一次函数与反比例函数的综合复习ppt课件

合集下载

一次函数与反比例函数的综合运用ppt课件

一次函数与反比例函数的综合运用ppt课件
y
A
D
EO
x
C
B
基础知识 ·自主学习 题组分类 ·深度剖 课堂回顾 ·巩固提升
小结4:看到求函数的关系式,想到利用待定系数法 ; 看到交点坐标,想到是两个函数关系式组成 方程组的解; 看到面积,想到 三角形面积公式,不规则图形 的面积要转化为和它有关的规 则图形的面积来求解.
基础知识 ·自主学习 题组分类 ·深度剖 课堂回顾 ·巩固提升
点 ③k>0时,y随的x增大 ③k>0时,y随的x增大
而_减__小(在每个象限
而_增__大_
内)
k<0时,y随的x增 大而增__大_ (在每个
k<0时,y随的x增 大而_减__小_
象限内)
基础知识 ·自主学习 题组分类 ·深度剖 课堂回顾 ·巩固提升
知识考点•对应精练
【知识考点】 (1)正比例函数与反比例函数图象交点的对称性 (2)一次函数与反比例函数图象的特点 (3)一次函数与反比例函数图像交点问题及不等式 (4)一次函数、反比例函数的图象与几何综合题
基础知识 ·自主学习 题组分类 ·深度剖 课堂回顾 ·巩固提升
基础知识 ·自主学习 题组分类 ·深度剖 课堂回顾 ·巩固提升
4.如图所示,函数 y=-x 与函数 y=-4x的图象相交于 A,B 两
点,过 A,B 两点分别作 y 轴的垂线,垂足分别为点 C,D.则
四边形 ACBD 的面积为
( D)
基础知识 ·自主学习 题组分类 ·深度剖
课堂回顾 ·巩固提升
题组二 函数图象的共存
【例 2】当 a≠0 时,函数 y=-ax+1 与函数 y=ax在同一坐
标系中的图象可能是图中的
(B )
基础知识 ·自主学习 题组分类 ·深度剖 课堂回顾 ·巩固提升

