反比例函数图像与性质 ppt课件

合集下载

反比例函数的图像和性质课件

反比例函数的图像和性质课件

曲线运动问题
通过给定物体的速度和运 动轨迹的曲率半径,利用 反比例关系求解物体在不 同位置的速度。
浓度问题建模与求解
溶液稀释问题
通过给定溶液的初始浓度 和稀释后的体积,利用反 比例关系求解稀释后的浓 度。
溶液混合问题
通过给定两种不同浓度的 溶液的体积和浓度,利用 反比例关系求解混合后的 浓度。
物质溶解问题
通过给定三角形的面积和底边长度,利用反比例关系求解高。
平行四边形面积问题
03
通过给定平行四边形的面积和一组对边的长度,利用反比例关
系求解另一组对边的长度。
速度问题建模与求解
01
02
03
匀速直线运动问题
通过给定物体的速度和运 动时间,利用反比例关系 求解物体运动的距离。
变速直线运动问题
通过给定物体的加速度和 运动时间,利用反比例关 系求解物体在不同时间点 的速度。
在第一象限和第三象限内,随着 $x$ 的增大 ,$y$ 值逐渐减小。
函数图像关于原点对称。
函数值变化规律
01
当 $k < 0$ 时
在第二象限和第四象限内,随着 $x$ 的增大,$y$ 值逐渐增大。
无论 $k$ 取何值,反比例函数 在其定义域内总是连续的,且在 其定义域内没有极值点。
02
03
04
函数图像关于原点对称。
2
反比例型复合函数图像
反比例型复合函数的图像形状和位置取 决于 $f(x)$ 的性质和取值范围。一般来 说,其图像可能不再是双曲线,但仍然 具有一些反比例函数的特性。
3 反比例型复合函数性质
反比例型复合函数具有一些特殊的性质 ,如单调性、奇偶性等,这些性质与 $f(x)$ 的性质和取值范围密切相关。在 实际应用中,需要根据具体情况进行分 析和判断。

反比例函数图像和性质ppt课件

反比例函数图像和性质ppt课件

反比例函数的定义域和值域
定义域
反比例函数的定义域是 x ≠ 0 的所有实数,即 x 可以取任何实数值,除了 0。
值域
反比例函数的值域是除了 y = 0 以外的所有实数,即 y 可以取任何实数值,但 永远不会等于 0。
02
反比例函数的性质
反比例函数的单调性
总结词
反比例函数在其定义域内并非单 调,但在各自象限内具有单调性。
表达式形式
反比例函数的一般形式为 y = k/x (k ≠ 0),其中 x 和 y 是自变量和 因变量,k 是常数。
反比例函数图像的绘制
图像绘制方法
反比例函数的图像通常在二维坐标系 中绘制,通过选择不同的 k 值,可 以绘制出不同的反比例函数图像。
图像特性
反比例函数的图像位于 x 轴和 y 轴的 有限区域,呈现出双曲线的形状,随 着 x 的增大或减小,y 的值会无限接 近于 0 但永远不会等于 0。
积分是数学中计算面积和体积的方法,分为定积分和不定积分。
反比例函数的不定积分
反比例函数y=1/x的不定积分为ln|x|+C(C为常数),这表明反比例函数可以通过对ln|x|进行不定积分得 到。
反比例函数与复数的关系
复数的概念
复数是实数和虚数的组合,形式为a+bi(a,b为实数)。
反比例函数在复数域的表现
投资回报
投资回报与投资风险成反比,即投资风险越大,投资回报越小;反之亦然。
反比例函数在日常生活中的应用
药物剂量
在药物治疗过程中,药物剂量与药效 成反比关系,即当药物剂量增加时, 药效可能会减弱。
体育训练
在体育训练中,训练强度与训练效果 成反比关系,即当训练强度增加时, 训练效果可能会减弱。

