:BD⊥A1F;(3)若平面A1BD⊥平面BCD,试判断直线A1B与直线CD能否垂直?请说明理由.[解](1)证明:因为D,M分别为AC,FC的中点,所以DM∥EF.又EF⊂平面A1EF,DM⊄平面A1EF,所以DM∥平面A1EF.(2)证明:因为A1E⊥BD,EF⊥BD,且A1E∩EF=E,所以BD⊥平面A1EF.又A1F⊂平面A1EF,故BD⊥A1F.(3)A1B与CD不能垂直.因为平面A1BD⊥平面BCD,平面A1BD∩平面BCD=BD,EF⊥BD,EF⊂平面BCD,∴EF⊥平面A1BD.∴EF⊥A1B,又EF∥DM,∴A1B⊥DM.若A1B⊥CD,则A1B⊥平面BCD.所以A1B⊥BD,这与∠A1BD为锐角矛盾.所以A1B与CD不能垂直.1.(2016·全国卷Ⅱ)α,β是两个平面,m ,n 是两条直线,有下列四个命题: ①如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. ②如果m ⊥α,n ∥α,那么m ⊥n . ③如果α∥β,m ⊂α,那么m ∥β.④如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有________.(填写所有正确命题的编号) ②③④ [根据相关知识,对四个命题逐个判断. 对于①,α,β可以平行,可以相交也可以垂直,故错误.对于②,由线面平行的性质定理知存在直线l ⊂α,n ∥l ,又m ⊥α,所以m ⊥l ,所以m ⊥n ,故正确. 对于③,因为α∥β,所以α,β没有公共点.又m ⊂α,所以m ,β没有公共点,由线面平行的定义可知m ∥β,故正确.对于④,因为m ∥n ,所以m 与α所成的角和n 与α所成的角相等.因为α∥β,所以n 与α所成的角和n 与β所成的角相等,所以m 与α所成的角和n 与β所成的角相等,故正确.]2.(2018·全国卷Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD ︵所在平面垂直,M 是CD ︵上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M -ABC 体积最大时,求面MAB 与面MCD 所成二面角的正弦值.[解] (1)证明:由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,所以BC ⊥DM . 因为M 为CD ︵上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz . 当三棱锥M -ABC 体积最大时,M 为CD ︵的中点.由题设得D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1), AM →=(-2,1,1),AB →=(0,2,0),DA →=(2,0,0).设n =(x ,y ,z )是平面MAB 的法向量,则⎩⎪⎨⎪⎧n ·AM →=0,n ·AB →=0,即⎩⎨⎧-2x +y +z =0,2y =0. 可取n =(1,0,2).DA →是平面MCD 的法向量, 因此cos 〈n ,DA →〉=n ·DA →|n ||DA →|=55,sin 〈n ,DA →〉=255.所以面MAB 与面MCD 所成二面角的正弦值是255.。
高中数学线面、面面垂直的判定与性质

线面、面面垂直的判定与性质知识回顾1.直线与平面垂直的判定(1)定义:如果直线l 与平面α内的任意一条直线都垂直,就说直线l 与平面α垂直,记作l ⊥α.(2)判定定理文字表述:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.符号表述:⎭⎪⎬⎪⎫l ⊥a l ⊥b⇒l ⊥α. 2.直线与平面垂直的性质文字表述:垂直于同一个平面的两条直线平行。
符号表述:⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒ a ∥b 3. 直线与平面所成的角定义:平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.4.平面与平面的垂直的判定(1)定义:如果两个平面相交,且它们所成的二面角是直角,就说这两个平面互相垂直.(2)面面垂直的判定定理文字语言:一个平面过另一个平面的垂线,则这两个平面垂直.符号表示:⎭⎪⎬⎪⎫a ⊥β⇒α⊥β. 5.平面与平面垂直的性质两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直. 用符号表示为:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β. 6.二面角二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.