反比例函数与一次函数综合

反比例函数与一次函数综合

一、反比例函数的定义函数ky x=(k 为常数,0k ≠)叫做反比例函数,其中k 叫做比例系数,x 是自变量,y 是函数,自变量x 的取值范围是不等于0的一切实数.二、反比例函数的图象反比例函数ky x=(k 为常数,0k ≠)的图像由两条曲线组成,每条曲线随着x 的不断增大(或减小)越来越接近坐标轴,反比例函数的图像属于双曲线.反比例函数k y x =与ky x=-(0k ≠)的图像关于x 轴对称,也关于y 轴对称.三、反比例函数图象的性质反比例函数ky x=(k 为常数,0k ≠)的图像是双曲线; 当0k >时,函数图像的两个分支分别位于第一、三象限内,它们关于原点对称,在每一个象限内,y 随x 的增大而减小;当0k <时,函数图像的两个分支分别位于第二、四象限内,它们关于原点对称,在每一个象限内,y 随x 的增大而增大.注意:⑴反比例函数ky x=(0k ≠)的取值范围是0x ≠.因此,①图象是断开的两条曲线,画图象时,不要把两个分支连接起来. ②叙述反比例函数的性质时,一定要加上“在每一个象限内”,如当0k >时,双曲线ky x=的两支分别在一、三象限,在每一个象限内,y 随x 的增大而减小.这是由于0x ≠,即0x >或0x <的缘故.如果笼统地叙述为0k <时,y 随x 的增大而增大就是错误的.⑵由于反比例函数中自变量x 和函数y 的值都不能为零,所以图象和x 轴、y 轴都没有交点,但画图时要体现出图象和坐标轴无限贴近的趋势.⑶在画出的图象上要注明函数的解析式.中考要求知识点睛反比例函数与一次函数综合一、反比例函数与一次函数综合【例1】 已知直线1y k x =(10k ≠)和双曲线2k y x=(20k ≠)的一个交点是(2-,5),求它们的另一个交点坐标.【例2】 直线()0y ax a =>与双曲线3y x=交于()()1122A x y B x y ,、,两点,则122143x y x y -= .【例3】 已知正比例函数与反比例函数图象交点到x 轴的距离是3,到y 轴的距离是4,求它们的解析式.【例4】 若一次函数3y x b =+和反比例函数3b y x-=的图像有两个交点,当b =______时,有一个交点的纵坐标为6.【例5】 如图,直线43y x =与双曲线()0k y x x =>交于点A .将直线43y x =向右平移92个单位后,与双曲线()0ky x x =>交于点B ,与x 轴交于点C ,若2AOBC =,则k =_________.【例6】 已知一次函数y kx b =+(0k ≠)的图象与x 轴、y 轴分别交于点A 、B ,且与反比例函数m y x=(0m ≠)的图象在第一象限交于C 点,CD 垂直于x 轴,垂足为D .若1OA OB OD ===,(1)点A 、B 、D 的坐标;(2)求一此函数与反比例函数的解析式.【例7】 在平面直角坐标系Oxy 中,直线y x =-绕点O 顺时针旋转90︒得到直线l .直线l 与反比例函数ky x=的图像的一个交点为()3A a ,,试确定反比例函数的解析式. 例题精讲【例8】 在平面直角坐标系xOy 中,直线y x =向上平移1个单位长度得到直线l .直线l 与反比例函数ky x=的图象的一个交点为()2A a ,,则k 的值等于 . 【例9】 在平面直角坐标系xOy 中,直线y x =-绕点O 顺时针旋转90的到直线l .直线l 与反比例函数ky x=的图象的一个交点为()3A a ,,试确定反比例函数的解析式.【例10】 已知反比例函数ky x=(0k <)的图像经过点A(m ),过点A 作AB ⊥x 轴于点B ,且A O B∆(1)求k 和m 的值.(2)若一次函数1y ax =+的图象经过点A ,并且与x 轴相交于点C ,求:AO AC 的值.【例11】 如图,反比例函数ky x=的图像与一次函数y mx b =+的图像交于()13A ,,()1B n -,两点. (1)求反比例函数与一次函数的解析式;(2)根据图像回答:当x 取何值时,反比例函数的值 大于一次函数的值.【例12】 如图7,已知一次函数1y x m =+(m 为常数)的图象与反比例函数2ky x=(k 为常数,0k ≠)的图象相交于点()13A ,.(1)求这两个函数的解析式及其图象的另一交点B 的坐标;(2)观察图象,写出使函数值12y y ≥的自变量x 的取值 范围.【例13】 如图,已知()()424A B n --,,,是一次函数y kx b =+的图象与反比例函数的图象的两个交点. (1)求此反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x 的 取值范围.【例14】 如图,已知:一次函数y kx b =+的图像与反比例函数my x=的图像交于A 、B 两点. (1)利用图中条件,求反比例函数和一次函数的解析式;(2)根据图像写出使一次函数的值大于反比例函数的值的x 取值范围.【例15】 如图,已知()()424A n B --,,,是一次函数y kx b =+的图象和反比例函数my x=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及AOB ∆的面积;(3)求方程0mkx b x +-=的解(请直接写出答案);(4)求不等式0mkx b x+-=的解集(请直接写出答案).A【例16】 用图象解一元二次方程230x x +-=时,我们采用的一种方法是:在平面直角坐标系中画出抛物线2y x =和直线3y x =-+,两图象交点的横坐标就是该方程的解. (1)填空:利用图象解一元二次方程230x x +-=,也可以这样求解:在平面直角坐标系中画出抛物线y = 和直线y x =-,其交点的横坐标就是该方程的解.(2)已知函数6y x =-的图象(如图9所示),利用图象求方程630x x-+=的近似解(结果保留两个有效数字).【例17】 如图,是一次函数y kx b =+与反比例函数2y x=的图像, 则关于x 的方程2kx b x+=的解为( )A .1212x x ==,B .1221x x =-=-,C .1212x x ==-,D .1221x x ==-,【例18】 已知一次函数与反比例函数的图象交于点P (3-,m ),Q (2,3-).(1) 求这两个函数的函数关系式;(2)在给定的直角坐标系(如图)中,画出这两个函数的大致图象;(3)x 为何值时,一次函数的值大于反比例函数的值?x 为何值时,一次函数的值小于反比例函数的值?(图9)(图9)【例19】 已知正比例函数1y k x =1(0)k ≠与反比例函数22(0)k y k x=≠的图象交于A B 、两点,点A 的坐标为(21),.(1)求正比例函数、反比例函数的表达式; (2)求点B 的坐标.【例20】 知一次函数y x m =+与反比例函数1m y x+=(1m ≠-)的图象在第一象限内的交点为P (0x ,3) (1)0x 的值.(2)一次函数和反比例函数的解析式.【例21】 直线y kx =(0k >)与双曲线4y x=交于A ()11x y ,,B ()22x y ,两点,求122127x y x y -的值.【例22】 如图,一次函数122y x =-的图象分别交x 轴、y 轴于A B P ,,为AB 上一点且PC 为AOB ∆的中位线,PC 的延长线交反比例函数()0k y k x =>的图象于Q ,32OQC S ∆=,则k 的值和Q 点的坐标分别为______________.。