关于反比例函数的ppt课件

关于反比例函数的ppt课件

05
反比例函数的学习方 法
理解概念和定义
总结词:掌握基础
详细描述:首先需要理解反比例函数的基本概念和定义,包括反比例函数的表达 式、自变量和因变量的关系等。
学习图像和性质
总结词:深入理解
详细描述:通过学习反比例函数的图像和性质,可以更好地理解函数的特性,包括函数的单调性、奇 偶性等。
掌握应用和比较
图像特性
正比例函数图像是一条通过原点 的直线,而反比例函数的图像则 位于第一象限和第三象限,且在 x轴和y轴上分别存在一个无穷远
点。
增减性
正比例函数随着x的增大而增大 或减小,而反比例函数在x增大 时y减小,在x减小时y增大。
与一次函数的比较
01
定义
一次函数的一般形式为y=kx+b,其中k和b为常数且k≠0;反比例函数
题目2
已知反比例函数$y = frac{k}{x}$的图 象经过第一、三象限,且与直线$y = mx + b$相交于两点,求证:这两点 的横坐标互为相反数。
题目1
已知点$(m,n)$和$(p,q)$在反比例函 数$y = frac{k}{x}$的图象上,且$m times n = p times q$,求证:$k = 0$。
双曲余切函数
01
02
03
定义
双曲余切函数是双曲函数 的一种,定义为 (e^x + e^-x) / (e^x - e^-x)。
性质
双曲余切函数在实数范围 内是连续且可导的,具有 类似于余切函数的周期性 和奇偶性。
应用
双曲余切函数在解决某些 数学问题、优化算法和工 程计算中有应用。
双曲反正切函数
定义
关于反比例函数的 ppt课件

课件反比例函数的图像和性质.ppt

课件反比例函数的图像和性质.ppt
1. 什么是反比例函数
一般地,函数 y kx(k是常数,k 0)叫做反比例函数.
2.若y=
是反比例函数,则n必须满足条
件 n≠且n≠-1
3.用描点法画图象的步骤简单地说是 列表 、 描 点 、 连线 .
例1 画出反比例函数 y 6 与 y 6 的图象.
x
x
解:列表
一般地反比例函数 y k(k是常数,k 0 )的图象由 两条曲线组成,叫做双曲线.x
提问:你能从图象上发现什么有关反比 例函数的性质吗?
反比例函数的性质:
(1)y 象限.
6 x
的图象在第一、三象限,y
6 的图象在二、四
x
(2)函数 y 6 的图象,在每一个象限内,y随x的增大而
减小;
x
y 6 的图象, 在每一个象限内,y随x的增大而增大.
x
(3)函数 y轴相交
y
.
6 x

y
练习
1
1、若y+b与 x a 成反比例,则y与x的函数关系是( )
(A) 正比例 (B) 反比例 (C) 一次函数(D) 二次函数
2、若
1 x
1 与y成反比例,y 与z成正比例,则x与
1成 z
(
)比例.
(A)正
(B) 反
(C)不成
(D) 有一次函数关系
练习
3、在同一坐标系内,函数 y 1 x与 y 1的图象的交点个数
6 x
的图象不经过原点,且都不与x轴、
反比例函数的性质:
(1)反比例函数y=(k为常数,k≠0)的 图象是双曲线.
(2)当k>0时,双曲线的两支分别位于 第一、第三象限,在每个象限内,y值随 x值的增大而减小.

反比例函数的图像和性质ppt课件

反比例函数的图像和性质ppt课件

7、若点(-2,y1)、(-1,y2)、(2,y3)在
反比例函数 y = - 1 0 0 的图象上,则(
xቤተ መጻሕፍቲ ባይዱ
B

A、y1>y2>y3 C、y3>y1>y2
B、y2>y1>y3 D、y3>y2>y1
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
已知点A(2,y1), B(5,y2)C是(反-3比,y例3)函是数y 象上的两点.请比较y1,y2的,y大3的小大.小.
4 x

y
⑴代入求值
y1 A B
-3 y2 O2 5
C y3
⑵利用增减性
⑶根据图象判断
x
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
1、反比例函数y= - 5 的图象大致是( D )
y
x
y
A:
o
x
B:
o
x
y
C:
o
x
D:
y
o x
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
2、我校食堂有5吨煤,用y表示可以用的天数
,用x表示每天的烧煤量,则y关于x的函数的
10
1、这几个函数图象有 8 什么共同点?
2、函数图象分别位于 6 哪几个象限?
4
3、y随的x变化有怎

