中考数学求最短距离总结含答案

合集下载

中考数学最值问题总结(含强化训练)

中考数学最值问题总结(含强化训练)

中考数学最值问题总结(含强化训练)在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要分为几何最值和代数最值两大部分。

一、解决几何最值问题的要领(1)两点之间线段最短;(2)直线外一点与直线上所有点的连线段中,垂线段最短;(3)三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)。

二、解决代数最值问题的方法要领1.二次函数的最值公式二次函数y ax bx c =++2(a 、b 、c 为常数且a ≠0)其性质中有 ①若a >0当x b a=-2时,y 有最小值。

y ac b a min =-442; ②若a <0当x b a=-2时,y 有最大值。

y ac b a max =-442。

2.一次函数的增减性.一次函数y kx b k =+≠()0的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。

3. 判别式法.根据题意构造一个关于未知数x 的一元二次方程;再根据x 是实数,推得∆≥0,进而求出y 的取值范围,并由此得出y 的最值。

4.构造函数法.“最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。

5. 利用非负数的性质.在实数范围内,显然有a b k k 22++≥,当且仅当a b ==0时,等号成立,即a b k 22++的最小值为k 。

6. 零点区间讨论法.用“零点区间讨论法”消去函数y 中绝对值符号,然后求出y 在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。

7. 利用不等式与判别式求解.在不等式x a ≤中,x a =是最大值,在不等式x b ≥中,x b =是最小值。

8. “夹逼法”求最值.在解某些数学问题时,通过转化、变形和估计,将有关的量限制在某一数值范围内,再通过解不等式获取问题的答案,这一方法称为“夹逼法”。

2021年九年级中考数学小专题复习平面展开最短路径问题(附答案)

2021年九年级中考数学小专题复习平面展开最短路径问题(附答案)