二面角的平面角:如图,在二面角α-l-β的棱l上任取一点O,在半平面α和β内分别作垂直于棱l的射线OA和OB,则∠AOB叫做二面角的平面角.题型讲解题型一例1、空间四边形ABCD的四边相等,则它的两对角线AC、BD的关系是()A.垂直且相交 B.相交但不一定垂直C.垂直但不相交 D.不垂直也不相交答案:C例2、如图所示,PA⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数为()A.4 B.3 C.2 D.1答案:A例3、如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱B1C1、B1B的中点.求证:CF⊥平面EAB.证明在平面B1BCC1中,∵E、F分别是B1C1、B1B的中点,∴△BB1E≌△CBF,∴∠B1BE=∠BCF,∴∠BCF+∠EBC=90°,∴CF⊥BE,又AB⊥平面B1BCC1,CF⊂平面B1BCC1,∴AB⊥CF,AB∩BE=B,∴CF⊥平面EAB.题型二例4、若m 、n 表示直线,α表示平面,则下列命题中,正确命题的个数为( ) ①⎭⎪⎬⎪⎫m ∥n m ⊥α⇒n ⊥α; ② ⎭⎪⎬⎪⎫m ⊥αn ⊥α⇒m ∥n ; ③⎭⎪⎬⎪⎫m ⊥αn ∥α⇒M ⊥n; ④⎭⎪⎬⎪⎫m ∥αm ⊥n ⇒n ⊥α.A .1B .2C .3D .4答案:C例5、如图所示,在正方体ABCD —A 1B 1C 1D 1中,M 是AB 上一点,N 是A 1C 的中点,MN ⊥平面A 1DC .求证:(1)MN ∥AD 1; (2)M 是AB 的中点.证明 (1)∵ADD 1A 1为正方形, ∴AD 1⊥A 1D .又∵CD ⊥平面ADD 1A 1,∴CD ⊥AD 1. ∵A 1D∩CD =D ,∴AD 1⊥平面A 1DC . 又∵MN ⊥平面A 1DC , ∴MN ∥AD 1.(2)连接ON ,在△A 1DC 中, A 1O =OD ,A 1N =NC . ∴ON12CD 12AB , ∴ON ∥AM . 又∵MN ∥OA ,∴四边形AMNO 为平行四边形,∴ON =AM .∵ON =12AB ,∴AM =12AB ,∴M 是AB 的中点.题型三例6、直线a 与平面α所成的角为50°,直线b ∥a ,则直线b 与平面α所成的角等于( )A .40°B .50°C .90°D .150°答案:B例7、在正方体ABCD -A 1B 1C 1D 1中,(1)直线A 1B 与平面ABCD 所成的角是________; (2)直线A 1B 与平面ABC 1D 1所成的角是________; (3)直线A 1B 与平面AB 1C 1D 所成的角是________. 答案:(1)45° (2)30° (3)90° 题型四例6、在边长为1的菱形ABCD 中,∠ABC =60°,把菱形沿对角线AC 折起,使折起后BD =32,则二面角B -AC -D 的余弦值为( ) A .13 B .12 C .223 D .32答案:B [如图所示,由二面角的定义知∠BOD 即为二面角的平面角. ∵DO =OB =BD =32, ∴∠BOD =60°.]例7、过正方形ABCD 的顶点A 作线段AP ⊥平面ABCD ,且AP =AB ,则平面ABP 与平面CDP 所成的二面角的度数是________.答案:45° 题型五例8、下列命题中正确的是()A.平面α和β分别过两条互相垂直的直线,则α⊥βB.若平面α内的一条直线垂直于平面β内两条平行线,则α⊥βC.若平面α内的一条直线垂直于平面β内两条相交直线,则α⊥βD.若平面α内的一条直线垂直于平面β内无数条直线,则α⊥β答案:C例9、如图所示,四棱锥P—ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=3.(1)证明:平面PBE⊥平面PAB;(2)求二面角A—BE—P的大小.9.(1)证明如图所示,连接BD,由ABCD是菱形且∠BCD=60°知,△BCD是等边三角形.因为E是CD的中点,所以BE⊥CD.又AB∥CD,所以BE⊥AB.又因为PA⊥平面ABCD,BE⊂平面ABCD,所以PA⊥BE.而PA∩AB=A,因此BE⊥平面PAB.又BE⊂平面PBE,所以平面PBE⊥平面PAB.(2)解由(1)知,BE⊥平面PAB,PB⊂平面PAB,所以PB⊥BE.又AB⊥BE,所以∠PBA是二面角A—BE—P的平面角.在Rt△PAB中,tan∠PBA=PAAB=3,则∠PBA=60°.故二面角A—BE—P的大小是60°.题型六例10、平面α⊥平面β,直线a∥α,则()A.a⊥β B.a∥βC.a与β相交 D.以上都有可能答案:D例11、如图所示,在多面体P—ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD 是等边三角形,已知BD=2AD=8,AB=2DC=45.