反比例函数-课件PPT
合集下载
反比例函数-ppt课件

解
读 范围.
27.1 反比例函数
归纳总结
考
点
由于反比例函数表达式中只有一个待定系数 k,因此求
清
单 反比例函数的表达式只需一组对应值或一个条件即可.
解
读
27.1 反比例函数
对点典例剖析
考
点
典例2 已知 y 是 x 的反比例函数,当 x=-3 时,y=4
清
单 .
解
读
(1)求 y 与 x 之间的函数表达式;
重
难
题 反比例函数→表示出组合函数→列方程组求解→写出函数
型 表达式.
突
破
27.1 反比例函数
重 ■题型二 实际问题中的反比例函数模型
难
例 2 某公司将特色农副产品运往邻市市场进行销售,
题
型 设汽车的行驶时间为 t h,平均速度为 v km/h(汽车行驶
突
破 速度不超过 110 km/h).根据经验,v,t 的部分对应值
(2)求当 x=6 时 y 的值;
(3)求当 y=
时 x 的值.
27.1 反比例函数
[答案]解:(1)设 y 与 x 之间的函数表达式为 y=
考
点
清 (k≠0),把 x=-3,y=4 代入,得 k=-3×4=-12,∴y 与
单
解
读 x 之间的函数表达式是 y=- ;
(2)当 x=6 时,y=(3)当 y=
∴y 关于 x 的函数表达式为 y=2(x-1)+
.
��
Hale Waihona Puke =2x-2+27.1 反比例函数
变式衍生1 已知 y=y1-y2,y1与 x 成正比例,y2 与
读 范围.
27.1 反比例函数
归纳总结
考
点
由于反比例函数表达式中只有一个待定系数 k,因此求
清
单 反比例函数的表达式只需一组对应值或一个条件即可.
解
读
27.1 反比例函数
对点典例剖析
考
点
典例2 已知 y 是 x 的反比例函数,当 x=-3 时,y=4
清
单 .
解
读
(1)求 y 与 x 之间的函数表达式;
重
难
题 反比例函数→表示出组合函数→列方程组求解→写出函数
型 表达式.
突
破
27.1 反比例函数
重 ■题型二 实际问题中的反比例函数模型
难
例 2 某公司将特色农副产品运往邻市市场进行销售,
题
型 设汽车的行驶时间为 t h,平均速度为 v km/h(汽车行驶
突
破 速度不超过 110 km/h).根据经验,v,t 的部分对应值
(2)求当 x=6 时 y 的值;
(3)求当 y=
时 x 的值.
27.1 反比例函数
[答案]解:(1)设 y 与 x 之间的函数表达式为 y=
考
点
清 (k≠0),把 x=-3,y=4 代入,得 k=-3×4=-12,∴y 与
单
解
读 x 之间的函数表达式是 y=- ;
(2)当 x=6 时,y=(3)当 y=
∴y 关于 x 的函数表达式为 y=2(x-1)+
.