反比例函数的图像与性质 课件

反比例函数的图像与性质 课件
理解反比例函数在几何上的含义和意义。
反比例函数图像的特点
探索反比例函数图像的形状和特征。
反比例函数的运算和应用
学习如何进行反比例函数的运算,并了解其在 实际问题中Байду номын сангаас应用。
参考资料
1 参考书目
- 反比例函数的进一步学习
2 参考链接
- 更多关于反比例函数的信息
反比例函数的图像与性质
欢迎来到本课件,我们将介绍反比例函数的图像和性质。了解什么是反比例 函数及其表示方法。
什么是反比例函数
定义
反比例函数是一种数学函数关系,当其中一个变量的值增大时,另一个变量的值相应地减小。
表示方法
通常用y=k/x来表示,其中k是非零实数。
反比例函数的图像
性质
反比例函数的图像呈现出一个下凹的曲线,且经过 第一象限和第三象限。
比例线性关系
反比例函数的图像与比例函数的图像之间存在线性 关系。
比例函数的应用
1
实际问题
反比例函数可以用于解决实际问题,例
参考例题
2
如时间和速度之间的关系。
我们将提供一些参考例题,以加深对反 比例函数的理解和应用。
总结
反比例函数的定义和性质
了解反比例函数是如何定义的以及其特点。
反比例函数的几何意义
图像特点
图像的特点是有两条渐近线,即x轴和y轴,它们分 别称为垂直渐近线和水平渐近线。
反比例函数的几何意义
1 越来越快地接近x轴和y轴
2 与比例函数的区别
随着x值的增大或减小,函数的值会越来越接 近y轴或x轴。
相比之下,比例函数的图像是通过原点的直 线。
反比例函数的运算
乘除法反转
当两个变量成反比例关系时,乘积保持不变。

八年级数学下册第11章反比例函数:反比例函数的图像与性质pptx课件新版苏科版

八年级数学下册第11章反比例函数:反比例函数的图像与性质pptx课件新版苏科版
解:∵函数 y = m-x 2的图像在每一个象限内,y的值 随x值的增大而增大,∴ m-2 < 0,解得 m < 2.
知2-练
(3)[模拟·徐州] 对于反比例函数 y= 6x,当 x>2 时,y的取值 范围是__0_<_y_<_3__.
解:把 x=2 代入 y= 6x,得 y=3. ∵ k=6 > 0,∴图像位于第一、三象限,且在每一个 象限内,y随x的增大而减小,∴当 x > 2时,0 < y < 3.
对应值,解一元一次方程;
(2)当题目中已经明确表示“y是x的反比例函数”或“y与
x成反比例关系”时,可直接设函数的表达式为
y=
k x
(k
为常数,k ≠ 0).
知3-练
例 3 已知反比例函数的图像经过点 P(2,4). (1)求该反比例函数的表达式 . (2)判断点 A(-2,-4),B(3,5)是否在这个函数图 像上 . 解题秘方:用待定系数法求出反比例函数的表达式, 然后根据反比例函数图像上点的坐标特征进行判断.
特别提醒
知1-讲
1. 因为反比例函数图像的两个分支关于原点对称,所以只
要画出它在一个象限内的分支,就可以对称地画出另
一个分支 .
2. 画实际问题中的反比例函数的图像时,要考虑自变量取
值范围的限制,一般地,实际问题的图像是反比例函
数图像在第一象限内的一支或其中一部分 .
知1-练
例 1 在平面直角坐标系中画出反比例函数 y=-5x的图像 . 解题秘方:紧扣画图像的“一列、二描、三连” 的步骤作图.
11.2 反比例函数的图像与性质
1 课时讲解 反比例函数的图像
反比例函数的性质 求反比例函数的表达式

26.1.2反比例函数的图像和性质课件(共31张PPT)

26.1.2反比例函数的图像和性质课件(共31张PPT)