(1)设M是PC上的一点,求证:平面MBD⊥平面PAD;(2)求四棱锥P—ABCD的体积.11.(1)证明在△ABD中,∵AD=4,BD=8,AB=45,∴AD2+BD2=AB2.∴AD⊥BD.又∵面PAD⊥面ABCD,面PAD∩面ABCD=AD,BD⊂面ABCD,∴BD⊥面PAD,又BD⊂面BDM,∴面MBD⊥面PAD.(2)解过P作PO⊥AD,∵面PAD⊥面ABCD,∴PO⊥面ABCD,即PO为四棱锥P—ABCD的高.又△PAD是边长为4的等边三角形,∴PO=23.在底面四边形ABCD中,AB∥DC,AB=2DC,∴四边形ABCD为梯形.在Rt△ADB中,斜边AB边上的高为4×845=855,此即为梯形的高. ∴S 四边形ABCD =25+452×855=24. ∴V P —ABCD =13×24×23=163.跟踪训练1.正方体A 1B 1C 1D 1-ABCD 中,截面A 1BD 与底面ABCD 所成二面角A 1-BD -A 的正切值等于( )A .33B .22C . 2D . 3答案:C[解析] 设AC 、BD 交于O ,连A 1O ,∵BD ⊥AC ,BD ⊥AA 1,∴BD ⊥平面AA 1O ,∴BD ⊥A 1O ,∴∠A 1OA 为二面角的平面角. tan ∠A 1OA =A 1AAO=2,∴选C.2.过两点与一个已知平面垂直的平面( ) A .有且只有一个 B .有无数个 C .有且只有一个或无数个 D .可能不存在答案:C [当两点连线与平面垂直时,有无数个平面与已知平面垂直,当两点连线与平面不垂直时,有且只有一个平面与已知平面垂直.]3.如图,正方体ABCD -A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总是保持AP ⊥BD 1,则动点P 的轨迹是( )A .线段B 1C B .线段BC 1C .BB 1中点与CC 1中点连成的线段D .BC 中点与B 1C 1中点连成的线段 答案:A[解析] ∵DD 1⊥平面ABCD , ∴D 1D ⊥AC ,又AC ⊥BD ,∴AC ⊥平面BDD 1, ∴AC ⊥BD 1.同理BD 1⊥B 1C. 又∵B 1C ∩AC =C , ∴BD 1⊥平面AB 1C.而AP ⊥BD 1,∴AP ⊂平面AB 1C.又P ∈平面BB 1C 1C ,∴P 点轨迹为平面AB 1C 与平面BB 1C 1C 的交线B 1C.故选A. 4.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱AA 1和AB 上的点,若∠B 1MN 是直角,则∠C 1MN =________.答案:90°解析 ∵B 1C 1⊥面ABB 1A 1, ∴B 1C 1⊥MN . 又∵MN ⊥B 1M , ∴MN ⊥面C 1B 1M , ∴MN ⊥C 1M .∴∠C 1MN =90°.5.如图所示,平面α⊥平面β,A ∈α,B ∈β,AA′⊥A′B′,BB′⊥A′B′,且AA′=3,BB′=4,A′B′=2,则三棱锥A -A′BB′的体积V =________.答案: 4[解析] ∵α⊥β,α∩β=A′B′,AA′⊂α,AA′⊥A′B′, ∴AA′⊥β,∴V =13S △A′BB′·AA′=13×(12A′B′×BB′)×AA′=13×12×2×4×3=4.6. 如图所示,已知PA 垂直于⊙O 所在的平面,AB 是⊙O 的直径,C 是⊙O 上任意一点,过点A 作AE ⊥PC 于点E .求证:AE ⊥平面PBC .证明 ∵PA ⊥平面ABC ,∴PA ⊥BC . 又∵AB 是⊙O 的直径,∴BC ⊥AC . 而PA ∩AC =A ,∴BC ⊥平面PAC . 又∵AE ⊂平面PAC ,∴BC ⊥AE .又∵PC ⊥AE ,且PC ∩BC =C ,∴AE ⊥平面PBC .7.如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,AD =DE =2AB ,F 为CD 的中点.求证:平面BCE ⊥平面CDE.证明 取CE 的中点G ,连接FG ,BG ,AF. ∵F 为CD 的中点, ∴GF ∥DE ,且GF =12DE.∵AB ⊥平面ACD ,DE ⊥平面ACD , ∴AB ∥DE.则GF ∥AB. 又∵AB =12DE ,∴GF =AB.则四边形GFAB 为平行四边形.于是AF ∥BG. ∵△ACD 为等边三角形,F 为CD 的中点, ∴AF ⊥CD.∵DE ⊥平面ACD ,AF ⊂平面ACD ,∴DE ⊥AF. 又∵CD ∩DE =D ,CD ,DE ⊂平面CDE , ∴AF ⊥平面CDE.∵BG ∥AF ,∴BG ⊥平面CDE.∵BG ⊂平面BCE ,∴平面BCE ⊥平面CDE.8.