(中考复习)第14讲 一次函数与反比例函数的综合运用

(中考复习)第14讲 一次函数与反比例函数的综合运用

图14-2 A.2 B.4 C.6 D.8
基础知识 ·自主学习
题组分类 ·深度剖
课堂回顾 ·巩固提升
浙派名师中考
题组一 函数图象的对称性 【例 1】 如图 14-3 所示,正比例函数 y k2 =k1x 与反比例函数 y= 的图象相交于 x 点 A、B 两点,若点 A 的坐标为(2,1), 则点 B 的坐标是 ( D ) A.(1,2) C.(-1,-2) 1).
基础知识 ·自主学习 题组分类 ·深度剖
B.(-2,1) D.(-2,-1)
图14-3
解析:由题意可知:A与B关于原点对称,名师中考
4 [变式训练] 正比例函数 y=4x 和反比例函数 y= 的图象相交于 x 点 A(x1,y1),B(x2,y2),求 8x1y2-3x2y1 的值.
D.y=-x2+1
)
3.(2013· 南京)在同一直线坐标系中,若正比例函数 y=k1x 的图 k2 象与反比例函数 y= 的图象没有公共点,则 ( C ) x
A.k1+k2<0
C.k1k2<0
B.k1+k2>0
D.k1k2>0
基础知识 ·自主学习
题组分类 ·深度剖
课堂回顾 ·巩固提升
浙派名师中考
图14-9 (1)求该反比例函数的解析式和直线AB的解析式; (2)若直线AB与y轴的交点为C,求△OCB的面积.
基础知识 ·自主学习 题组分类 ·深度剖
课堂回顾 ·巩固提升
浙派名师中考
解 :( 1 ) 由 A(- 2, 0),得 OA= 2;∵点 B(2, n)在 第 一 象 限 内 , 1 S△ A 坐 标 是 (2, 4), O B = 4,∴ OA· n= 4,∴ n= 4,∴点 B 的 2 a 设 该 反 比 例 函 数 的 解 析 式 为 y= (a≠ 0),将 点 B的 坐 标 代 入 , x a 8 得 4= ,∴ a= 8.∴反 比 例 函 数 的 解 析 式 为 y= .设 直 线 AB 的 2 x 解析式为 y= kx+ b(k≠ 0),将点 A, B 的坐标分别代入,得