北师大版2021年中考数学小专题复习:平面展开最短路径问题(附答案)1.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.5B.25C.10+5D.352.如图,已知圆柱的底面直径BC=,高AB=3,小虫在圆柱表面爬行,从C点爬到A 点,然后再沿另一面爬回C点,则小虫爬行的最短路程为()A.B.C.D.3.如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()A.B.C.D.4.如图所示,一圆柱高8cm,底面半径为2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(π取3)是()A.20cm B.10cm C.14cm D.无法确定5.如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是()A.9B.10C.D.6.如图,长方体的底面边长为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达B,那么所用细线最短需要()A.12cm B.11cm C.10cm D.9cm7.如图是一块长、宽、高分别是6cm、4cm和3cm的长方体木块.一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的表面到长方体上和A点相对的顶点B处吃食物,那么它需要爬行的最短路径的长是()A.()cm B.C.D.9cm8.如图是放在地面上的一个长方体盒子,其中AB=18cm,BC=12cm,BF=10cm,点M 在棱AB上,且AM=6cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程为()A.20cm B.2cm C.(12+2)cm D.18cm9.某校“光学节”的纪念品是一个底面为等边三角形的三棱镜(如图).在三棱镜的侧面上,从顶点A到顶点A′镶有一圈金属丝,已知此三棱镜的高为8cm,底面边长为2cm,则这圈金属丝的长度至少为()A.8cm B.10cm C.12cm D.15cm10.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为()A.13cm B.cm C.2cm D.20cm11.如图,点A是正方体左侧面的中心,点B是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A沿其表面爬到点B的最短路程是()A.3B.C.D.412.如图所示,有一个高18cm,底面周长为24cm的圆柱形玻璃容器,在外侧距下底1cm 的点S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是()A.16cm B.18cm C.20cm D.24cm13.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.14.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).15.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要cm.16.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为cm.17.图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为cm.18.长方体的长、宽、高分别为8cm,4cm,5cm.一只蚂蚁沿着长方体的表面从点A爬到点B.则蚂蚁爬行的最短路径的长是cm.19.如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为cm.20.如图是放在地面上的一个长方体盒子,其中AB=18cm,BC=12cm,BF=10cm,点M 在棱AB上,且AM=6cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程为.21.如图,圆柱形玻璃杯高为24cm、底面周长为36cm,在杯内离杯底8cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿8cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为cm.22.如图,正四棱柱的底面边长为8cm,侧棱长为12cm,一只蚂蚁欲从点A出发,沿棱柱表面到点B处吃食物,那么它所爬行的最短路径是cm.23.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为dm.24.如图,一只蚂蚁沿着边长为2的正方体表面从顶点A出发,经过3个面爬到顶点B,如果它运动的路径是最短的,则最短路径为.25.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是m.(结果不取近似值)26.如图,长方体的底面边长均为3cm,高为5cm,如果用一根细线从点A开始经过4个侧面缠绕一圈达到点B,那么所用细线最短需要cm.27.如图,ABCD是长方形地面,长AB=10m,宽AD=5m,中间竖有一堵砖墙高MN=1m.一只蚂蚱从点A爬到点C,它必须翻过中间那堵墙,则它至少要走m.28.一块长方体木块的各棱长如图所示,一只蜘蛛在木块的一个顶点A处,一只苍蝇在这个长方体上和蜘蛛相对的顶点B处,蜘蛛急于捉住苍蝇,沿着长方体的表面向上爬.(1)如果D是棱的中点,蜘蛛沿“AD→DB”路线爬行,它从A点爬到B点所走的路程为多少?(2)你认为“AD→DB”是最短路线吗?如果你认为不是,请计算出最短的路程.29.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,求蚂蚁从外壁A处到达内壁B处的最短距离.30.仔细阅读,解答下列问题(1)有一长方体的食物包装纸盒如图(1),已知长方体的底面长为12,宽为9,高为5,一只蚂蚁想从底面A处爬到B处去吃食物,请问:蚂蚁爬行的最短距离是多少?(2)如图(2),圆柱形容器的高为1.2米,底面周长为1米,在容器内壁离容器底部0.3米的点B处有一只蚊子,此处一只壁虎正好在容器外壁离容器上沿0.3米与蚊子相对的点A处,求壁虎捕捉到蚊子的最短路程是多少?(容器厚度忽略不计).31.问题探究:(1)如图①,已知等边△ABC,边长为4,则△ABC的外接圆的半径长为.(2)如图②,在矩形ABCD中,AB=4,对角线BD与边BC的夹角为30°,点E在为边BC上且BE=BC,点P是对角线BD上的一个动点,连接PE,PC,求△PEC周长的最小值.问题解决:(3)为了迎接新年的到来,西安城墙举办了迎新年大型灯光秀表演.其中一个镭射灯距城墙30米,镭射灯发出的两根彩色光线夹角为60°,如图③,若将两根光线(AB,AC)和光线与城墙的两交点的连接的线段(BC)看作一个三角形,记为△ABC,那么该三角形周长有没有最小值?若有,求出最小值,若没有,说明理由.32.如图,长方体的长为20cm,宽为10cm,高为15cm,点B与点C之间的距离为5cm.一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖,那么需要爬行的最短距离是多少?33.如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为多少?34.如图,一个放置在地面上的长方体,长为15cm,宽为10cm,高为20cm,点B与点C 的距离为5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?35.如图,圆柱形杯子高9cm,底面周长18cm,在杯口点B处有一滴蜂蜜,此时蚂蚁在杯外底部与蜂蜜相对的点A处.(1)求蚂蚁从A到B处杯壁爬行吃到蜂蜜的最短距离;(2)若蚂蚁出发时发现有蜂蜜正以每秒钟1cm沿杯内壁下滑,蚂蚁出发后3秒钟吃到了蜂蜜,求蚂蚁的平均速度至少是多少?36.在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且>AD,木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A处,到达C处需要走的最短路程是米.(精确到0.01米)参考答案1.解:将长方体展开,连接A、B,根据两点之间线段最短,(1)如图,BD=10+5=15,AD=20,由勾股定理得:AB====25.(2)如图,BC=5,AC=20+10=30,由勾股定理得,AB====5.(3)只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:∴AB===5;由于25<5<5,故选:B.2.解:把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在RT△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=3,所以AC=3,∴从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为2AC=6,故选:D.3.解:蚂蚁也可以沿A﹣B﹣C的路线爬行,AB+BC=6,把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在Rt△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=1.5π,所以AC====<6,故选:C.4.解:如图所示:沿AC将圆柱的侧面展开,∵底面半径为2cm,∴BC==2π≈6cm,在Rt△ABC中,∵AC=8cm,BC=6cm,∴AB===10cm.故选:B.5.解:如图(1),AB==;如图(2),AB===10.故选B.6.解:将长方体展开,连接A、B′,则AA′=1+3+1+3=8(cm),A′B′=6cm,根据两点之间线段最短,AB′==10cm.故选:C.7.解:AB就是蚂蚁爬的最短路线.但有三种情况:当:AD=3,DB=4+6=10.AB==.当AD=4,DB=6+3=9.AB=.当AD=6,DB=3+4=7AB=.所以第三种情况最短.故选:C.8.解:如图1,∵AB=18cm,BC=GF=12cm,BF=10cm,∴BM=18﹣6=12,BN=10+6=16,∴MN==20;如图2,∵AB=18cm,BC=GF=12cm,BF=10cm,∴PM=18﹣6+6=18,NP=10,∴MN===2.∵20<2,∴蚂蚁沿长方体表面爬到米粒处的最短距离为20.故选:A.9.解:将三棱柱沿AA′展开,其展开图如图,则AA′==10(cm).故选:B.10.解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===20(cm).故选:D.11.解:如图,AB==.故选:C.12.解:如图展开后连接SF,求出SF的长就是捕获苍蝇充饥的蜘蛛所走的最短路径,过S作SE⊥CD于E,则SE=BC=×24=12cm,EF=18﹣1﹣1=16cm,在Rt△FES中,由勾股定理得:SF===20(cm),答:捕获苍蝇充饥的蜘蛛所走的最短路径的长度是20cm.故选:C.13.解:如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).故答案为:25.14.解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===20(cm).故答案为20.15.解:将长方体展开,连接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根据两点之间线段最短,AB′==10cm.故答案为:10.16.解:如图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,在直角△A′DB中,由勾股定理得A′B===20(cm).故答案为:20.17.解:如图所示:△BCD是等腰直角三角形,△ACD是等边三角形,在Rt△BCD中,CD==6cm,∴BE=CD=3cm,在Rt△ACE中,AE==3cm,∴从顶点A爬行到顶点B的最短距离为(3+3)cm.故答案为:(3+3).18.解:如图所示,路径一:AB==13;路径二:AB==;路径三:AB==;∵>13>,∴cm为最短路径.19.解:∵P A=2×(4+2)=12,QA=5∴PQ=13.故答案为:13.20.解:如图1,∵AB=18cm,BC=GF=12cm,BF=10cm,∴BM=18﹣6=12,BN=10+6=16,∴MN==20;如图2,∵AB=18cm,BC=GF=12cm,BF=10cm,∴PM=18﹣6+6=18,NP=10,∴MN=.∵20<2,∴蚂蚁沿长方体表面爬到米粒处的最短距离为20.故答案为:20cm21.解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′C,则A′C即为最短距离,A′C2=A′D2+CD2=182+242=900,∴A′C=30(cm).答:蚂蚁到达蜂蜜的最短距离的平方是30cm.22.解:把长方体展开为平面图形,分两种情形:如图1中,AB===4,如图2中,AB===20,∵20<4,∴爬行的最短路径是20cm.故答案为20.23.解:三级台阶平面展开图为长方形,长为20dm,宽为(2+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.设蚂蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得:x2=202+[(2+3)×3]2=252,解得:x=25(dm).故答案为:25.24.解:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,展开图如图所示,此时AB最短,AB==2,故答案为:2.25.解:圆锥的底面周长是6π,则6π=,∴n=180°,即圆锥侧面展开图的圆心角是180度.则在圆锥侧面展开图中AP=3,AB=6,∠BAP=90度.∴在圆锥侧面展开图中BP=m.故小猫经过的最短距离是m.故答案是:3.26.解:将长方体展开,连接A、B,根据两点之间线段最短,AB==13cm;故答案为:1327.解:如图所示,将图展开,图形长度增加2MN,原图长度增加2米,则AB=10+2=12m,连接AC,∵四边形ABCD是长方形,AB=12m,宽AD=5m,∴AC=m,∴蚂蚱从A点爬到C点,它至少要走13m的路程.故答案为:13.28.解:(1)从点A爬到点B所走的路程为AD+BD=+=5+.(2)不是,分三种情况讨论:①将下面和右面展到一个平面内,AB===2(cm);②将前面与右面展到一个平面内,AB===6(cm);③将前面与上面展到一个平面内,AB==4(cm),∴蜘蛛从A点爬到B点所走的最短路程为6cm29.解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B==20(cm).答:蚂蚁从外壁A处到达内壁B处的最短距离是20cm.30.解:(1)第一种情况:把我们所看到的前面和上面组成一个平面,.则这个长方形的长和宽分别是12cm和14cm,则所走的最短线段是=2,第二种情况:把我们看到的左面与上面组成一个长方形,则这个长方形的长和宽分别是9cm和17cm,所以走的最短线段是=cm;第三种情况:把我们所看到的前面和右面组成一个长方形,则这个长方形的长和宽分别是10cm和4cm,所以走的最短线段是=cm;三种情况比较而言,第一种情况最短,∴蚂蚁爬行的最短距离是2cm;(2)如图:∵高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,∴A′D=0.5m,BD=1.2m,∴将容器侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===1.3(m).答:壁虎捕捉到蚊子的最短路程是1.3m.31.解:(1)如图,作三角形外接圆⊙O,作直径AD,连接BD,∵等边△ABC内接于⊙O,AD为直径,∴∠C=60°=∠D,∠ABD=90°,∵sin∠D==,∴AD==4×=∴⊙0的半径是.故答案为:;(2)如图2,作点E关于BD的对称点E′,连接E′C交BD于P,连接PE,此时△PEC周长周长最小.连接BE′,过E′作E′H⊥BC,∵∠DBC=30°,AB=CD=4,∴BC=4,又∵BE=BC.∴BE=∵点E′是关于BD的对称点E∴∠E′BH=60°,BE′=BE=,∴BH=,E′H=,∴HC=,∴E′C===∵△PEC周长=PC+PE+EC=PE′+EC=(3)如图3,∵∠BAC=60°,AH=30米,∴当AB=AC时,边BC取最小值,∴此时BC=AC=20,作▱ABCD,作A点关于直线BC的对称点A′,连接A′D,AB+AC=CD+A′C,当A′,C,D在一条直线上时,AB+AC最小,此时,△ABC应为等边三角形,AB+AC=40∵AB+AC和BC的最小值能够同时取到,故△ABC的周长最小值为60.32.解:将长方体沿CF、FG、GH剪开,向右翻折,使面FCHG和面ADCH在同一个平面内,连接AB,如图1,由题意可得:BD=BC+CD=5+10=15cm,AD=CH=15cm,在Rt△ABD中,根据勾股定理得:AB===15cm;将长方体沿DE、EF、FC剪开,向上翻折,使面DEFC和面ADCH在同一个平面内,连接AB,如图2,由题意得:BH=BC+CH=5+15=20cm,AH=10cm,在Rt△ABH中,根据勾股定理得:AB===10cm,连接AB,如图3,左面和上面展开在一个平面内,由题意可得:BB′=B′E+BE=15+10=25cm,AB′=BC=5cm,在Rt△AB′B中,根据勾股定理得:AB===5cm,∵15<10<5,∴则需要爬行的最短距离是15cm.33.解:如图:将杯子侧面展开,作A关于EQ的对称点A′,连接A′C,则A′C即为最短距离,则A′D=×18cm=9cm,CQ=12cm﹣4cm=8cm,CD=4cm+8cm=12cm,在Rt△A′DC中,由勾股定理得:A′C===15(cm),答:蚂蚁到达蜂蜜的最短距离为15cm.34.解:只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如第1个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=10+5=15,AD=20,在直角三角形ABD中,根据勾股定理得:∴AB===25;只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如第2个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:∴AB===5;只要把长方体的上表面剪开与后面这个侧面所在的平面形成一个长方形,如第3个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴AC=CD+AD=20+10=30,在直角三角形ABC中,根据勾股定理得:∴AB===5;∵25<5<5,∴蚂蚁爬行的最短距离是25.故答案为:25.35.解:(1)如图所示,∵圆柱形玻璃容器高9cm,底面周长18cm,∴AD=9cm,∴AB===9(cm).答:蚂蚁要吃到食物所走的最短路线长度是9cm;(2)∵AD=9cm,∴蚂蚁所走的路程==15,∴蚂蚁的平均速度=15÷3=5(cm/s).答:蚂蚁的平均速度至少是5cm/s.36.解:由题意可知,将木块展开,相当于是AB+2个正方形的宽,∴长为2+0.2×2=2.4米;宽为1米.于是最短路径为:=2.60(米).故答案为:2.60.。

中考数学最短距离专题

中考数学最短距离专题

最短距离基本图形1、垂线段最短2、两点之间,线段最短3、(1)若点A、B在直线m异侧,在直线m上找一点P,使AP+BP的值最小(两点之间,线段最短)(2)若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.4、圆外一点与圆的最短距离、最大距离典例分析:1、(2016·山东省东营市·3分)如图,在Rt△ABC中,∠B=90°,AB=4,BC>AB,点D在BC上,以AC为对角线的所有平行四边形ADCE中,DE 的最小值是_______.2、(2016·福建龙岩4分)如图,在周长为12的菱形ABCD 中,AE=1,AF=2,若P 为对角线BD 上一动点,则EP+FP 的最小值为( )A .1 B .2 C .3 D .43、(2015成都)如图,一次函数4y x =-+的图象与反比例ky x =(K为常数,且0k ≠)的图象交于()1,A a ,B 两点.(1)求反比例函数的表达式及点B 的坐标;(2)在x 轴上找一点P ,使PA PB +的值最小,求满足条件的点P 的坐标及PAB∆的面积.思路分析:在x轴上找一点P,使PA PB +的值最小,是构建基本图形:4、(2016·陕西·3分)如图,在菱形ABCD 中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为__.分析:5、(2017邢台市二模,14分)如图,∠A=45°,∠ABC=60°,AB∥MN,BH⊥MN于点H,BH=8,点C在MN上,点D在AC上,DE⊥MN于点E,半圆的圆心为点O,直径DE=6,G为的中点,F是上的动点.发现:CF的最小值是,CF的最大值为.。