如图,在四棱锥P-ABCD中,底面是边长为a的正方形,侧棱PD=a,PA=PC=2a,求证:(1)PD⊥平面ABCD;(2)平面PAC⊥平面PBD;(3)二面角P-BC-D是45°的二面角.证明(1)∵PD=a,DC=a,PC=2a,∴PC2=PD2+DC2.∴PD⊥DC.同理可证PD⊥AD,又AD∩DC=D,∴PD⊥平面ABCD.(2)由(1)知PD⊥平面ABCD,∴PD⊥AC.而四边形ABCD是正方形,∴AC⊥BD.又BD∩PD=D,∴AC⊥平面PBD.又AC⊂平面PAC,∴平面PAC⊥平面PBD.(3)由(1)知PD⊥BC,又BC⊥DC,∴BC⊥平面PDC.∴BC⊥PC.∴∠PCD为二面角P-BC-D的平面角.在Rt△PDC中,PD=DC=a,∴∠PCD=45°.∴二面角P-BC-D是45°的二面角.6.如图,在直三棱柱ABC—A1B1C1中,AA1=AC,且BC1⊥A1C.(1)求证:平面ABC1⊥平面A1ACC1;(2)若D、E分别是A1C1和BB1的中点,求证:DE∥平面ABC1.11解析: (1)∵直三棱柱ABC -A 1B 1C 1中,AA 1=AC , ∴ACC 1A 1为正方形, ∴A 1C ⊥AC 1.又∵BC 1⊥A 1C ,AC 1∩BC 1=C 1,∴A 1C ⊥平面ABC 1, 又∵A 1C ⊂平面A 1ACC 1, ∴平面A 1ACC 1⊥平面ABC 1.(2)如图,取AA 1的中点F ,连接DF 、EF.∵D 、E 、F 分别为A 1C 1、BB 1、AA 1的中点, ∴DF ∥AC 1,EF ∥AB ,DF∩EF =F , ∴平面DEF ∥平面ABC 1, ∴DE ∥平面ABC 1.。
高中数学面面垂直的判定与性质面面垂直的判定与性质新人教A版必修

法二
在 α 内作直线 m 垂直于 α 与 γ 的交线,在 β 内作直线 n
垂直于 β 与 γ 的交线, ∵α⊥γ,β⊥γ,∴m⊥γ,n⊥γ. ∴m∥n.又 n⊂β,∴m∥β.又 m⊂α,α∩β=l, ∴m∥l.∴l⊥γ.
【变式 2】 如图,在三棱锥 P-ABC 中,PA⊥平面 ABC,平面 PAB⊥平面 PBC.求证:BC⊥AB.
面面垂直 线面垂直
例4 , a , a , 判断a与 位置关系 α 解:设 l
在α内作直线b⊥l
β l b b 又a a // b b l a
bl
b a // a
答案 2
6.如图所示,四边形ABCD为正方形,SA垂直于 四边形ABCD所在的平面,过点A且垂直于SC的平 面分别交SB,SC,SD于点E,F,G. 求证:AE⊥SB,AG⊥SD. 证明 因为SA⊥平面ABCD, 所以SA⊥BC. 又BC⊥AB,SA∩AB=A,所以BC⊥平面SAB, 又AE⊂平面SAB,所以BC⊥AE. 因为SC⊥平面AEFG,所以SC⊥AE. 又BC∩SC=C,所以AE⊥平面SBC, 所以AE⊥SB.同理可证AG⊥SD.
答:二面角的平面角与其顶点的位置无 任何关系,只与二面角的张角大小有关。
平面角是直角的二 面角叫做直二面角
当两个半平面重合时,平面角为0 °, 当两个半平面合成一个平面时,平面角为180 °
9-5线面、面面垂直的判定及性质-高考数学总复习·人教A版数学

误区警示
1.不要将
ab⊥⊥αα⇒a∥b 及
aa⊥⊥αβ⇒α∥β,及
a∥b
a∥c
⇒b∥c,及 αα∥∥βγ⇒β∥γ,错误迁移到 αα⊥⊥γβ⇒β∥γ、
ab∥∥αα⇒a∥b、
aa⊥⊥bc⇒b⊥c、
aa⊥⊥bc⇒b∥c 及
α⊥β
α⊥γ
⇒β⊥γ 致误..
2.不要将“经过一点有且仅有一条直线与平面垂 直”;“经过一点有且仅有一个平面与已知直线垂直”; “经过平面外一点有无数条直线与已知平面平行,这无 数条直线在同一个平面内,即经过平面外一点有且仅有 一个平面与已知平面平行”;“经过直线外一点有且仅 有一条直线 l 与已知直线平行,有无数个平面与已知直线 平行,这无数个平面的交线为 l”弄混错用.
面 A1BC1 与平面 AB1D 相交于经过 D 点的一条交线,又 A1B⊂平面 A1BC1,AB1⊂平面 AB1D,设 AB1 与 A1B 相 交于 O,∴平面 A1BC1∩平面 AB1D=OD,故只须证明
BC1∥OD.
解析:(1)D 为 A1C1 的中点,证明如下:
∵BC1∥平面 AB1D,BC1⊂平面 A1BC1,
D.a⊥α,b⊥β
[答案] D
[解析]
bα⊥⊥ββ⇒b∥α 或 b⊂α,又 a∥α,此时 a 与
b 位置关系不确定,排除 A;设 α∩β=l,当 a∥b∥l 时,
排除 B;同 A 的讨论一样可排除 C;
aα⊥⊥αβ⇒a∥β或a⊂β⇒a⊥b,故 D 正确.
b⊥β
线面垂直的判定与性质
[例 2] 已知长方体 AC1 中,棱 AB=BC=1,棱 BB1 =2,连结 B1C,过 B 点作 B1C 的垂线交 CC1 于 E,交 B1C 于 F.