��
Hale Waihona Puke =2x-2+27.1 反比例函数
变式衍生1 已知 y=y1-y2,y1与 x 成正比例,y2 与
反比例函数应用ppt课件ppt

经济中的应用
供需关系
在经济学中,反比例函数被用来描述供需关系,即当价格上涨时,需求量会相应 减少。
投资回报
在投资中,投资回报与投资风险之间存在反比例关系,即投资风险越高,投资回 报越低。
04
CATALOGUE
反比例函数与其他函数的关联
与线性函数的关联
总结词
反比例函数与线性函数具有密切关联,它们在某些条件下可以互相转化。
在物理学、工程学、经济学等各个领域,反 比例函数都有广泛的应用,如电阻、电容、 电感的关系,液体混合物的浓度,投资回报 与风险等问题的解决都离不开反比例函数。
对未来研究和应用的展望
随着科学技术的不断发展,反比例函 数的应用前景将更加广泛,如在物理 学中的量子力学、天体运动等领域, 反比例函数可能会发挥更加重要的作 用。
反比例函数应用 ppt课件
目录
• 反比例函数概述 • 反比例函数的基本性质 • 反比例函数的应用场景 • 反比例函数与其他函数的关联 • 反比例函数的应用案例分析 • 总结与展望
01
CATALOGUE
反比例函数概述
反比例函数的定义
定义
形如 y=k/x(k为常数,k≠0) 的函 数称为反比例函数。
详细描述
反比例函数y=f(x)=1/x的形式与指数函数y=a^x的形式在结构上具有相似性,两者都涉及到自变量和 因变量的变换。此外,当a为1时,指数函数退化为一个常数函数,与反比例函数在x=0处相交。
与对数函数的关联
总结词
反比例函数与对数函数之间存在一定的 关联,它们在形式上具有相似性。
VS
详细描述
反比例函数y=f(x)=1/x的形式与对数函数 y=log_a(x)的形式在结构上具有相似性, 两者都涉及到自变量和因变量的变换。此 外,当a为1时,对数函数退化为一个常 数函数,与反比例函数在x=0处相交。
反比例函数图像和性质ppt课件

反比例函数的定义域和值域
定义域
反比例函数的定义域是 x ≠ 0 的所有实数,即 x 可以取任何实数值,除了 0。
值域
反比例函数的值域是除了 y = 0 以外的所有实数,即 y 可以取任何实数值,但 永远不会等于 0。
02
反比例函数的性质
反比例函数的单调性
总结词
反比例函数在其定义域内并非单 调,但在各自象限内具有单调性。
表达式形式
反比例函数的一般形式为 y = k/x (k ≠ 0),其中 x 和 y 是自变量和 因变量,k 是常数。
反比例函数图像的绘制
图像绘制方法
反比例函数的图像通常在二维坐标系 中绘制,通过选择不同的 k 值,可 以绘制出不同的反比例函数图像。
图像特性
反比例函数的图像位于 x 轴和 y 轴的 有限区域,呈现出双曲线的形状,随 着 x 的增大或减小,y 的值会无限接 近于 0 但永远不会等于 0。
积分是数学中计算面积和体积的方法,分为定积分和不定积分。
反比例函数的不定积分
反比例函数y=1/x的不定积分为ln|x|+C(C为常数),这表明反比例函数可以通过对ln|x|进行不定积分得 到。
反比例函数与复数的关系
复数的概念
复数是实数和虚数的组合,形式为a+bi(a,b为实数)。
反比例函数在复数域的表现
投资回报
投资回报与投资风险成反比,即投资风险越大,投资回报越小;反之亦然。
反比例函数在日常生活中的应用
药物剂量
在药物治疗过程中,药物剂量与药效 成反比关系,即当药物剂量增加时, 药效可能会减弱。
体育训练
在体育训练中,训练强度与训练效果 成反比关系,即当训练强度增加时, 训练效果可能会减弱。
关于反比例函数的ppt课件

05
反比例函数的学习方 法
理解概念和定义
总结词:掌握基础
详细描述:首先需要理解反比例函数的基本概念和定义,包括反比例函数的表达 式、自变量和因变量的关系等。
学习图像和性质
总结词:深入理解
详细描述:通过学习反比例函数的图像和性质,可以更好地理解函数的特性,包括函数的单调性、奇 偶性等。
掌握应用和比较
图像特性
正比例函数图像是一条通过原点 的直线,而反比例函数的图像则 位于第一象限和第三象限,且在 x轴和y轴上分别存在一个无穷远
点。
增减性
正比例函数随着x的增大而增大 或减小,而反比例函数在x增大 时y减小,在x减小时y增大。
与一次函数的比较
01
定义
一次函数的一般形式为y=kx+b,其中k和b为常数且k≠0;反比例函数
题目2
已知反比例函数$y = frac{k}{x}$的图 象经过第一、三象限,且与直线$y = mx + b$相交于两点,求证:这两点 的横坐标互为相反数。
题目1
已知点$(m,n)$和$(p,q)$在反比例函 数$y = frac{k}{x}$的图象上,且$m times n = p times q$,求证:$k = 0$。
双曲余切函数
01
02
03
定义
双曲余切函数是双曲函数 的一种,定义为 (e^x + e^-x) / (e^x - e^-x)。
性质
双曲余切函数在实数范围 内是连续且可导的,具有 类似于余切函数的周期性 和奇偶性。
应用
双曲余切函数在解决某些 数学问题、优化算法和工 程计算中有应用。
双曲反正切函数
定义
关于反比例函数的 ppt课件
人教版初三数学9年级下册 第26章(反比例函数)26.1.1 反比例函数 课件(共17张ppt)

复习回顾
➢什么是函数?