中考数学 考点系统复习 第七章 作图与图形变换 微专题(七) 利用“两点之间线段最短”求最值

中考数学 考点系统复习 第七章 作图与图形变换 微专题(七) 利用“两点之间线段最短”求最值

模型三:“两点两线”型(两个动点+两个定点) (一)利用垂直平分线的性质求四边形周长最小值 【模型分析】 点 P,Q 是∠AOB 内部的两定点,在 OA 上找点 M,在 OB 上找点 N,使得四 边形 PQNM 周长最小. 思路点拨:
8.★如图,在矩形 ABCD 中,AB=4,AD=6,AE=4,AF=2,点 G,H 分 别是边 BC,CD 上的动点,则四边形 EFGH 周长的最小值为 22 5+10+10.
【模型演变】 两定点 A,B 位于直线 l 异侧,在直线 l 上找一点 P,使得|PA-PB|值最 大. 思路点拨:将两定点异侧转化为同侧问题,同“基础模型”即可解决, 作点 B 关于直线 l 的对称点 B′,连接 AB′并延长,与直线 l 交于点 P, 点 P 即为所求.
5.★如图,在正方形 ABCD 中,AB=6,点 F 是对角线 BD 上靠近点 B 的
2.★如图,在△ABC 中,AB=AC,AB 的垂直平分线交 AB 于点 N,交 AC 于点 M,P 是直线 MN 上一动点,H 为 BC 的中点,若 AB=13,△ABC 的周 长是 36.则 PB+PH 的最小值为 112 2.
3.★如图,在矩形 ABCD 中,AB=6,AD=3,点 P 为矩形 ABCD 内一点,
【模型演变】 两定点 A,B 位于直线 l 同侧,在直线 l 上找一点 P,使得 PA+PB 值最小. 思路点拨:将两定点同侧转化为异侧问题,同“基础模型”即可解决, 作点 B 关于直线 l 的对称点 B′,连接 AB′,与直线 l 交于点 P,点 P 即 为所求.
1.如图,等边三角形 AD 边 上的动点,E 是 AB 边上一点,且 AE=2,则线段 EF+CF 的最小值为 22 3 .
1 且动点 P 满足 S△PAB=3S 矩形 ABCD,则点 P 到 A,B 两点距离之和的最小值为 22 13 .

数学人教版八年级上册中考复习课《最短距离》

数学人教版八年级上册中考复习课《最短距离》

中考复习课《最短路径问题》教材分析:本节课是在学习了基本事实:“两点之间线段最短”“垂线段最短”和轴对称的性质、勾股定理的基础上,引导学生探究如何综合运用知识解决最短路径问题。

它既是轴对称、勾股定理知识的运用的延续,又能培养学生自主控究,学会思考,在知识与能力转化上起到桥梁的作用。

设计整合了一些以三角形、四边形、圆、函数、立体图形为背景的最短路径问题,让学生直面数学模型,体会数学的本质,有利于学生系统的学习知识。

学情分析对于九年级的学生来说,已学过一些关于空间与图形的简单推理知识,具备了一定的合情推理能力,能应用勾股定理、线段公理、轴对称的性质等知识解决简单的问题,但演绎推理的意识和能力还有待加强,思维缺乏灵活。

最短路径问题,学生在八年级已经有所接触。

对于直线异侧的两点,怎样在直线上找到一点,使这一点到这两点的距离之和最小,学生很容易想到连接这两点,所连线段与直线的交点就是所求的点.但对于直线同侧的两点,如何在直线上找到一点,使这一点到这两点的距离之和最小,受已有经验和知识基础的影响,部分学生在八年级学习时很茫然,找不到解决问题的思路。

进入中考复习阶段,随着一些以三角形、四边形、圆、函数、立体图形为背景的最短路径问题的出现,更是让学生感到陌生,无从下手。

从平时教学反映出学生不重视学习方法,不注意归纳总结,不会思考,更不善于思考,学生学得累。

所以想通过本节课引导学生学会学习,学会思考,从而使其感受到学习的快乐,提高学习的兴趣,避免死做题,以达到提高学习能力的目的。

学习目标:1.能够利用基本事实“两点之间线段最短”和“轴对称的性质”,从复杂的图形中抽象出“最短路径”问题的基本数学模型,体会轴对称的“桥梁”作用。

2.能将立体图形中的“最短路径问题”转化为平面图形来解决,感悟转化思想.3、通过训练,提高综合运用知识的能力。

教学重点:通过利用轴对称将最短路径问题转化为“连点之间,线段最短”问题,学会从知识内容中提炼出数学模型和数学数学方法。

人教版-八年级数学讲义--最短路径问题-(含解析)

人教版-八年级数学讲义--最短路径问题-(含解析)

人教版-八年级数学讲义--最短路径问题-(含解析)本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March第6讲最短路径问题知识定位讲解用时:5分钟A、适用范围:人教版初二,基础较好;B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要学习最短路径问题,现实生活中经常涉及到选择最短路径问题,最值问题不仅使学生难以理解,也是中考中的一个高频考点。