【把握高考】高三数学最新专题课件 第九章 9.5《直线.平面的垂直判定及其性质》人教版必修

S△ABC=12× 2× 2×sin 60°= 23,
所以三棱锥 D-ABC 的表面积为:
S=12×3+ 23=3+2
3 .
2.无论是线面垂直还是面面垂直,都源自于线与线 的垂直,这种转化为“低维”垂直的思想方法,在解题时 非常重要.在处理实际问题的过程中,可以先从题设条件 入手,分析已有的垂直关系,再从结论入手分析所要证明 的垂直关系,从而架起已知与未知之间的“桥梁”.
第九章 立体几何初步
3.空间中直线与直线垂直、直线与平面垂直、平面与 平面垂直三者之间可以相互转化,每一种垂直的判定都是 从某种垂直开始转向另一种垂直,最终达到目的,其转化
别是边G1G2、G2G3的中点,D是EF的中点,现沿SE、SF
及EF把这个正方形折成一个几何体(如图(b)),使G1、
G2、G3三点重合于点G,这样,下面结论成立的是( )
A.SG⊥平面EFG
B.SD⊥平面EFG
C.GF⊥平面SEF
D.GD⊥平面SEF
第九章 立体几何初步
关键提示:注意折叠前与折叠后哪些垂直关系没有变 化,再结合线面垂直的判定定理得出结论.
解析:(方法 1:直接法)图(a)中,SG1⊥G1E,SG3⊥G3F, 在图(b)中,SG⊥GE,SG⊥GF,所以 SG⊥平面 EFG. 所以应选. (方法 2:排除法)GF 即 G2F 不垂直于 SF, 所以可以否定 C;
在△GSD 中,SG=a(正方形边长),GD= 42a,SD=3 4 2a, 所以 SG2≠SD2+GD2,即∠SDG≠90°,从而否定 B 和 D,
第九章 立体几何初步
(2)连结BD,因为AB=AD,∠BAD=60°, 所以△ABD为正三角形. 因为F是AD的中点,所以BF⊥AD. 因为平面PAD⊥平面ABCD,BF⊂平面ABCD, 平面PAD∩平面ABCD=AD,所以BF⊥平面PAD, 又因为BF⊂平面BEF,所以平面BEF⊥平面PAD.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020高考数学人教A 版课后作业:9-5 线面、面面垂直的判定及性质1.(文)(2020·北京海淀区期末)已知m ,n 是两条不同的直线,α,β是两个不同的平面.下列命题中不正确的是( )A .若m ∥α,α∩β=n ,则m ∥nB .若m ∥n ,m ⊥α,则n ⊥αC .若m ⊥α,m ⊥β,则α∥βD .若m ⊥α,m ⊂β,则α⊥β [答案] A[解析] 选项A 中,直线m 与直线n 也可能异面,因此A 不正确.(理)(2020·芜湖十二中)已知两条不同的直线m 、n ,两个不同的平面α、β,则下列命题中的真命题是( )A .若m ⊥α,n ⊥β,α⊥β,则m ⊥nB .若m ∥α,n ∥β,α∥β,则m ∥nC .若m ⊥α,n ∥β,α⊥β,则m ⊥nD .若m ∥α,n ⊥β,α⊥β,则m ∥n [答案] A [解析]⎭⎬⎫⎭⎪⎬⎪⎫m ⊥αα⊥β⇒m ∥β或m ⊂β n ⊥β⇒m ⊥n ,故A 正确; 如图(1),m ⊥α,n ⊥α满足n ∥β,但m ∥n ,故C 错;如图(2)知B 错;如图(3)正方体中,m ∥α,n ⊥β,α⊥β,知D 错.2.(文)(2020·东莞模拟)若l 为一条直线,α、β、γ为三个互不重合的平面,给出下面三个命题:①α⊥γ,β⊥γ⇒α⊥β;②α⊥γ,β∥γ⇒α⊥β;③l∥α,l⊥β⇒α⊥β.其中的真命题有( )A.0个B.1个C.2个D.3个[答案] C[解析]①中α与β可能平行,故①错,②③正确.(理)(2020·北京市朝阳区模拟)设α,β,γ是三个不重合的平面,l是直线,给出下列命题①若α⊥β,β⊥γ,则α⊥γ;②若l上两点到α的距离相等,则l∥α;③若l⊥α,l∥β,则α⊥β;④若α∥β,l⊄β,且l∥α,则l∥β.其中正确的命题是( )A.①②B.②③C.②④D.③④[答案] D[解析]对于①:若α⊥β,β⊥γ,则可能α⊥γ,也可能α∥γ.对于②:若l上两点到α的距离相等,则l∥α,显然错误.当l⊥α,l∩α=A时,l上到A距离相等的两点到α的距离相等.③④显然正确.3.(2020·安徽省皖南八校联考)设l,m是两条不同的直线,α是一个平面,则下列命题正确的是( )A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,m⊂α,则l⊥mC.若l∥α,l∥m,则m∥αD.