关于反比例函数的ppt课件

关于反比例函数的ppt课件

05
反比例函数的学习方 法
理解概念和定义
总结词:掌握基础
详细描述:首先需要理解反比例函数的基本概念和定义,包括反比例函数的表达 式、自变量和因变量的关系等。
学习图像和性质
总结词:深入理解
详细描述:通过学习反比例函数的图像和性质,可以更好地理解函数的特性,包括函数的单调性、奇 偶性等。
掌握应用和比较
图像特性
正比例函数图像是一条通过原点 的直线,而反比例函数的图像则 位于第一象限和第三象限,且在 x轴和y轴上分别存在一个无穷远
点。
增减性
正比例函数随着x的增大而增大 或减小,而反比例函数在x增大 时y减小,在x减小时y增大。
与一次函数的比较
01
定义
一次函数的一般形式为y=kx+b,其中k和b为常数且k≠0;反比例函数
题目2
已知反比例函数$y = frac{k}{x}$的图 象经过第一、三象限,且与直线$y = mx + b$相交于两点,求证:这两点 的横坐标互为相反数。
题目1
已知点$(m,n)$和$(p,q)$在反比例函 数$y = frac{k}{x}$的图象上,且$m times n = p times q$,求证:$k = 0$。
双曲余切函数
01
02
03
定义
双曲余切函数是双曲函数 的一种,定义为 (e^x + e^-x) / (e^x - e^-x)。
性质
双曲余切函数在实数范围 内是连续且可导的,具有 类似于余切函数的周期性 和奇偶性。
应用
双曲余切函数在解决某些 数学问题、优化算法和工 程计算中有应用。
双曲反正切函数
定义
关于反比例函数的 ppt课件

反比例函数图象性质及应用复习课件

反比例函数图象性质及应用复习课件

04
反比例函数的实际应用案 例
电流与电阻的关系
总结词
电流与电阻成反比关系,当电阻增大时,电流减小;反之亦然。
详细描述
在电路中,电流与电阻之间的关系表现为反比例关系。当电路中的电压保持恒定时,电阻的阻值增大,会导致电 流减小;反之,如果电阻的阻值减小,电流则会增大。这一关系在电子设备和电路设计中具有重要应用。
答案解析
针对每个练习题,提供 详细的答案解析,帮助 学生理解解题思路和过
程。
感谢您的观看
THANKS
表达式
一般形式为 y = k/x,其中 k 是 常数且 k ≠ 0。
图像特点
双曲线
反比例函数的图像是双曲线,分布在两个象限内。
渐近线
图像分别渐近于 x 轴和 y 轴。
变化趋势
随着 x 的增大或减小,y 的值会无限接近于 0 但永远不会等于 0。
渐近线与对称性
渐近线
对于反比例函数 y = k/x (k > 0),其图像在第一象限和第三象限内,当 x 趋于正无穷 或负无穷时,y 值趋于 0,因此渐近于 x 轴;当 y 趋于正无穷或负无穷时,x 值趋于 0 ,因此渐近于 y 轴。对于 k < 0 的情况,图像在第二象限和第四象限内,渐近线为 y
反比例函数图象性质及 应用复习ppt课件
目录 CONTENT
• 反比例函数的基本性质 • 反比例函数的图像绘制 • 反比例函数的应用场景 • 反比例函数的实际应用案例 • 反比例函数与其他知识点的关联 • 复习与巩固
01
反比例函数的基本性质
定义与表达式
定义
反比例函数是指形如 y = k/x (k ≠ 0) 的函数,其中 x 是自变量, y 是因变量。