本节将利用轴对称知识探究数学史上著名的“将军饮马问题”。

知识梳理讲解用时:20分钟两点之间线段最短C DA BEA地到B地有3条路线A-C-D-B,A-B,A-E-B,那么选哪条路线最近呢?垂线段最短如图,点P是直线L外一点,点P与直课堂精讲精练【例题1】已知点A,点B都在直线l的上方,试用尺规作图在直线l上求作一点P,使得PA+PB的值最小,则下列作法正确的是()A.B.C.D.【答案】D【解析】根据作图的方法即可得到结论.解:作B关于直线l的对称点,连接这个对称点和A交直线l于P,则PA+PB 的值最小,∴D的作法正确,故选:D.讲解用时:3分钟解题思路:本题考查了轴对称﹣最短距离问题,熟练掌握轴对称的性质是解题的关键.教学建议:学会处理两点在直线同侧的最短距离问题.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习】如图,直线L是一条河,P,Q是两个村庄.欲在L上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A. B.C.D.【答案】D【解析】利用对称的性质,通过等线段代换,将所求路线长转化为两定点之间的距离.解:作点P关于直线L的对称点P′,连接QP′交直线L于M.根据两点之间,线段最短,可知选项D铺设的管道,则所需管道最短.故选:D.讲解用时:3分钟解题思路:本题考查了最短路径的数学问题.这类问题的解答依据是“两点之间,线段最短”.由于所给的条件的不同,解决方法和策略上又有所差别.教学建议:学会处理两点在直线同侧的最短距离问题.难度: 3 适应场景:当堂练习例题来源:无年份:2018【练习】如图,A、B在直线l的两侧,在直线l上求一点P,使|PA﹣PB|的值最大.【答案】见解析【解析】作点A关于直线l的对称点A′,则PA=PA′,因而|PA﹣PB|=|PA′﹣PB|,则当A′,B、P在一条直线上时,|PA﹣PB|的值最大.解:作点A关于直线l的对称点A′,连A′B并延长交直线l于P.讲解用时:3分钟解题思路:本题考查的是作图﹣轴对称变换,熟知“两点之间线段最短”是解答此题的关键.教学建议:学会作对称点,通过“两点之间线段最短”进行解题.难度: 4 适应场景:当堂练习例题来源:无年份:2018【例题2】如图,A、B在直线l的同侧,在直线l上求一点P,使△PAB的周长最小.【答案】【解析】由于△PAB的周长=PA+AB+PB,而AB是定值,故只需在直线l上找一点P,使PA+PB最小.如果设A关于l的对称点为A′,使PA+PB最小就是使PA′+PB最小.解:作法:作A关于l的对称点A′,连接A′B交l于点P.则点P就是所要求作的点;理由:在l上取不同于P的点P′,连接AP′、BP′.∵A和A′关于直线l对称,∴PA=PA′,P′A=P′A′,而A′P+BP<A′P′+BP′∴PA+BP<AP′+BP′∴AB+AP+BP<AB+AP′+BP′即△ABP周长小于△ABP′周长.讲解用时:3分钟解题思路:本题考查了轴对称﹣最短路线问题解这类问题的关键是把两条线段的和转化为一条线段,运用三角形三边关系解决.教学建议:把三角形的周长用线段表示出来,通过转化成一条线段利用两点之间线段最短进行解题.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习】(Ⅰ)如图①,点A、B在直线l两侧,请你在直线l上画出一点P,使得PA+PB的值最小;(Ⅱ)如图②,点E、F在直线l同侧,请你在直线l上画出一点P,使得PE+PF的值最小;(Ⅲ)如图③,点M、N在直线l同侧,请你在直线l上画出两点O、P,使得OP=1cm,且MO+OP+PN的值最小.(保留作图痕迹,不写作法)【答案】见解析【解析】(I)图①,显然根据两点之间,线段最短,连接两点与直线的交点即为所求作的点;(II)图2,作E关于直线的对称点,连接FE′即可;(III)图③,画出图形,作N的对称点N′,作NQ∥直线l,NQ=1cm,连接MQ 得出点O即可.解:(I)如图①,连接A、B两点与直线的交点即为所求作的点P,这样PA+PB 最小,理由是:两点之间,线段最短;(II)如图②,先作点E关于直线l的对称点E′,再连接E′F交l于点P,则PE+PF=E′P+PF=E′F,由“两点之间,线段最短”可知,点P即为所求的点;(III)如图③,作N关于直线l的对称点N′,过N′作线段N′Q∥直线l,且线段N′Q=1cm,连接MQ,交直线l于O,在直线l上截取OP=1cm,如图,连接NP,则此时MO+OP+PN的值最小.讲解用时:5分钟解题思路:本题考查了轴对称﹣最短路线问题的应用,题目比较典型,第三小题有一定的难度,主要考查学生的理解能力和动手操作能力.教学建议:学会作对称点,通过“两点之间线段最短”进行解题.难度:4 适应场景:当堂练习例题来源:无年份:2018【例题3】如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,求△CDM周长的最小值.【答案】10【解析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S=BC•AD=×4×AD=16,解得AD=8,△ABC∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=10.讲解用时:5分钟解题思路:本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.教学建议:想办法利用对称的知识将两条线段转化成一条线段,利用垂线段最短进行解题.难度:4 适应场景:当堂例题例题来源:无年份:2018【练习】如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,AD=5,点F 是AD边上的动点,求BF+EF的最小值.【答案】5【解析】过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF最小,证△ADB ≌△CEB得CE=AD=5,即BF+EF=5.解:过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF最小(根据两点之间线段最短;点到直线垂直距离最短),由于C和B关于AD对称,则BF+EF=CF,∵等边△ABC中,BD=CD,∴AD⊥BC,∴AD是BC的垂直平分线(三线合一),∴C和B关于直线AD对称,∴CF=BF,即BF+EF=CF+EF=CE,∵AD⊥BC,CE⊥AB,∴∠ADB=∠CEB=90°,在△ADB和△CEB中,,∴△ADB≌△CEB(AAS),∴CE=AD=5,即BF+EF=5.故答案为:5.讲解用时:4分钟解题思路:本题考查的是轴对称﹣最短路线问题,涉及到等边三角形的性质,轴对称的性质,等腰三角形的性质、全等三角形的判定和性质等知识点的综合运用.教学建议:想办法利用对称的知识将两条线段转化成一条线段,利用垂线段最短进行解题.难度:4 适应场景:当堂练习例题来源:无年份:2018【例题4】如图所示,在一条河的两岸有两个村庄,现要在河上建一座小桥,桥的方向与河流垂直,设河的宽度不变,试问:桥架在何处,才能使从A到B的距离最短?【答案】见解析【解析】虽然A、B两点在河两侧,但连接AB的线段不垂直于河岸.关键在于使AP+BD最短,但AP与BD未连起来,要用线段公理就要想办法使P与D重合起来,利用平行四边形的特征可以实现这一目的.解:如图,作BB'垂直于河岸GH,使BB′等于河宽,连接AB′,与河岸EF相交于P,作PD⊥GH,则PD∥BB′且PD=BB′,于是PDBB′为平行四边形,故PB′=BD.根据“两点之间线段最短”,AB′最短,即AP+BD最短.故桥建立在PD处符合题意.讲解用时:4分钟解题思路:此题考查了轴对称﹣﹣﹣最短路径问题,要利用“两点之间线段最短”,但许多实际问题没这么简单,需要我们将一些线段进行转化,即用与它相等的线段替代,从而转化成两点之间线段最短的问题.目前,往往利用对称性、平行四边形的相关知识进行转化,以后还会学习一些线段转化的方法.教学建议:将3条线段进行转化成一条线段.难度:4 适应场景:当堂例题例题来源:无年份:2018【练习】作图题(1)如图1,一个牧童从P点出发,赶着羊群去河边喝水,则应当怎样选择饮水路线,才能使羊群走的路程最短?请在图中画出最短路线.(2)如图2,在一条河的两岸有A,B 两个村庄,现在要在河上建一座小桥,桥的方向与河岸方向垂直,桥在图中用一条线段CD表示.试问:桥CD建在何处,才能使A到B的路程最短呢?请在图中画出桥CD的位置.【答案】见解析【解析】(1)把河岸看做一条直线,利用点到直线的所有连接线段中,垂直线段最短的性质即可解决问题.(2)先确定AA′=CD,且AA′∥CD,连接BA′,与河岸的交点就是点C,过点C作CD垂直河岸,交另一河岸于点D,CD就是所求的桥的位置.解:(1)根据垂直线段最短的性质,即可画出这条从草地到河边最近的线路,如图1所示:(2)先确定AA′=CD,且AA′∥CD,连接BA′,与河岸的交点就是点C,过点C作CD垂直河岸,交另一河岸于点D,CD就是所求的桥的位置.如图2,讲解用时:4分钟解题思路:此题考查了垂直线段最短的性质的在解决实际问题中的灵活应用,解题的关键是灵活运用垂直线段最短的性质作图.教学建议:掌握求最短路径的几种基本题型和方法.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题5】如图,MN是等边三角形ABC的一条对称轴,D为AC的中点,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD的度数是多少?【答案】30°【解析】由于点C关于直线MN的对称点是B,所以当B、P、D三点在同一直线上时,PC+PD的值最小解:连接PB.由题意知,∵B、C关于直线MN对称,∴PB=PC,∴PC+PD=PB+PD,当B、P、D三点位于同一直线时,PC+PD取最小值,连接BD交MN于P,∵△ABC是等边三角形,D为AC的中点,∴BD⊥AC,∴PA=PC,∴∠PCD=∠PAD=30°讲解用时:3分钟解题思路:此题考查了线路最短的问题、等边三角形的性质等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.教学建议:学会转移对称线段,利用垂线段最短进行解题.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习】已知,如图△ABC为等边三角形,高AH=10cm,P为AH上一动点,D为AB的中点,则PD+PB的最小值为多少?【答案】10cm【解析】连接PC,根据等边三角形三线合一的性质,可得PC=BP,PD+PB要取最小值,应使D、P、C三点一线.解:连接PC,∵△ABC为等边三角形,D为AB的中点,∴PD+PB的最小值为:PD+PB=PC+PD=CD=AH=10cm.解题思路:此题主要考查有关轴对称﹣﹣最短路线的问题,注意灵活应用等边三角形的性质.教学建议:学会转移对称线段,利用垂线段最短进行解题.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题6】如图,∠AOB的内部有一点P,在射线OA,OB边上各取一点P1,P2,使得△PP1P2的周长最小,作出点P1,P2,叙述作图过程(作法),保留作图痕迹.【答案】见解析【解析】作点P关于直线OA的对称点E,点P关于直线OB的对称点F,连接EF交OA于P1,交OB于P2,连接PP1,PP2,△PP1P2即为所求.解:如图,作点P关于直线OA的对称点E,点P关于直线OB的对称点F,连接EF交OA于P1,交OB于P2,连接PP1,PP2,△PP1P2即为所求.理由:∵P1P=P1E,P2P=P2F,∴△PP1P2的周长=PP1+P1P2+PP2=EP1+p1p2+p2F=EF,根据两点之间线段最短,可知此时△PP1P2的周长最短.解题思路:本题考查轴对称﹣最短问题、两点之间线段最短等知识,解题的关键是学会利用对称解决最短问题,属于中考常考题型.教学建议:此类问题的解题技巧是做对称点,做定点关于动点所在直线的对称点.难度:4 适应场景:当堂例题例题来源:无年份:2018【练习】知识拓展:如图2,点P在∠AOB内部,试在OA、OB上分别找出两点E、F,使△PEF周长最短(保留作图痕迹不写作法)【答案】见解析【解析】作P关于OA、OB的对称点C、D,连接CD角OA、OB于E、F.此时△PEF周长有最小值;作图如下:讲解用时:3分钟解题思路:题主要考查了平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出对称点的位置是解题关键.教学建议:此类问题的解题技巧是做对称点,做定点关于动点所在直线的对称点.难度: 4 适应场景:当堂练习例题来源:无年份:2018【例题7】如图,∠AOB=30°,点P是∠AOB内一点,PO=8,在∠AOB的两边分别有点R、Q(均不同于O),求△PQR周长的最小值.【答案】【解析】根据轴对称图形的性质,作出P关于OA、OB的对称点M、N,连接MN,根据两点之间线段最短得到最小值线段,根据等边三角形的性质解答即可.解:分别作P关于OA、OB的对称点M、N.连接MN交OA、OB交于Q、R,则△PQR符合条件.连接OM、ON,由轴对称的性质可知,OM=ON=OP=8,∠MON=∠MOP+∠NOP=2∠AOB=2×30°=60°,则△MON为等边三角形,∴MN=8,∵QP=QM,RN=RP,∴△PQR周长=MN=8,讲解用时:5分钟解题思路:本题考查了轴对称﹣最短路径问题,根据轴对称的性质作出对称点是解题的关键,掌握线段垂直平分线的性质和等边三角形的性质的灵活运用.教学建议:对称之后,角度也是相同的,做定点关于动点所在直线的对称点. 难度: 4 适应场景:当堂例题例题来源:无年份:2018【练习】如图,∠AOB=30°,∠AOB内有一定点P,且OP=10,OA上有一点Q,OB上有一定点R.若△PQR周长最小,求它的最小值.【答案】10【解析】先画出图形,作PM⊥OA与OA相交于M,并将PM延长一倍到E,即ME=PM.作PN⊥OB与OB相交于N,并将PN延长一倍到F,即NF=PN.连接EF 与OA相交于Q,与OB相交于R,再连接PQ,PR,则△PQR即为周长最短的三角形.再根据线段垂直平分线的性质得出△PQR=EF,再根据三角形各角之间的关系判断出△EOF的形状即可求解.解:设∠POA=θ,则∠POB=30°﹣θ,作PM⊥OA与OA相交于M,并将PM延长一倍到E,即ME=PM.作PN⊥OB与OB相交于N,并将PN延长一倍到F,即NF=PN.连接EF与OA相交于Q,与OB相交于R,再连接PQ,PR,则△PQR即为周长最短的三角形.∵OA是PE的垂直平分线,∴EQ=QP;同理,OB是PF的垂直平分线,∴FR=RP,∴△PQR的周长=EF.∵OE=OF=OP=10,且∠EOF=∠EOP+∠POF=2θ+2(30°﹣θ)=60°,∴△EOF是正三角形,∴EF=10,即在保持OP=10的条件下△PQR的最小周长为10.故答案为:10.讲解用时:4分钟解题思路:本题考查的是最短距离问题,解答此类题目的关键根据轴对称的性质作出各点的对称点,即把求三角形周长的问题转化为求线段的长解答.教学建议:做定点关于动点所在直线的对称点,利用轴对称的性质进行解题.难度:4 适应场景:当堂练习例题来源:无年份:2018课后作业【作业1】如图,在铁路l的同侧有A、B两个工厂,要在铁路边建一个货场C,货场应建在什么地方,才能使A、B两厂到货场C的距离之和最短?【答案】见解析【解析】作点B关于直线l的对称点B′,连接AB′,交l于点C,则点C即为所求点.解:如图所示:讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业2】用三角板和直尺作图.(不写作法,保留痕迹)如图,点A,B在直线l的同侧.(1)试在直线l上取一点M,使MA+MB的值最小.(2)试在直线l上取一点N,使NB﹣NA最大.【答案】见解析【解析】(1)作点A关于直线l的对称点,再连接解答即可;(2)连接BA,延长BA交直线l于N,当N即为所求;解:(1)如图所示:(2)如图所示;理由:∵NB﹣NA≤AB,∴当A、B、N共线时,BN﹣NA的值最大.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业3】如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,AD=6,点F 是AD边上的动点,求BF+EF的最小值.【答案】6【解析】过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF最小,证△ADB ≌△CEB得CE=AD=6,即BF+EF=6.解:过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF最小(根据两点之间线段最短;点到直线垂直距离最短),由于C和B关于AD对称,则BF+EF=CF,∵等边△ABC中,BD=CD,∴AD⊥BC,∴AD是BC的垂直平分线(三线合一),∴C和B关于直线AD对称,∴CF=BF,即BF+EF=CF+EF=CE,∵AD⊥BC,CE⊥AB,∴∠ADB=∠CEB=90°,在△ADB和△CEB中,∵,∴△ADB≌△CEB(AAS),∴CE=AD=6,即BF+EF=6.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业4】如图,点P是∠AOB内部的一点,∠AOB=30°,OP=8cm,M,N是OA,OB上的两个动点,则求△MPN周长的最小值【答案】8【解析】设点P关于OA的对称点为C,关于OB的对称点为D,当点M、N在CD上时,△PMN的周长最小.解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=8cm,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=8cm.∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=8cm.故答案为:8.讲解用时:3分钟难度:4 适应场景:练习题例题来源:无年份:2018。