若l∥α,m∥α,则l∥m[答案] B[解析]直线垂直于平面中两条相交直线,才能垂直于平面,故A错;C中m可能包含在平面α中;D中两条直线可能平行、相交或异面.4.(2020·广东省深圳市高三调研)如下图,在立体图形D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列结论正确的是( )A.平面ABC⊥平面ABDB.平面ABD⊥平面BDCC.平面ABC⊥平面BDE,且平面ADC⊥平面BDED.平面ABC⊥平面ADC,且平面ADC⊥平面BDE[答案] C[解析]要判断两个平面的垂直关系,就需找一个平面内的一条直线与另一个平面垂直.因为AB=CB,且E是AC的中点,所以BE⊥AC,同理有DE⊥AC,于是AC⊥平面BDE.因为AC在平面ABC内,所以平面ABC⊥平面BDE.又由于AC⊂平面ACD,所以平面ACD⊥平面BDE.所以选C.5.定点A和B都在平面α内,定点P∉α,PB⊥α,C是α内异于A和B的动点,且PC ⊥AC.那么,动点C在平面α内的轨迹是( )A.一条线段,但要去掉两个点B.一个圆,但要去掉两个点C.一个椭圆,但要去掉两个点D.半圆,但要去掉两个点[答案] B[解析]连接BC,∵PB⊥α,∴AC⊥PB.又∵PC⊥AC,∴AC⊥BC.∴C在以AB为直径的圆上.故选B.6.(2020·济宁三模)在正三棱柱ABC-A1B1C1中,若AB=2,AA1=1,则点A到平面A1BC 的距离为( )A.34B.32C.334D. 3[答案] B[解析]解法1:取BC中点E,连接AE、A1E,过点A作AF⊥A1E,垂足为F. ∵A1A⊥平面ABC,∴A1A⊥BC,∵AB=AC.∴AE⊥BC.∴BC⊥平面AEA1.∴BC⊥AF,又AF⊥A1E,∴AF⊥平面A1BC.∴AF的长即为所求点A到平面A1BC的距离.∵AA1=1,AE=3,∴AF=32.解法2:V A1-ABC=13S△ABC·AA1=13×3×1=33.又∵A1B=A1C=5,在△A1BE中,A1E=A1B2-BE2=2.∴S△A1BC=12×2×2=2.∴V A-A1BC=13×S△A1BC·h=23h.∴23h=33,∴h=32.∴点A到平面A1BC距离为32.7.(2020·河北唐山)如下图,在直四棱柱ABCD-A1B1C1D1中,∠ADC=90°,且AA1=AD =DC=2,M∈平面ABCD,当D1M⊥平面A1C1D时,DM=________.[答案]2 2[解析]∵DA=DC=DD1且DA、DC、DD1两两垂直,故当点M使四边形ADCM为正方形时,D1M⊥平面A1C1D,∴DM=2 2.8.(2020·安徽巢湖市质检)已知正方体ABCD-A1B1C1D1的棱长为1,E,F,G分别是AB,BC,B1C1的中点.下列命题正确的是________(写出所有正确命题的编号).①以正方体的顶点为顶点的三棱锥的四个面最多只有三个面是直角三角形;②P在直线FG上运动时,AP⊥DE;③Q在直线BC1上运动时,三棱锥A-D1QC的体积不变;④M是正方体的面A1B1C1D1内到点D和C1距离相等的点,则M点的轨迹是一条线段.[答案]②③④[解析]三棱锥A1-ABC的四个面都是Rt△,故①错;F在FG上运动时,PF⊥平面ABCD,∴PF⊥DE,又在正方体ABCD中,E、F为AB、BC中点,∴AF⊥DE,∴DE⊥平面PAF,∴DE⊥PA,故②真;V A-DQC=V Q-AD1C,∵BC1∥A D1,∴BC1∥平面AD1C,∴无论点Q在BC1上怎样运1动,Q到平面AD1C距离都相等,故③真;到点D和C1距离相等的点在经过线段C1D的中点与DC1垂直的平面α上,故点M为平面α与正方体的面A1B1C1D1相交线段上的点,这条线段即A1D1.1.(2020·海淀检测)若正四棱柱ABCD-A1B1C1D1的底面边长为1,AB1与底面ABCD成60°角,则A1C1到底面ABCD的距离为( )A.3 3B.1C. 2D. 3[答案] D[解析]依题可知∠B1AB=60°,平面A1B1C1D1∥平面ABCD,A1C1⊂平面A1B1C1D1,∴B1B即为所求距离,在△ABB1中得,B1B= 3.故选D.2.(2020·广东广州一模)已知l,m是不同的两条直线,α,β是不重合的两个平面,则下列命题中为真命题的是( )A.若l⊥α,α⊥β,则l∥βB.若l∥α,α⊥β,则l∥βC.若l⊥m,α∥β,m⊂β,则l⊥αD.若l⊥α,α∥β,m⊂β,则l⊥m[答案] D[解析]⎭⎬⎫⎭⎪⎬⎪⎫l⊥αα∥β⇒l⊥βm⊂β⇒l⊥m.3.