(1)y 2 (2)y 2x
3x
3
(5)y 2x 3
(3)y 2 3x
(4)y 2x 3
2、如图,这是下列四个函数中哪一个函数的图象
(A)y=5x (B)y=2x+3
(C) y 4 x
(D) y 3 x
练一练 2
已知反比例函数 y 4 k x
-6
-5 -4 -3 -2 -1 0 1 -1
23 4
5
6x
-2
的特征?
-3
-4
-5
再让我们仔细看看,这两个
-6
函数图象在位置上有什么关系?
操作二:
比一比:
同桌两人分别画出函数 y 8 , y 8 或
x
x
的图象,看谁画得又快又好.
y 3,y3
x
x
找一找: 根据大家所画出的函数图象,从以下几个方面出发,你
增减性 当k>0时,在每一象限内,y随x的增大而减小;
当k<0时,在每一象限内,y随x的增大而增大.
图象的发展趋势
反比例函数的图象无限接近于x,y轴,但永远不能到达x,y轴
对称性 ⑴反比例函数的图象是轴对称图形.直线y=x和y=-x
都是它的对称轴; ⑵反比例函数 y 与k
x
轴对称。
y 的 k图象关于x轴对称,也关于y
速度x(km/h)的函数,则这个函数的图象大致是( C )
思前想后
2﹑已知 k<0, 则函数 y1=kx,y2=
k
x

同一坐标系中的图象大致是 ( D )
y
y
(A)
(B)
x
0
x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-2
4 3
-1
1 2
2.描点:以表中各组对应值作为点的坐标,在直角坐 标系内描出相应的点.
3.连线:用光滑的曲线顺次连接各点,就可得到 图象.
x … -8 -4 -3 -2 -1 1
y4 x

1 2
1
4 3
2
4
2
8
…1 12 2
… -8 -4 -2
3
4 3
48
-1
1 2
… …
. y
6
y = —-x4
1、反比例函数 y
6 x
的图像位于
第二、四
象限,
而反比例函数 y 6 的图像位于 第一、三 象限。y x
2、函数y k 的图像所在象限由K的值确
定。
x
0
3、函数
y
6 x
的图像、在每个象限内,y随
x的增大而_增__大__。
4、函数y
6 x
的图像、在每个象限内,y随x
y
的增大而_减__小___。
0
y
5
.4
3

. ..
2 1
-6 -5 -4 -3 -2 -1 0 -1 -2
-3 -4 -5 -6
1 2 .3 4. .5 6 x . .


驶向胜 利的彼

反比例函数图(观像察所与画性图像质,4分钟后回答问题)
1.
函数
y
6 x
的图像在哪两个象限?和函数 y 6 x
2. 的图像有什么不同?
2. 反比例函数 y k 的图像所在象限由什么确定? x
5. 已知k<0,则函数 y1=kx,y2=
k x
在同
一坐标系中的图象大致是 ( D ) y
(A
0
x (B)

6.设x为一切实数,在下列
函数中,当x减小时,y的
值总是增大的函数是( )
C
(C)
y
0
x (D)
(A) y = -5x -1
( B)y=
x 2
(C)y=-2x+2; (D)y=4x.
注意: ① x≠0 ②列表时自变量 取值易于计算, 易于描点
解: 1.列表:
x
y 4 x
… -8
-4
-3
-2
-1
1 2


1 2
-1 4 3
-2
-4
-8 …
1 2
1
84
2 2
3
4 3
4 1
8
1 2
列表(在自变量取值范围内取一些值,并计算相应的函数值)
x
-8
-4
ቤተ መጻሕፍቲ ባይዱ
-3
-2
-1
1 2
1 2
12348
y
的图象在第一__、__三_象限,在每
个象限内,y 随 x 的增大而_减__小__ .
2. 双曲线y =
5 X
经过点(-3,_35 __)
3.函数
y
=
m-2 x
的图象在二、四象限,则m的
取值范围是 m__<_2_ .
4.对于函数
y=
1 2x
,当 x<0时,y 随x的_减__小__
而增大,这部分图象在第 __三______象限.
1. 画出反比例函数 y 4
x