【配套K12】中考数学 专题复习六 求最短路径问题

【配套K12】中考数学 专题复习六 求最短路径问题

中考数学专题复习学案六求最短路径问题【专题思路剖析】知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。

“饮马问题”,“造桥选址问题”。

考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。

这类问题在中考中出现的频率很高,一般与垂线段最短、两点之间线段最短关系密切解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。

在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.【典型例题赏析】类型1 利用“垂线段最短”求最短路径问题例题1:(2015•辽宁省盘锦,第15题3分)如图,菱形ABCD的边长为2,∠DAB=60°,E为BC的中点,在对角线AC上存在一点P,使△PBE的周长最小,则△PBE的周长的最小值为.考点:轴对称-最短路线问题;菱形的性质.分析:连接BD,与AC的交点即为使△PBE的周长最小的点P;由菱形的性质得出∠BPC=90°,由直角三角形斜边上的中线性质得出PE=BE,证明△PBE是等边三角形,得出PB=BE=PE=1,即可得出结果.解答:解:连接BD,与AC的交点即为使△PBE的周长最小的点P;如图所示:∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=DA=2,∴∠BPC=90°,∵E为BC的中点,∴BE=BC=1,PE=BC=1,∴PE=BE,∵∠DAB=60°,∴∠ABC=120°,∴∠PBE=60°,∴△PBE是等边三角形,∴PB=BE=PE=1,∴PB+BE+PE=3;故答案为:3.点评:本题考查了菱形的性质、轴对称以及最短路线问题、直角三角形斜边上的中线性质;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.【方法点评】本题易错误的利用两点之间线段最短解决,解答时需要准确识图,找到图形对应的知识点.【变式练习】(2015•福建第16题 4分)如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A 长度的最小值是.考点:翻折变换(折叠问题)..分析:首先由勾股定理求得AC的长度,由轴对称的性质可知BC=CB′=3,当B′A有最小值时,即AB′+CB′有最小值,由两点之间线段最短可知当A、B′、C三点在一条直线上时,AB′有最小值.解答:解:在Rt△ABC中,由勾股定理可知:AC===4,由轴对称的性质可知:BC=CB′=3,∵CB′长度固定不变,∴当AB′+CB′有最小值时,AB′的长度有最小值.根据两点之间线段最短可知:A、B′、C三点在一条直线上时,AB′有最小值,∴AB′=AC﹣B′C=4﹣3=1.故答案为:1.点评:本题主要考查的是轴对称的性质、勾股定理和线段的性质,将求B′A的最小值转化为求AB′+CB′的最小值是解题的关键.类型2 利用“两点之间线段最短”求最短路径问题例题2:(2015•四川凉山州第26题5分)菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.考点:菱形的性质;坐标与图形性质;轴对称-最短路线问题..分析:点B的对称点是点D,连接ED,交OC于点P,再得出ED即为EP+BP最短,解答即可.解答:解:连接ED,如图,∵点B的对称点是点D,∴DP=BP,∴ED即为EP+BP最短,∵四边形ABCD是菱形,顶点B(2,0),∠DOB=60°,∴点D的坐标为(1,),∴点C的坐标为(3,),∴可得直线OC的解析式为:y=x,∵点E的坐标为(﹣1,0),∴可得直线ED的解析式为:y=(1+)x﹣1,∵点P是直线OC和直线ED的交点,∴点P的坐标为方程组的解,解方程组得:,所以点P的坐标为(),故答案为:().点评:此题考查菱形的性质,关键是根据一次函数与方程组的关系,得出两直线的解析式,求出其交点坐标.【方法点评】“两点(直线同侧)一线型”在直线上求一点到两点的和最短时,利用轴对称的知识作一点关于直线的对称点,连接对称点与另一点与直线的交点就是所求的点;“一点两线型”求三角形周长最短问题,作点关于两直线的对称点,连接两个对称点与两直线分别有两个交点,顺次连接所给的点与两交点即可得三角形;“两点两线型”求四边形的周长最短类比“一点两线型”即可.【变式练习】(2015•营口,第10题3分)如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25° B.30° C.35° D.40°考点:轴对称-最短路线问题.分析:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=CM,OP=OC,∠COA=∠POA;PN=DN,OP=OD,∠DOB=∠POB,得出∠AOB=∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.解答:解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴CM+DN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;故选:B.点评:本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键.类型3、求圆上点,使这点与圆外点的距离最小的方案设计在此问题中可根据圆上最远点与最近点和点的关系可得最优设计方案。