2022届高考一轮专题复习-一次函数、反比例函数及二次函数复习课件

2022届高考一轮专题复习-一次函数、反比例函数及二次函数复习课件

(2)二次函数在给定区间[m,n]上的最值求解,常见的有以 下四种情况:
①对称轴与区间[m,n]均是确定的; ②动轴定区间,即对称轴不确定,区间[m,n]是确定的;
③定轴动区间,即对称轴是确定的,区间[m,n]不确定;
④动轴动区间,即对称轴不确定,区间[m,n]也不确定.
以上四种情况,对于①可数形结合,较易解决.对于②和③, 应按对称轴在区间的左侧、内部、右侧分三类,结合其图象特
函数在区间[-1,1]上存在零点,则必有
f1≤0, f-1≥0,
即11- +1166+ +qq+ +33≤ ≥00, .
∴-20≤q≤12,即 q 的取值范围是[-20,12].
(2)∵0≤t<10,f(x)在区间[0,8]上是减函数,在区间[8,
10]上是增函数,且对称轴方程是 x=8.
①当80-≤tt≥≤180,-8, 即 0≤t≤6 时, 在区间[t,10]上,f(t)最大,f(8)最小,
t2-2t+2t>1, 综上所述,f(x)min=g(t)=10≤t≤1,
t2+1t<0. 答案:ABC
题组二 走进教材
2.(必修 1P39 第 1 题改编)(2013 年重庆)y= 3-aa+6
(-6≤a≤3)的最大值为( )
9
32
A.9
B.2
C.3
D. 2
解析:y= -a2-3a+18= -a+322+841(-6≤a≤3), ∴当 a=-32时,y 最大=92,故选 B.
综上知,f(x)max=2277+ -1100aaaa> ≤00, . f(x)min=22-7+a210-a5a≤<a-≤55,,
27-10aa>5. 【题后反思】(1)函数 f(x)在[a,b]上单调递增时,f(x)max= f(b);函数 f(x)在[a,b]上单调递减时,f(x)max =f(a);函数 f(x) 在[a,b]上不是单调函数时,找出图象上最高点的纵坐标,即 为函数 f(x)的最大值,图象上最低点的纵坐标,即为函数 f(x)的 最小值.

反比例函数与一次函数的综合

反比例函数与一次函数的综合
求函数解析式
待定系数法
两定一动求最值
找对称点 连线段
当x 0时,不等式kx+b- m 0的解集. x
题后反思:比大小的步骤:1.画图象;2.找 交点;3.画三线;4.分四域;5.定大小。
航标3 会根据反比例函数与一次函数的图象求三角形的面积
3. 如图,一次函数y1=kx+b(k≠0)和反比例函数y2
= m (m≠0)的图象交于点A(-1,6),B(a,-2). x
(1)求△AOB的面积.
(2)若P是y轴上一点,且满
足△PAB的面积是9,求出OP
的长.
题后反思:根据所求三角形的位置 选择合适的方法求面积:直接用公 式,分割或添补。
航标4 会求反比例函数与一次函数图象上动点的最值问题
4.如图,已知A(1,a)是反比例函数y= - 3 图象上
的一点,直线y= - 1 x 1与反比例函数y=x - 3 的图
22
x
象在第四象限的交点为B.
(1)求直线AB的表达式;
(2) 动点P(x,0)在x轴的正
半轴上运动,当线段PA与
线段PB之和达到最小时,
求点P的坐标.
变式:在(2)的条件下,求 △APB的面积。
联立方程组
本节回顾
划线分区 域讨论
求交点坐标
比较函数值大小
求三角形面积 分割或添补法
反比例函数 与一次函数
航标1 会求反比例函数与一次函数的交点坐标
1. 如图,直线y=mx与反比例函数y= k 相交于A,
B两点,点A的坐标为(1,3).
x
y
(1)求点B的坐标;
(2)计算线段AB的长.
A
变式:向右平移直线AB,交反 比例函数图象于C,D两点,且 点C坐标为(3,1),求点D的坐

一次函数的全章复习课件

一次函数的全章复习课件

例如,速度、加速度和时间的关系,重力 等。
一次函数在工程学中的应用
例如,机械运动、流体力学等。
一次函数在日常生活中的应用
例如,时间与速度的关系、距离与速度的 关系等。
一次函数在数学问题中的应用
一次函数在代数问题中的应用
例如,解一元一次方程、一元一次不等式等。
一次函数在几何问题中的应用
例如,求直线方程、求两点之间的距离等。
解得 k = 3, b = -2。所以解析式 为 y = 3x - 2。
THANKS
感谢观看