y
4 x
图象。
2. 画该图像的基本步骤是什么?在每个步骤该注意些什么?
3. 反比例函数的图像是什么?会与x、y轴相交吗?为什么?
(5分钟后,比一比看谁回答的既快又好)
例题
请画出函数 y = —4x 的图象。
思考:
(1)还记得作函数图象的三个步骤是什么?
列表、描点、连线。
3. 在每个象限内y随x是如何变化的?与什么有关?
4. 类比一次函数的性质对反比例函数的性质做出总结。
想一想
y
4 x
反比y=例-x—4函数图像与性质
y
6
5 4
. y=—4x
3 2
...
1
. -6-5 .-4.-3-.2 --10 1 2 3 4 5 6 x
1-
.-3-2
-4 -5
6
.
y
6
y = —-x4
函数
解析式 图象形状
K>0
正比例函数
反比例函数
y=kx ( k≠0 )
y
=
k x
( k是常数,k≠0 )
直线
双曲线
位 一三 置 象限
一三 象限
增 减 y随x的增大而增大 性
y随x的增大而减小
K<0
位 二四 置 象限
二四 象限

减 y随x的增大而减小 y随x的增大而增大 性
当堂训练
1.函数 y =
1 3x
=
6 x
x
x
y =-
6 x
反比例函数的性质
1.当k>0时,图象的两 个分支分别在第一、 三象限内,在每个象 限内,y随x的增大而
减小;
2.当k<0时,图象的两个分 支分别在第二、四象限 内,在每个象限内,y随
x的增大而增大。
y
y
=
6 x
0
x
y
0
x
y=
6 x
填表 分析 正比 例函 数和 反比 例函 数的 区别
议一议
你认为作反比例函数图象时应注意哪些问题?
1.列表时,选取的自变量的值,既要易于计算,又要便于描点, 尽量多取一些数值(取互为相反数的一对一对的数),多描 一些点,这样既可以方便连线 ,又可以使图象精确。
2 .描点时要严格按照表中所列的对应值描点,绝对不能把 点的位置描错。
3.一定要养成按自变量从小到大的顺序依次画线,连线时必 须用光滑的曲线连接各点,不能用折线连接。
x≠0
,y≠0
已知一次函数y=kx+b(k≠0)的图象是
k
大家想不想知道:反比例函数 y (k≠0)的
图象是什么样子呢?
x
让我们一起画个反比例函数的图象看一看。
反比例函数图像与 性质
❖掌握反比例函数的图像的画法。
❖探索反比例函数的图像的性质。
反比例函数图像与性质
认真阅读课本第103页“讨论”部分前的内容。完成 下列问题。
4.图像是延伸的,注意不要画成有明确端点。
5.曲线的发展趋势只能靠近坐标轴,但不能和坐标轴相交.
驶向胜利 的彼岸
1.画出函数 y = -x—4 的图象(直接画在课本上) 解:1.列表:
x
… -8 -4 -3 -2 -1 1 2

1 2
1
2
3
4
8
y = —-x4 …
1 2
1
4 3
2
4
8

-8 -4
复习提问
1. 下列函数中哪些是反比例函数?
① y = 3x-1 ② y = 2x2
③y=
1 x

y
=
2x 3
⑤ y = 3x
⑥ y=
1 x

y
=
1 3x

y
=
3 2x
2. 上节课我们学的反比例函数关系式是什么? y = k (k ≠0,k是常数)
x
自变量x的取值范围是什么? 函数y的取值范围是什么?
1 2
-1 4
3
-2 -4 y -8
8
4
2
4 3
11
2

描点

● ● ● ●
连线
-8●–7–6 –5–4 –3 -2-1 O 1 2 3 4 5 6 7 8

-1

x
● -2
-3
● -4
-5
-6
-7
-●8
1.列表时自变量取值要均匀和对称 2.自变量 x≠0 3.选整数较好计算和描点 4.连线时用光滑曲线
.
5 4
3

...
2 1
-6 -5 -4 -3 -2 -1-10 -2
1
2
.
.3 4.
5
6
x
-34

-5
-6

形状:
图像分别都是由两支曲线组成,因此称反比例函 数的图象为双曲线。
位置:
函数
y=
4 x
的两支曲线分别位于第一、三象限
内.函数 y = —-x4 的 两支曲线分别位于第二、四
象限内.
自学检测二
相关文档
最新文档