2020中考数学专题8——最值问题之将军饮马 -含答案

2020中考数学专题8——最值问题之将军饮马 -含答案

【模型解析】2020 中考专题 8——最值问题之将军饮马班级姓名.总结:以上四图为常见的轴对称类最短路程问题,最后都转化到:“两点之间,线段最短”解决。

特点:①动点在直线上;②起点,终点固定;方法:作定点关于动点所在直线的对称点。

【例题分析】例1.如图,在平面直角坐标系中,Rt△OAB 的顶点A 在x 轴的正半轴上,顶点B 的坐标为(3,3 ),点C 的坐标为(1,0),点2P 为斜边OB 上的一动点,则PA+PC 的最小值为.例 2.如图,在五边形ABCDE 中,∠BAE=120°,∠B=∠E=90°,AB=BC=1,AE=DE=2,在BC、DE 上分别找一点M、N.(1)当△AMN 的周长最小时,∠AMN+∠ANM=;(2)求△AMN 的周长最小值.例3.如图,正方形ABCD 的边长为 4,点E 在边BC 上且CE=1,长为 2 的线段MN 在AC 上运动.(1)求四边形BMNE 周长最小值;(2)当四边形BMNE 的周长最小时,则tan∠MBC 的值为.例4.在平面直角坐标系中,已知点A(一 2,0),点B(0,4),点E 在OB 上,且∠OAE=∠OB A.如图,将△AEO 沿x 轴向右平移得到△AE′O′,连接A'B、BE'.当AB+BE'取得最小值时,求点E'的坐标.例5.如图,已知正比例函数y=kx(k>0)的图像与x轴相交所成的锐角为70°,定点A的坐标为(0,4),P 为y 轴上的一个动点,M、N 为函数y=kx(k>0)的图像上的两个动点,则AM+MP+PN 的最小值为.【巩固训练】1.如图1 所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P,使PD+PE 的和最小,则这个最小值为.图1 图2 图3 图42.如图2,在菱形ABCD 中,对角线AC=6,BD=8,点E、F、P 分别是边AB、BC、AC 上的动点,PE+PF 的最小值是.3.如图3,在边长为2 的等边△ABC 中,D 为BC 的中点,E 是AC 边上一点,则BE+DE 的最小值为.4.如图 4,钝角三角形ABC 的面积为 9,最长边AB=6,BD 平分∠ABC,点M、N 分别是BD、BC 上的动点,则CM+MN 的最小值为.5.如图5,在△ABC 中,AM 平分∠BAC,点D、E 分别为AM、AB 上的动点,=6,则BD+DE的最小值为(1)若AC=4,S△ABC(2)若∠BAC=30°,AB=8,则BD+DE 的最小值为.(3)若AB=17,BC=10,CA=21,则BD+DE 的最小值为.6.如图6,在△ABC中,AB=BC=4,S△ABC=4一点,则PK+QK 的最小值为.,点P、Q、K 分别为线段AB、BC、AC 上任意图6 图7 图8 图97.如图7,AB 是⊙O 的直径,AB=8,点M 在⊙O 上,∠MAB=20°,N 是弧MB 的中点,P 是直径AB 上的一动点,则PM+PN 的最小值为.8.如图 8,在锐角△ABC 中,AB=4,∠BAC=45°,∠BAC 的平分线交BC 于点D,M、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是.9.如图 9,圆柱形玻璃杯高为 12cm、底面周长为 18cm,在杯内离杯底 4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿 4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为cm.10.如图 10,菱形OABC 中,点A 在x 轴上,顶点C 的坐标为(1,OC、OB 上,则CE+DE+DB 的最小值是.),动点D、E 分别在射线图10 图11 图12 图1311.如图 11,点A(a,1)、B(-1,b)都在双曲线y=-3(x<0)上,点P、Q 分别是x 轴、y 轴上x的动点,当四边形PABQ 的周长取最小值时,PQ 所在直线的解析式是.12.如图12,点P 是∠AOB 内任意一点,OP=5cm,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 周长的最小值是5cm,则∠AOB 的度数是.13.如图13,∠AOB=30°,点M、N 分别在边OA、OB 上,且OM=1,ON=3,点P、Q 分别在边OB、OA 上,则MP+PQ+QN 的最小值是.14.如图 14,在Rt△ABC 中,∠ACB=90°,点D 是AB 边的中点,过D 作DE⊥BC 于点E. (1)点P 是边BC 上的一个动点,在线段BC 上找一点P,使得AP+PD 最小,在下图中画出点P; (2)在(1)的条件下,连接CD 交AP 于点Q,求AQ 与PQ 的数量关系;图 143315. 在矩形 ABCD 中,AB =6,BC =8,G 为边 AD 的中点.(1) 如图 1,若 E 为 AB 上的一个动点,当△CGE 的周长最小时,求 AE 的长.(2) 如图 2,若 E 、F 为边 AB 上的两个动点,且 EF =4,当四边形 CGEF 的周长最小时,求 AF的长.16. 如图,抛物线 y = - 1x 2+ 2x + 4 交y 轴于点B ,点A 为x 轴上的一点,OA =2,过点A 作直线MN ⊥ AB2 交抛物线与 M 、N 两点. (1) 求直线 AB 的解析式;(2) 将线段 AB 沿 y 轴负方向平移 t 个单位长度,得到线段 A 1B 1 ,求 MA 1 + MB 1 取最小值时实数 t 的值.33172020 中考专题 8——最值问题之将军饮马参考答案例1.解:作A 关于OB 的对称点D,连接CD 交OB 于P,连接AP,过D 作DN⊥OA 于N,则此时PA+PC 的值最小,∵DP=PA,∴PA+PC=PD+PC=CD,∵B(3,),∴AB=,OA=3,∵tan∠AOB=AB=3,∴∠AOB=30°,∴OB=2AB=2 ,OA 31 1 3 3由三角形面积公式得:×OA×AB=2×OB×AM,∴AM=2,∴AD=2×2=3,2∵∠AMB=90°,∠B=60°,∴∠BAM=30°,∵∠BAO=90°,∴∠OAM=60°,∵DN⊥OA,∴∠NDA=30°,∴AN=1AD=23,由勾股定理得:2DN=33 ,2∵C(1,0),∴CN=3﹣1﹣2 23=1,在Rt△DNC 中,由勾股定理得:DC=,2 2即PA+PC 的最小值是31.2例2.解:作A 关于BC 和ED 的对称点A′,A″,连接A′A″,交BC 于M,交ED 于N,则A′A″即为△AMN 的周长最小值.⑴作EA 延长线的垂线,垂足为H,∠BAE=120°,∴∠AA′A″+∠AA″A′=60°,∠AA′A″=∠A′AM,∠AA″A′=∠EAN,∴∠CAN=120°-∠AA′A″-∠AA″A′=60°,也就是说∠AMN+∠ANM=180°-60°=120°.⑵过点A′作EA 延长线的垂线,垂足为H,∵AB=BC=1,AE=DE=2,∴AA′=2BA=2,AA″=2AE=4,则Rt△A′HA 中,∵∠EAB=120°,∴∠HAA′=60°,∵A′H⊥HA,∴∠AA″H=30°,∴AH=1AA′=1,∴A′H=2,A″H=1+4=5,∴A′A″=2 ,例3.解:作EF∥AC 且EF=于P,,连结DF 交AC 于M,在AC 上截取MN=,延长DF 交BC 作FQ⊥BC 于Q,作出点E 关于AC 的对称点E′,则CE′=CE=1,将MN 平移至E′F′处,3332242 - 22 3 3 则四边形 MNE ′F ′为平行四边形,当 BM +EN =BM +FM =BF ′时,四边形 BMNE 的周长最小, 由∠FEQ =∠ACB =45°,可求得 FQ =EQ =1,∵∠DPC =∠FPQ ,∠DCP =∠FQP ,∴△PFQ ∽△PDC , ∴PQ PQ + QE + EC = PQ ,∴ CD PQ PQ + 2 1 = ,解得:PQ = 4 2 ,∴PC = 8 ,3 3由对称性可求得 tan ∠MBC =tan ∠PDC = 2 .3例 4.【提示】将△AEO 向右平移转化为△AEO 不动,点 B 向左平移,则点 B 移动的轨迹为一平行于 x 轴的直线,所以作点 E 关于该直线的对称点 E 1,连接 AE 1,与该直线交点 F 即为最小时点 B 的位置,求出 BF 长度即可求出点 E 向右平移的距离.例 5.解:如图所示,直线 OC 、y 轴关于直线 y =kx 对称,直线 OD 、直线 y =kx 关于 y 轴对称,点A ′是点 A 关于直线 y =kx 的对称点.作 A ′E ⊥OD 垂足为 E ,交 y 轴于点 P ,交直线 y =kx 于 M ,作 PN ⊥直线 y =kx 垂足为 N , ∵PN =PE ,AM =A ′M ,∴AM +PM +PN =A ′M +PM +PE =A ′E 最小(垂线段最短), 在 RT △A ′EO 中,∵∠A ′EO =90°,OA ′=4,∠A ′OE =3∠AOM =60°, ∴OE =1OA ′=2,A ′E = =2 .2 ∴AM +MP +PN 的最小值为 2 .333337【巩固训练】答案1.解:连接BD,∵点B 与D 关于AC 对称,∴PD=PB,∴PD+PE=PB+PE=BE 最小.∵正方形ABCD 的面积为 12,∴AB=2又∵△ABE 是等边三角形,∴BE=AB=2,,故所求最小值为2 .2.解:∵四边形ABCD 是菱形,对角线AC=6,BD=8,∴AB=5,作E 关于AC 的对称点E′,作E′F⊥BC 于F 交AC 于P,连接PE,则E′F 即为PE+PF 的最小值,∵1⋅AC⋅BD=AD⋅E′F,∴E′F=24,∴PE+PF 的最小值为24.2 5 53.解:作B 关于AC 的对称点B′,连接BB′、B′D,交AC 于E,此时BE+ED=B′E+ED=B′D,根据两点之间线段最短可知B′D 就是BE+ED 的最小值,∵B、B′关于AC 的对称,∴AC、BB′互相垂直平分,∴四边形ABCB′是平行四边形,∵三角形ABC 是边长为2,D 为BC 的中点,∴AD⊥BC,AD=,BD=CD=1,BB′=2AD=2 ,作B′G⊥BC 的延长线于G,∴B′G=AD=,在Rt△B′BG 中,BG=3,∴DG=BG﹣BD=3﹣1=2,在Rt△B′DG 中,B′D=.故BE+ED 的最小值为7 .4.解:过点C 作CE⊥AB 于点E,交BD 于点M,过点M 作MN⊥BC 于N,∵BD 平分∠ABC,ME⊥AB 于点E,MN⊥BC 于N,∴MN=ME,∴CE=CM+ME=CM+MN 是最小值.∵三角形ABC 的面积为 9,AB即CM+MN 的最小值为 3.=6,∴12×6⋅CE=9,∴CE=3.333335.提示:作点E 关于AM 的对称点E′,BH⊥AC 于H,易知BD+DE 的最小值即为BH 的长. 答案:(1)3;(2)4;(3)8.6.解:如图,过A 作AH⊥BC 交CB 的延长线于H,∵AB=CB=4,S△ABC=4,∴AH=2,∴cos∠HAB=AH=2 3=3,∴∠HAB=30°,∴∠ABH=60°,∴∠ABC=120°,AB 4 2∵∠BAC=∠C=30°,作点P 关于直线AC 的对称点P′,过P′作P′Q⊥BC 于Q 交AC 于K,则P′Q 的长度=PK+QK 的最小值,∴∠P′AK=∠BAC=30°,∴∠HAP′=90°,∴∠H=∠HAP′=∠P′QH=90°,∴四边形AP′QH 是矩形,∴P′Q=AH=2 ,即PK+QK 的最小值为2 .7.解:作点N 关于AB 的对称点N′,连接OM、ON、ON′、MN′,则MN′与AB 的交点即为PM+PN 的最小时的点,PM+PN 的最小值=MN′,∵∠MAB=20°,∴∠MOB=2∠MAB=2×20°=40°,∵N 是弧MB 的中点,∴∠BON=12∠MOB=1×40°=20°,2由对称性,∠N′OB=∠BON=20°,∴∠MON′=∠MOB+∠N′OB=40°+20°=60°,∴△MON′是等边三角形,∴MN′=OM=OB=1AB=18 =4,2 2∴PM+PN 的最小值为 4,22338.解:如图,作BH⊥AC,垂足为H,交AD 于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AD 是∠BAC 的平分线,∴M′H=M′N′,∴BH 是点 B 到直线AC 的最短距离,∵AB=4,∠BAC=45°,∴BH=AB sin45°=4×2=2 .2∵BM+MN 的最小值是BM′+M′N′=BM′+M′H=BH=2 .9.解:沿过A 的圆柱的高剪开,得出矩形EFGH,过C 作CQ⊥EF 于Q,作A 关于EH 的对称点A′,连接A′C 交EH 于P,连接AP,则AP+PC 就是蚂蚁到达蜂蜜的最短距离,∵AE=A′E,A′P=AP,∴AP+PC=A′P+PC=A′C,∵CQ=1×182cm=9cm,A′Q=12cm﹣4cm+4cm=12cm,在Rt△A′QC 中,由勾股定理得:A′C=15cm,故答案为:15.10.解:连接AC,作B 关于直线OC 的对称点E′,连接AE′,交OC 于D,交OB 于E,此时CE+DE+BD 的值最小,∵四边形OCBA 是菱形,∴AC⊥OB,AO=OC,即A 和C 关于OB 对称,∴CE=AE,∴DE+CE=DE+AE=AD,∵B 和E′关于OC 对称,∴DE′=DB,∴CE+DE+DB=AD+DE′=AE′,过C 作CN⊥OA 于N,∵C(1,),∴ON=1,CN=,由勾股定理得:O C=2,即AB=BC=OA=OC=2,∴∠CON=60°,∴∠CBA=∠COA=60°,∵四边形COAB 是菱形,∴BC∥OA,∴∠DCB=∠COA=60°,∵B 和E′关于OC 对称,∴∠BFC=90°,∴∠E′BC=90°﹣60°=30°,∴∠E′BA=60°+30°=90°,CF=1BC=1,由勾股定理得:BF=2=E′F,在Rt△EBA 中,由勾股定理得:AE′=4,即CE+DE+DB 的最小值是 4.310 ⎩⎩11.解:把点 A (a ,1)、B (﹣1,b )代入 y =﹣ 3(x <0)得 a =﹣3,b =3,则 A (﹣3,1)、B (﹣1,x3),作 A 点关于 x 轴的对称点 C ,B 点关于 y 轴的对称点 D ,所以 C 点为(﹣3,﹣1),D 点为(1, 3),连结 CD 分别交 x 轴、y 轴于 P 点、Q 点,此时四边形 PABQ 的周长最小,设直线 CD 的解析式为 y =kx +b ,则⎧-3k + b = -1 ,解得⎧k = 1,所以直线 CD 的解析式为 y =x +2.⎨k + b = 3 ⎨b = 212.解:分别作点 P 关于 OA 、OB 的对称点 C 、D ,连接 CD ,分别交 OA 、OB 于点 M 、N ,连接 OC 、OD 、PM 、PN 、MN ,如图所示:∵点 P 关于 OA 的对称点为 D ,关于 OB 的对称点为 C ,∴PM =DM ,OP =OD ,∠DOA =∠ POA ;∵点 P 关于 OB 的对称点为 C ,∴PN =CN ,OP =OC ,∠COB =∠POB , ∴OC =OP =OD ,∠AOB =1∠COD ,2∵△PMN 周长的最小值是 5cm ,∴PM +PN +MN =5,∴DM +CN +MN =5,即 CD =5=OP , ∴OC =OD =CD ,即△OCD 是等边三角形,∴∠COD =60°,∴∠AOB =30°;13 解:作 M 关于 OB 的对称点 M ′,作 N 关于 OA 的对称点 N ′,连接 M ′N ′,即为 MP +PQ +QN 的最小值.根据轴对称的定义可知:∠N ′OQ =∠M ′OB =30°,∠ONN ′=60°, ∴△ONN ′为等边三角形,△OMM ′为等边三角形,∴∠N ′OM ′=90°, ∴在 Rt △M′ON′中,M ′N ′= .故答案为 .10314.解:(1)作点 A 关于BC 的对称点 A′,连 DA′交BC 于点P.(2)由(1)可证得PA 垂直平分CD,∴AQ=CQ=3PQ15.解:(1)∵E 为AB 上的一个动点,∴作G 关于AB 的对称点M,连接CM 交AB 于E,那么E 满足使△CGE 的周长最小;∵在矩形ABCD 中,AB=6,BC=8,G 为边AD 的中点,∴AG=AM=4,MD=12,而AE∥CD,∴△AEM∽△DCM,∴AE:CD=MA:MD,∴AE=CD ⨯MA=2;MD(2)∵E 为AB 上的一个动点,∴如图,作G 关于AB 的对称点M,在CD 上截取CH=4,然后连接HM 交AB 于E,接着在EB 上截取EF=4,那么E、F 两点即可满足使四边形CGEF 的周长最小.∵在矩形ABCD 中,AB=6,BC=8,G 为边AD 的中点,∴AG=AM=4,MD=12,而CH=4,∴DH=2,而AE∥CD,∴△AEM∽△DHM,∴AE:HD=MA:MD,∴AE=HD ⨯MAMD=2,3∴AF =4+2=14.3 316.解:(1)依题意,易得B(0,4),A(2,0),则AB解析式:y=-2x+4(2)∵AB⊥MN∴直线MN:y =1x - 12⎧y =-1x2+ 2x + 4⎪与抛物线联立可得:⎨⎪y =⎩21x - 1 2解得:M(-2,-2)将AB向负方向平移t个单位后,A1(2,-t),B1(0,4-t)则A1 关于直线x=-2 的对称点A2 为(-6,-t)当A2、M、B1 三点共线时,MA1 +MB1取最小值∴t =143。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题(共6小题)1、边长为2的正方形的顶点A 到其内切圆周上的最远距离是 _________ ,最短距离是 _________ .2、已知点P 到⊙O 上的点的最短距离为3cm ,最长距离为5cm ,则⊙O 的半径为 _________ cm .3、(2011•广安)如图所示,若⊙O 的半径为13cm ,点P 是弦AB 上一动点,且到圆心的最短距离为5cm ,则弦AB 的长为 _________ .4、如图,圆锥的底面半径为OB=3,母线SB=9,D 为SB 上一点,且SD=,则点A 沿圆锥表面到D 点的最短距离为 _________ .5、如图,P 为半圆直径AB 上一动点,C 为半圆中点,D 为弧AC 的三等分点,若AB=2,则PC+PD 的最短距离为 _________ .6、如图,牧童在A 处放牛,其家在B 处,A 、B 到河岸的距离分别为AC 和BD ,且AC=BD ,若点A 到河岸CD 的中点的距离为500米,则牧童从A 处把牛牵到河边饮水再回家,最短距离是 _________ 米.二、解答题(共4小题)7、正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从A 点爬行到M 点的最短距离为多少?8、己知圆锥的底面半径是4cm ,母线长为12cm ,C 为母线PB 的中点,求从A 到C 在圆锥的侧面上的最短距离.2012年初中数学求最短距离9、已知如图,圆锥的底面半径为3cm,母线长为9cm,C是母线PB中点且在圆锥的侧面上,求从A到C的最短距离为多少厘米?10、如图,正方形ABCD,AB边上有一点E,AE=3,EB=1,在AC上有一点P,使EP+BP为最短.求:最短距离EP+BP.三、选择题(共4小题)11、如图,在底面周长为12,高为8的圆柱体上有A、B两点,则A、B两点的最短距离为()A、4B、8C、10D、512、(2003•贵阳)如图,圆柱的轴截面ABCD是边长为4的正方形,动点P从A点出发,沿着圆柱的侧面移动到BC 的中点S的最短距离为()A、B、C、D、13、如图,已知圆锥的母线长OA=6,底面圆的半径为2,一小虫在圆锥底面的点A处绕圆锥侧面一周又回到点A 处.则小虫所走的最短距离为()A、12B、4πC、D、14、如图,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把牛牵到河边饮水再回家,最短距离是()A、750米B、1000米C、1500米D、2000米用轴对称求最短距离最值问题,也就是最大值和最小值问题,这类问题出现的试题,内容丰富,知识点多,涉及面广,解法灵活多样,本文举例介绍一些常见的求解方法,供读者参考。