(文)如下图,在长方体ABCD-A1B1C1D1中,AB=BC=2,A1D与BC1所成的角为π2,则BC1与平面BB1D1D所成角的正弦值为( )A.63 B.12 C.155D.32[答案] B [解析]连接B 1C ,∴B 1C ∥A 1D ,∵A 1D 与BC 1所成的角为π2,∴B 1C ⊥BC 1,∴长方体ABCD -A 1B 1C 1D 1为正方体,取B 1D 1的中点M ,连接C 1M ,BM ,∴C 1M ⊥平面BB 1D 1D ,∴∠C 1BM 为BC 1与平面BB 1D 1D 所成的角,∵AB =BC =2,∴C 1M =2,BC 1=22, ∴sin ∠C 1BM =C 1M C 1B =12,故选B. (理)(2020·泰安质检)如下图,在棱长均为1的三棱锥S -ABC 中,E 为棱SA 的中点,F 为△ABC 的中心,则直线EF 与平面ABC 所成角的正切值是( )A .2 2B .1 C. 2 D.22[答案] C[解析]∵F为正三棱锥底面中心,∴SF⊥平面ABC,∴平面SAF⊥平面ABC,∴∠EFA为EF与平面ABC所成的角,易知AE=12,AF=33,又EF=12SA=12,∴cos∠FAE=AF2+AE2-EF22AF·AE=33,∴sin∠FAE=1-cos2A=63,∴tan∠FAE= 2.由于Rt△SAF中E为SA的中点,∴∠FAE=∠EFA,故tan∠EFA= 2.4.过正方形ABCD之顶点A作PA⊥平面ABCD,若PA=AB,则平面ABP与平面CDP所成二面角的度数为( )A.30° B.45°C.60° D.90°[答案] B[解析]过P作直线l∥AB,则l为二面角的棱,易证∠APD即为所求.∵AP=AD,∠PAD=90°,∴∠APD=45°.5.如下图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD 的中点.(1)求证:AF∥平面BCE;(2)求证:平面BCE⊥平面CDE.[解析](1)取CE中点P,连接FP、BP,∵F为CD的中点,∴FP∥DE,且FP=12 DE.又AB∥DE,且AB=12 DE,∴AB∥FP,且AB=FP,∴四边形ABPF为平行四边形,∴AF∥BP.又∵AF⊄平面BCE,BP⊂平面BCE,∴AF∥平面BCE.(2)∵△ACD为正三角形,∴AF⊥CD.∵AB⊥平面ACD,DE∥AB,∴DE⊥平面ACD,又AF⊂平面ACD,∴DE⊥AF.又AF⊥CD,CD∩DE=D,∴AF⊥平面CDE.又BP∥AF,∴BP⊥平面CDE.又∵BP⊂平面BCE,∴平面BCE⊥平面CDE.6.(文)如下图,已知在直四棱柱ABCD-A1B1C1D1中,AD⊥DAB∥DC,DC=DD1=2AD=2AB =2.(1)求证:DB⊥平面B1BCC1;(2)设E是DC上一点,试确定E的位置,使得D1E∥平面A1BD,并说明理由.[解析](1)证明:∵AB∥DC,AD⊥DC,∴AB⊥AD,在Rt△ABD中,AB=AD=1,∴BD=2,易求BC=2,又∵CD=2,∴BD⊥BC.又BD⊥BB1,B1B∩BC=B,∴BD⊥平面B1BCC1.(2)DC的中点即为E点.∵DE∥AB,DE=AB,∴四边形ABED是平行四边形.∴AD綊BE.又AD綊A1D1,∴BE綊A1D1,∴四边形A1D1EB是平行四边形.∴D1E∥A1B.∵D1E⊄平面A1BD,A1B⊂平面A1BD,∴D1E∥平面A1BD.(理)(2020·北京文,17)如下图,在四面体PABC中,PC⊥AB、PA⊥BC,点D、E、F、G 分别是棱AP、AC、BC、PB的中点.(1)求证:DE∥平面BCP;(2)求证:四边形DEFG为矩形;(3)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.[解析](1)因为D,E分别为AP,AC的中点,所以DE∥PC,又因为DE⊄平面BCP,PC⊂平面BCP,所以DE∥平面BCP.(2)因为D,E,F,G分别为AP,AC,BC,PB的中点,所以DE∥PC∥FG,DG∥AB∥EF,所以四边形DEFG为平行四边形,又因为PC⊥AB,所以DE⊥DG,所以四边形DEFG为矩形.(3)存在点Q满足条件,理由如下:连接DF,EG,设Q为EG的中点,由(2)知,DF∩EG=Q,且QD=QE=QF=QG=12 EG,分别取PC,AB的中点M,N,连接ME,EN,NG,MG,MN.与(2)同理,可证四边形MENG为矩形,其对角线交点为EG的中点Q,且QM=QN=12 EG,所以EG的中点Q为满足条件的点.7.(2020·北京模拟)如下图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,M为CE的中点.