对于一次函数,解析式可以用来 表示 $k$ 和 $b$ 的值,进而确
定函数的图像和性质。
通过解析式可以计算出任意自变 量 $x$ 对应的函数值 $y$。
解析式与函数图像的关系
解析式是绘制函数图像的基础。 通过解析式可以确定函数的开口方向、顶点坐标和对称轴等特性。
解析式与函数图像的对应关系是一一对应的,即一个解析式对应一个确定的图像。
y = 3x - 2
答案
解答题
题目
已知一次函数 y = kx + b,当 x = 1 时,y = -2;当 x = -1 时,y = 4。 求 k 和 b 的值。
答案
k = -3, b = 1
选择题解析
01
02
03
04
对于选项A,y = 2x,是一次 函数也是正比例函数,不符合
题意。
对于选项B,y = 3 - 5x,是 一次函数但不是正比例函数,
虽然一次函数在微积分中不是主要研 究对象,但其在导数和积分中的应用 仍不可忽视。
一次函数与三角函数
三角函数可以看作是周期性的一次函 数,两者在图像和性质上有许多相似 之处。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、如图1,一次函数与反比例函数的图像
相交于A、B两点, 则图中使反比例函数的
值小于一次函数的值的x的取值范围是( D )
(A)x<-1
(B)x>2
(C)-1<x<0,或x>2
(D)x<-1,或0<x<2
9
2:
已知一次函数 y k1x b 与反比例函数
Байду номын сангаас
y
k2 x
的图象交于点P(-2,1)和 Q(1,m)。
求:
①求反比例函数与一次函数的解析式;
②求△OPQ的面积。
y
x
10
3、如图,已知一次函数y=kx+b的图
象与反比例函数y=- 8 的图象交于A、 x
B两点,且点A的横坐标和点B的纵坐标
都是-2。
求:①点A和点B的坐标; A
②一次函数的解析式;
③ △AOB的面积。
M
O
B
11
(A)k值同号。(必有两交点) 关键是求出两个函数公共交点A、B的坐标
y
O
C B
A x
S△AOB=S△OCB+S△OCA
7
一次函数与反比例函数所围 成的三角形面积计算
(B)k值异号。 (可能无交点,可能有一个交点,也可能有两个交点)
y C
A
Bx O
S△AOB=S△OBC—S△OAC
8
想一想 议一议
2
1、完成表格
yk x
y kx b
相同 点
k>0时,过__一__、__三___象限;k<0时,过_二__、__四_____象
限。
不 ①x的取值范围_x_≠_0____; 同 ②图象是一条__双__曲__线_; 点 ③k>0时,y随的x增大而 减__小_(在每个象限内) k<0时,y随的x增大而 增__大_ (在每个象限内)
从计算上看,一次函数与反比例的交点主要取决于两函数
所组成的方程:
在解的过程中,代入消元得:
k1
x
k2 x b

去分母得: k2 x2 bx k1 0 这个一元二次方程的△的值决
定两个函数的交点个数;△>0,两函数有两个交点;
△=0,两函数只有一个交点;△<0,两函数没有交点。
特别注意:△=0,两函数只有一个交点,这种特性也适 用于二次函数与一次函数只有一个交点时的情况。
一次函数与反比例函数的 综合复习
1
教学目标:
• 通过复习反比例函数和一次函数的概念,性质和图象, 使学生对反比例函数和一次函数有个整体认识,并掌 握他们的联系和区别。
• 掌握关于反比例函数和一次函数的交点问题 • 掌握一次函数与反比例函数的大小比较 • 掌握一次函数与反比例函数所围成的三角形面积计算
4
一次函数与反比例函数的大小比较
①② ③④
③④ ①②
两交点的分成四段来考虑 两交点的x值和y轴把x轴分成四段
②③


5



① ②
一交点的分成三段来考虑 交点的x值和y轴把x轴分成 三段
无交点的分成两段来考虑 y轴把x轴分成两段 分x<0和x>0两段
6
一次函数与反比例函数所围 成的三角形面积计算
①x的取值范围任__意__实__数_; ②图象是_直__线____; ③k>0时,y随的x增大而
增__大__
k<0时,y随的x增大而 减__小__
3
求一次函数与反比例函数的交点坐标
从图像上看,一次函数与反比例函的交点可由值的符号来 决定。
(1)K值同号,两个函数必有两个交点
(2)K值异号,两个函数可能无交点,可能有一个 交点,也可能有两个交点!
相关文档
最新文档