一般地,在一个变化过程中,如果有两个 变量x与y ,并且对于x的每个确定的值,y 都有唯一确定的值与其对应,那么我们就
说x是自变量,y是x的函数。
复习回顾
➢我们学习过的函数有哪些?它们的一般形式是什么?
一次函数: y=kx+b (k,b是常数,k≠0)
正比例函数(特殊的一次函数):y=kx (k是常 数,k≠0),其中k为比例系数
v
1463
(3)你能写出 v 关于 t 的解析
t
式吗?
思考: 下列问题中,变量间具有函数关系吗?如
果有,请直接写出解析式.
问题2 某住宅小区要种植一块面积为 1 000 m2的矩形 草坪,草坪的长 y(单位:m)随宽 x(单位:m)的
变化而变化.
y 1 000 x
x y
问题3 已知北京市的总面积为 1.68×104 km2 ,人 均占有面积 S(单位: km2 /人)随全市总人口 n(单 位:人)的变化而变化.
(1)写出 y 关于 x 的函数解析式;
(2)当 x = 4 时,求 y 的值.
(3)当 y =8时,求x的值.
变式训练
已知 y 与 x2 成反比例,并且当 x=3 时,y=4.
(1)写出 y 关于 x 的函数解析式; (2)当 x=1.5 时,求 y 的值;
(3)当 y=6 时,求 x 的值.
规律提炼
课堂小结 反比例函数的定义 一般形式 如何求解析式
拓展提高
1、如果y是z的反比例函数,z是x的反比例函数,那 么y与x具有怎样的函数关系? 2、如果y是z的反比例函数,z是x的正比例函数,且 x≠0,那么y与x具有怎样的函数关系?
二次函数:y ax2 bx c (a≠0,且a,b,c均
➢什么是函数?
一般地,在一个变化过程中,如果有两个 变量x与y ,并且对于x的每个确定的值,y 都有唯一确定的值与其对应,那么我们就
说x是自变量,y是x的函数。
复习回顾
➢我们学习过的函数有哪些?它们的一般形式是什么?
一次函数: y=kx+b (k,b是常数,k≠0)
正比例函数(特殊的一次函数):y=kx (k是常 数,k≠0),其中k为比例系数
v
1463
(3)你能写出 v 关于 t 的解析
t
式吗?
思考: 下列问题中,变量间具有函数关系吗?如
果有,请直接写出解析式.
问题2 某住宅小区要种植一块面积为 1 000 m2的矩形 草坪,草坪的长 y(单位:m)随宽 x(单位:m)的
变化而变化.
y 1 000 x
x y
问题3 已知北京市的总面积为 1.68×104 km2 ,人 均占有面积 S(单位: km2 /人)随全市总人口 n(单 位:人)的变化而变化.
(1)写出 y 关于 x 的函数解析式;
(2)当 x = 4 时,求 y 的值.
(3)当 y =8时,求x的值.
变式训练
已知 y 与 x2 成反比例,并且当 x=3 时,y=4.
(1)写出 y 关于 x 的函数解析式; (2)当 x=1.5 时,求 y 的值;
(3)当 y=6 时,求 x 的值.
规律提炼
课堂小结 反比例函数的定义 一般形式 如何求解析式
拓展提高
1、如果y是z的反比例函数,z是x的反比例函数,那 么y与x具有怎样的函数关系? 2、如果y是z的反比例函数,z是x的正比例函数,且 x≠0,那么y与x具有怎样的函数关系?