例1. (2007湖北潜江)如图1,小河边有两个村庄A、B.要在河边建一自来水厂向A村与B村供水.(1)若要使厂部到A、B村的距离相等,则应选择在哪建厂?(2)若要使厂部到A、B村的水管最省料,应建在什么地方?分析(1)到A、B两点距离相等,可联想到“线段垂直平分线上的点到线段两端点的距离相等”.(2)要使厂部到A村、B村的距离和最短,可联想到“两点之间线段最短”.解:(1)如图2,取线段AB的中点G,过中点G画AB的垂线,交EF与P,则P到A、B的距离相等.(2)如图3,画出点A关于河岸EF的对称点A′,连结A′B交EF于P,则P到AB的距离和最短.点评:如果我们注意一下,在我们的生活中有很多都利用了轴对称,如果平时多观察、多思考,就会发现轴对称还可以帮助我们解决问题.例2. 如图3,两条公路OA、OB相交,在两条公路的中间有一个油库,设为点P,如在两条公路上各设置一个加油站,,请你设计一个方案,把两个加油站设在何处,可使运油车从油库出发,经过一个加油站,再到另一个加油站,最后回到油库所走的路程最短.分析这是一个实际问题,我们需要把它转化为数学问题,经过分析,我们知道此题是求运油车所走路程最短,OA与OB相交,点P在∠AOB内部,通常我们会想到轴对称,分别做点P关于直线OA和OB的对称点P1、P2 ,连结P1P2分别交OA、OB于C、D,C、D两点就是使运油车所走路程最短,而建加油站的地点,那么是不是最短的呢?我们可以用三角形的三边关系进行说明.解:分别做点P关于直线OA和OB的对称点P1、P2,P2分别交OA、OB于C、D,连结P则C、D就是建加油站的位置.若取异于C、D两点的点,则由三角形的三边关系,可知在C、D两点建加油站运油车所走的路程最短.点评:在这里没有详细说明为什么在C、D两点建加油站运油车所走的路程最短,请同学们思考弄明白。