(1)求证:BM ∥平面ADEF ; (2)求证:平面BDE ⊥平面BEC .[解析] (1)证明:延长DA 与CB 相交于P , ∵AB =AD =2,CD =4,AB ∥CD , ∴B 为PC 的中点,又M 为CE 的中点,∴BM ∥EP , ∵BM ⊄平面ADEF ,EP ⊂平面ADEF , ∴BM ∥平面ADEF .(2)证明:由(1)知,BC =12PC =12PD 2+CD 2=22,又BD =AD 2+AB 2=22, ∴BD 2+BC 2=CD 2,∴BD ⊥BC . 又平面ADEF ⊥平面ABCD ,ED ⊥AD , ∴ED ⊥平面ABCD ,∴ED ⊥BC , ∵ED ∩BD =D ,∴BC ⊥平面BDE , 又BC ⊂平面BEC , ∴平面BDE ⊥平面BEC .1.(2020·河南新乡调研)设α、β、γ为平面,l 、m 、n 为直线,则m ⊥β的一个充分条件为( )A .α⊥β,α∩β=l ,m ⊥lB .n ⊥α,n ⊥β,m ⊥αC .α∩γ=m ,α⊥γ,β⊥γD .α⊥γ,β⊥γ,m ⊥α [答案] B[解析] 如图①知A 错;如图②知C 错;如图③在正方体中,两侧面α与β相交于l ,都与底面γ垂直,γ内的直线m ⊥α,但m 与β不垂直,故D 错.⎭⎬⎫⎭⎪⎬⎪⎫n ⊥αn ⊥β⇒α∥βm ⊥α⇒m ⊥β,故B 正确.2.(2020·湖南十二校联考)如下图所示,四棱锥P-ABCD的底面是梯形,且BA⊥AD,CD ⊥AD,CD=2AB.PA⊥底面ABCD,E为PC的中点.PA=AD=AB=1.(1)证明:EB∥平面PAD;(2)求直线BD与平面PDC所成角的大小.[解析](1)证明:取PD的中点Q,连接EQ,AQ,则QE∥CD∥A B,且QE=12CD=AB,故四边形ABEQ是平行四边形.故EB∥AQ.又AQ⊂平面PAD,EB⊄平面PAD,故EB∥平面PAD.(2)解:∵CD⊥AD,PA⊥CD,∴CD⊥平面PAD.∵AQ⊂平面PA,∴AQ⊥CD.又可得AQ⊥PD,故AQ⊥平面PCD.又BE∥AQ,故BE⊥平面PDC.所以∠BDE为所求角的平面角.易得∠BDE=30°.3.(2020·广东省广州市高三年级调研测试)如下图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB ∥DC ,△PAD 是等边三角形,已知BD =2AD =4,AB =2DC =2 5.(1)求证:BD ⊥平面PAD ; (2)求三棱锥A -PCD 的体积.[解析] (1)证明:在△ABD 中,由于AD =2,BD =4,AB =25,∴AD 2+BD 2=AB 2.∴AD ⊥BD .又平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,BD ⊂平面ABCD ,∴BD ⊥平面PAD . (2)解:过P 作PO ⊥AD 交AD 于O .又平面PAD ⊥平面ABCD ,∴PO ⊥平面ABCD .∵△PAD 是边长为2的等边三角形,∴PO = 3. 由(1)知,AD ⊥BD ,在Rt △ABD 中, 斜边AB 边上的高为h =AD ×BD AB =455. ∵AB ∥DC ,∴S △ACD =12CD ×h =12×5×455=2.∴V A -PCD =V P -ACD =13S △ACD ×PO =13×2×3=233.4.如下图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,F 是PB 的中点.求证:(1)DF ⊥AP .(2)在线段AD 上是否存在点G ,使GF ⊥平面PBC ?若存在,说明G 点的位置,并证明你的结论;若不存在,说明理由.解析:(1)取AB 的中点E ,则PA ∥EF .设PD =DC =a ,易求得DE =52a ,FE =12PA =22a ,DF =12PB =32a . 由于DE 2=EF 2+DF 2,故DF ⊥EF , 又EF ∥PA ,∴DF ⊥PA .(2)在线段AD 上存在点G ,使GF ⊥平面PBC ,且G 点是AD 的中点. 取AD 的中点G ,连结PG 、BG ,则PG =BG .又F 为AB 的中点,故GF ⊥PB . ∵F 为PB 中点,∴F 点在底面ABCD 上的射影为正方形ABCD 的中心O , ∴GO 为GF 在平面ABCD 上的射影, ∵GO ⊥BC ,∴GF ⊥BC ,∵BC 、PB 是平面PBC 内的两条相交直线, ∴GF ⊥平面PBC .。