二次函数:y ax2 bx c (a≠0,且a,b,c均
反比例函数ppt课件

有42人,各班平均每人的金额分别是多少元?
每班人数(x)人
平均每人所得金
额(y)元
40
50
42
在以上问题中什么不变,什么在变,你能
否用所学过的式子表示y与x的关系?
情境导入
95%
(2)在操场上,学校给每个班计划定一个活动区域,其中
给杜老师班安排了一个面积为1002 的矩形区域,其中矩
=∙
=
= ��−
其他形式
下列哪些关系式中的是的
反比例函数
游戏时长:30秒
游戏难度:★☆☆
下列哪些关系式中的是的反比例函数
例题讲解
待定系数法:
一设二代三解四回
例1:已知是的反比例函数,并且当 = 2时, = 6.
(1)写出关于的函数解析式;
(2)当 = 2时,求的值.
一次函数: = + (、为常数,且 ≠ 0)
正比例函数: = (为常数,且 ≠ 0)
●
●
●
●
情境导入
72%
(1)在第十三周,我们学校即将举行校运动会,学校计划
给每班发200元的活动经费,如果九年级(1)班有40人,
平均每人所得金额是多少元?若(2)班有50人,(3)班
已知y与
x 2 成反比例,并且当x = 3时, y = 4.
(1)写出关于的函数解析式;
(2)当 = 1.5时,求的值;
(3)当 = 6时,求的值.
(
x2
36
1.5时, = 2
1.5
36
6时,6 = 2 ,
x
解:(1)设 =
每班人数(x)人
平均每人所得金
额(y)元
40
50
42
在以上问题中什么不变,什么在变,你能
否用所学过的式子表示y与x的关系?
情境导入
95%
(2)在操场上,学校给每个班计划定一个活动区域,其中
给杜老师班安排了一个面积为1002 的矩形区域,其中矩
=∙
=
= ��−
其他形式
下列哪些关系式中的是的
反比例函数
游戏时长:30秒
游戏难度:★☆☆
下列哪些关系式中的是的反比例函数
例题讲解
待定系数法:
一设二代三解四回
例1:已知是的反比例函数,并且当 = 2时, = 6.
(1)写出关于的函数解析式;
(2)当 = 2时,求的值.
一次函数: = + (、为常数,且 ≠ 0)
正比例函数: = (为常数,且 ≠ 0)
●
●
●
●
情境导入
72%
(1)在第十三周,我们学校即将举行校运动会,学校计划
给每班发200元的活动经费,如果九年级(1)班有40人,
平均每人所得金额是多少元?若(2)班有50人,(3)班
已知y与
x 2 成反比例,并且当x = 3时, y = 4.
(1)写出关于的函数解析式;
(2)当 = 1.5时,求的值;
(3)当 = 6时,求的值.
(
x2
36
1.5时, = 2
1.5
36
6时,6 = 2 ,
x
解:(1)设 =
27.1 反比例函数课件(共16张PPT)

1.要制作容积为15 700 cm3的圆柱形水桶,水桶的底面积为S cm2,高为h cm,则Sh= ,用h表示S的函数表达式为 .2.自行车运动员在长为10 000 m的路段上进行骑车训练,行驶全程所用时间为t s,行驶的平均速度为v m/s,则vt= ,用t表示v的函数表达式为 .3.y与x的乘积为-2,用x表示y的函数表达式为 .
2.下列函数是y关于x的反比例函数的是( ) A. B. C. D.3.若函数 是反比例函数,则m的值是_____.
C-1ຫໍສະໝຸດ 展提升答案:解:2. 已知y与x2成反比例,并且当x=3时,y=4. (1)写出y关于x的函数表达式; (2)当x = 1.5时,求y的值; (3)当y = 6时,求x的值.
第 二十七章 反比例函数
27.1 反比例函数
学习目标
1.认识反比例函数的概念.2.能够根据已知条件,确定反比例函数的表达式.
学习重难点
重点
理解反比例函数的概念;能根据已知条件写出函数表达式.