例3. (2007湖北荆门)要在河边l修建一个水泵站,分别向A、B两村送水,水泵站应修建在河边的什么地方,可使所用的水管最短?A交直分析要解决这个问题,找出点A关于直线l的对称点A,连结B线l 于点P ,则点P 就是到A 、B 两村庄的距离之和最短的点的位置。

理由 根据轴对称的性质可知PA PA =BA PB PA PB PA =+=+所以如果另外任选一点1P (异于P ),连结11111A P A P A P B P A P =,则有、、 在 1BA P ∆中,PB PA PB PA BA B P A P +=+=>+ 11即PB PA B P A P +>+11因此,PB PA +为最短由此可见,轴对称帮我们找到了符合要求的点的位置。

点评:该问题的解决为我们提供了一种解题的思路和线索,触类旁通,由此产生了一系列问题的解题思路。

使学生在操作活动的过程中感受知识的自然呈现,体验数学的神秘与乐趣。

最短距离中的数形结合——浅谈恩施州2008年数学中考第二十题本题在最短矩离一问题中,利用了数形结合的思想,综合考查学生几何、代数知识的运用能力。

从交流的方式上来看,第一问让学生利用形的特点将特殊的代数式的求值与形结合起来,先用引导形式的探究得出规律,然后利用几何知识“两点之间,线段最短”来求出代数式的最小值。

整个过程充分显示了学生学习数学新知的一般过程:认知——论证——应用。

是一个成功的数学交流例子。

第一小问设计是让学生熟悉这一个特殊代数式与图形之间的关系,找出“形”中包含的“式”,要有一定的观察能力和联想能力;第二小问设计的是一个探究过程,在“形、式”已经具备的情况下,让学生综合学习过的基本数学知识进行探索,是对学生学习习惯的考查,要求学生具备自主学习的能力。

第三小问的设计主要是将所探究的结论进行运用,拓展。

整个过程体现了特殊问题中的一般规律,是数学知识和问题解决方法的一种自然回归。

例题如下:如图,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD ,ED ⊥BD ,连接AC 、EC .已知AB =5,DE =1,BD =8,设CD =x.(1)用含x 的代数式表示AC +CE 的长;(2)请问点C 满足什么条件时,AC +CE 的值最小?答案与评分标准一、填空题(共6小题)1、边长为2的正方形的顶点A到其内切圆周上的最远距离是+1,最短距离是﹣1.考点:正多边形和圆。

专题:存在型。

分析:根据题意画出图形,由正方形的性质可知,正方形的对角线AC必过⊙O的圆心,故顶点A到其内切圆周上的最远距离为AF,最短距离是AE,过O作OG⊥AG,由正方形的性质可求出OA及OG的长,进而可求出顶点A到其内切圆周上的最远距离与最短距离.解答:解:如图所示,过O作OG⊥AG,∵AD=2,∴AG=OG=1,∴OA===,∴AE=OA﹣OE=﹣1,AF=OA+OF=+1,∴顶点A到其内切圆周上的最远距离是+1,最短距离是﹣1.故答案为:+1,﹣1.点评:本题考查的是正多边形的性质及勾股定理,根据题意画出图形利用数形结合求解是解答此题的关键.2、已知点P到⊙O上的点的最短距离为3cm,最长距离为5cm,则⊙O的半径为1或4cm.考点:点与圆的位置关系。

专题:计算题。

分析:分两种情况进行讨论:①点P在圆内;②点P在圆外,进行计算即可.解答:解:①点P在圆内;如图,∵AP=3cm,BP=5cm,∴AB=8cm,∴OA=4cm;②点P在圆外;如图,∵AP=3cm,BP=5cm,∴AB=2cm,∴OA=1cm.故答案为:1或4.点评:本题考查了点和圆的位置关系,分类讨论是解此题的关键.3、(2011•广安)如图所示,若⊙O 的半径为13cm,点P是弦AB上一动点,且到圆心的最短距离为5cm,则弦AB 的长为24cm.考点:垂径定理;勾股定理。

专题:计算题。

分析:过O点作OC⊥AB于C,连OA,根据垂线段最短得到OC=5cm,根据垂径定理得到AC=BC,再利用勾股定理计算出AC,即可得到AB.解答:解:过O点作OC⊥AB于C,连OA,如图,∴OC=5cm,AC=BC,在Rt△OAC中,OA=13cm,∴AC===12(cm),∴AB=2AC=24cm.故答案为:24cm.点评:本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了勾股定理.4、如图,圆锥的底面半径为OB=3,母线SB=9,D为SB上一点,且SD=,则点A沿圆锥表面到D点的最短距离为3cm.考点:平面展开-最短路径问题;圆锥的计算。

专题:计算题。

分析:最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离的问题.需先算出圆锥侧面展开图的扇形半径.看如何构成一个直角三角形,然后根据勾股定理进行计算.解答:解:圆锥的底面周长是6π,则6π=∴n=120°,即圆锥侧面展开图的圆心角是120度.∴∠ASD=60°,则在圆锥侧面展开图中AS=9,SD==3,∠AES=90度.∴AE=AS•sin60°=,SD=AS•cos60°=,∴ED=ES﹣DS=,在圆锥侧面展开图中AD==3cm.点A沿圆锥表面到D点的最短距离为3cm.故答案为:3cm.点评:本题考查了平面展开﹣最短路径问题,需注意最短距离的问题最后都要转化为平面上两点间的距离的问题.5、如图,P为半圆直径AB上一动点,C为半圆中点,D为弧AC的三等分点,若AB=2,则PC+PD的最短距离为.考点:轴对称-最短路线问题;勾股定理;垂径定理;圆心角、弧、弦的关系。

专题:动点型。

分析:要求PC+PD的最小值,应先确定点P的位置.作点C关于AB的对称点E,连接DE交AB于点P,则P即是所求作的点,且PC+PD=DE.根据作法知:CE是直径,弧CD的度数是30°,即∠CED=30°,根据三角函数即可求出PC+PD的最小值.解答:解:设点C关于AB的对称点为E,连接DE交AB于P,则此时PC+PD的值最小,且PC+PD=PE+PD=PE.连接OC、OE;∵C为半圆中点,D为弧AC的三等分点,∴弧CD的度数为30°,∠CDE=90°;∵AB=2,∴CE=2;∴DE=EC•cos∠CED=,即PC+PD的最小值为.故答案为:.点评:此题主要考查了轴对称﹣最短路线问题,难点是确定点P的位置:找点C或点D关于AB的对称点,再连接其中一点的对称点和另一点,和AB的交点P就是所求作的位置.再根据弧的度数和圆心角的度数相等发现一个含30°角的直角三角形.6、如图,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把牛牵到河边饮水再回家,最短距离是1000米.考点:轴对称-最短路线问题。

相关文档
最新文档