难点
理解反比例函数的概念.
情景引入
若将成正比例的两个量视为变量,则这两个量之间具有正比例函数关系.那么,当将两个成反比例的量视为变量时,它们之间又具有怎样的函数关系呢?
做一做
新知引入
知识点1 反比例函数的定义
15 700
10 000
归纳总结
k≠0
自变量 x 的取值范围是不等于 0 的实数.
典型例题
例1
写出下列问题中y与x之间的函数关系式,指出其中的正比例函数和反比例函数,并写出它们的比例系数k.(1)y与x互为相反数.(2)y与x互为负倒数.(3)y与2x的积等于a(a为常数,且a≠0).
k≠0
知识点2 确定反比例函数的表达式
2.下列函数是y关于x的反比例函数的是( ) A. B. C. D.3.若函数 是反比例函数,则m的值是_____.
C-1ຫໍສະໝຸດ 展提升答案:解:2. 已知y与x2成反比例,并且当x=3时,y=4. (1)写出y关于x的函数表达式; (2)当x = 1.5时,求y的值; (3)当y = 6时,求x的值.
第 二十七章 反比例函数
27.1 反比例函数
学习目标
1.认识反比例函数的概念.2.能够根据已知条件,确定反比例函数的表达式.
学习重难点
重点
理解反比例函数的概念;能根据已知条件写出函数表达式.
难点
理解反比例函数的概念.
情景引入
若将成正比例的两个量视为变量,则这两个量之间具有正比例函数关系.那么,当将两个成反比例的量视为变量时,它们之间又具有怎样的函数关系呢?
做一做
新知引入
知识点1 反比例函数的定义
15 700
10 000
归纳总结
k≠0
自变量 x 的取值范围是不等于 0 的实数.
典型例题
例1
写出下列问题中y与x之间的函数关系式,指出其中的正比例函数和反比例函数,并写出它们的比例系数k.(1)y与x互为相反数.(2)y与x互为负倒数.(3)y与2x的积等于a(a为常数,且a≠0).
k≠0
知识点2 确定反比例函数的表达式
26.1.1 反比例函数课件(共22张PPT)

x
例如:
①y-1与x+1成反比例,则y-1= k ; x和y不是反比例函数
②若y与x2成反比例,则y=
k x2
x1
成反比例关系,x和y不是反比例函数
③反比例函数y= k (k≠0) 必成反比例关系
x
26.1.1 反比例函数
(5) y k (k为常数) 6 xy 123 x 解:(5)k可能为0,不是反比例函数
x1
26.1.1 反比例函数
课堂小结
形如y k (k为常数,k ≠ 0) x ,y均不等于0.
概念
x
其他形式:1. xy = k ; 2. y = kx-1;3. y k
反 比
( k 为常数,k ≠ 0)
x
例
x, y可以表示单独字母,
函
x与y成反比例 多项式或单项式
数 成反比例与反
比例函数的区别
7 y - 2 8 y 6
3x
x1
解:(6)是反比例函数,可化为 y
123 x
,自变量x≠0,因变量y≠0
2
解:(7)是反比例函数,可化为 y 3 ,自变量x≠0,因变量y≠0
x
解:(8)不是反比例函数
26.1.1 反比例函数
试一试
根据上面的练习,你能帮小唯唯总结一下反比例函数有哪些形式吗?
一般形式
(
k2
≠
0
),
则
y
k1
x
1
k2 x
1
.
∵ x = 0 时,y = -3;x = 1 时,y = -1,
∴ -3= -k1+k2
1
1 2
k2
∴k1 = 1,k2 = -2.
例如:
①y-1与x+1成反比例,则y-1= k ; x和y不是反比例函数
②若y与x2成反比例,则y=
k x2
x1
成反比例关系,x和y不是反比例函数
③反比例函数y= k (k≠0) 必成反比例关系
x
26.1.1 反比例函数
(5) y k (k为常数) 6 xy 123 x 解:(5)k可能为0,不是反比例函数
x1
26.1.1 反比例函数
课堂小结
形如y k (k为常数,k ≠ 0) x ,y均不等于0.
概念
x
其他形式:1. xy = k ; 2. y = kx-1;3. y k
反 比
( k 为常数,k ≠ 0)
x
例
x, y可以表示单独字母,
函
x与y成反比例 多项式或单项式
数 成反比例与反
比例函数的区别
7 y - 2 8 y 6
3x
x1
解:(6)是反比例函数,可化为 y
123 x
,自变量x≠0,因变量y≠0
2
解:(7)是反比例函数,可化为 y 3 ,自变量x≠0,因变量y≠0
x
解:(8)不是反比例函数
26.1.1 反比例函数
试一试
根据上面的练习,你能帮小唯唯总结一下反比例函数有哪些形式吗?
一般形式
(
k2
≠
0
),
则
y
k1
x
1
k2 x
1
.
∵ x = 0 时,y = -3;x = 1 时,y = -1,
∴ -3= -k1+k2
1
1 2
k2
∴k1 = 1,k2 = -2.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6 x
的图象。
X … -6 -3 -1 … 1 3 6 …
y…
…
…
反比例函数的图象和性质:
1、k>0
图象在第一和第三象
限,在每个象限内y随x的增大而减小。
2、k<0
图象在第二和第四象
限,在每个象限内y 随x的增大而增大。
动脑想一想
1、反比例函数y= - 5 的图象大致是( D )
y
x
y
A:
o
x
(2)当x=
2 3
时y的值。
(3)当x为何值时,y=
4 5
拓展研究
若再过P向y轴作 垂线,垂足为k,则 矩形OQPK的面积会 随P点的移动而改变 吗?若不,你能求 出面积吗?
Y
k P(x0,y0)
O
Q
X
作业布置:
数学书52页习题
2、3题
B:
o
x
y
C:
o
x
D:
y
o x
2、反比例函数y= k (k≠0)的
x
图象过点P(-3,2),则它的图
象所在象限是( C )象限。 A 一、三 B 三、四
C 二、四 D 一、二
3、我校食堂有5吨煤,用y表示可以用的天数,
用x表示每天的烧煤量,则y关于x的函数的图
象大致是( )D
y
y
A:
x
B:
x
y
y
-
1 x
的图象上,
则下列关系式正确的是( B )
A x1<x2<x3 B x1>x2>x3 C X1>X3>X2 D x1<x3<x2
2、若k1k2<0,则
函数y=k1x与y=
k2 x
在同
一坐标系中的图象大致为( B )
A:
B:
C: D:
动笔做一做
已知y是x的反比例函数,且当x=4时,y= -1,求: (1)y和x的函数关系式。
C:
x
D:
x
知识小结:
1、反比例函数
y=
k x
(k≠0)
xy=k(k≠0)
2、对y=
k x
(k≠0)
k>0
图象位于第一和第三象限,在每个
象限内y 随x的增大而减小。
k<0
图象位于第二和第四象限,在每个 象限内y 随x的增大而增大。
拓展练习
1、已知点( x1,-1 )( x2,-5),
(x3,-9)在函数y=
反比例函数
动脑筋
1、李老师今天从牛石坐公
共汽车到沙湾,若牛石与
沙湾相距32千米,则速度
y(千米/小时)与所用时
间x(小时)之间的关系
是
。
2、我校伙食团共有5吨煤,则可烧天数y与每天
烧煤量x之间的关系是
。
定义
形如y= k (k≠0)的函
x
数叫反比例函数
y=
k x
(k≠0)
xy=k(k≠0)
细心填一填:
1、已知点P(x1,3)和点Q(-2,y1)满
足反比例函数y=
1 x
,则x1=
1
3,
y1=
1 2
。
2、已知点P(2,-3)满足反比例函数
y=
k x
,则k= - 6 。
动手做一做:
通过列表、描点、连线的方法画出反比例
函数y=
6 x
的图象。
X … -6 -3 -1 … 1 3 6 …
y…
…
…
在同一坐标系内画函数y=