19.2.2 一次函数 教案
19.2.2一次函数(教案)

(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数相关的实际问题,如根据一次函数解决购物打折问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如绘制一次函数的图像,观察k、b变化对图像的影响。
2.思维与分析:培养学生运用一次函数图像分析问题,掌握数形结合的思考方法,提高逻辑推理和直观想象的核心素养。
3.解决问题:鼓励学生将一次函数应用于实际问题,培养他们解决实际问题的能力,提升数学运算和数据分析的核心素养。
4.沟通与合作:在小组讨论和合作探究中,培养学生有效沟通、协作解决问题的能力,发展他们的数学交流与合作的核心素养。
五、教学反思
在上完这节课之后,我认真思考了一下整个教学过程,发现有一些地方做得不错,但也存在需要改进的地方。
首先,关于一次函数的定义和性质的讲解,我觉得通过生动的例子和图表,学生们能够较好地理解和掌握。特别是在讲解一次函数的增减性时,我使用了数轴和动态图像相结合的方式,让学生们更直观地感受到了一次函数图像的变化,这对他们理解增减性起到了很好的帮助。
此外,我觉得在讲解一次函数的应用时,可以结合更多的实际案例,让学生们更好地理解一次函数在现实生活中的重要性。这样既能增强他们的学习兴趣,也能提高他们解决实际问题的能力。
在难点解析部分,虽然我尽力用简单的语言和举例来讲解,但仍有部分学生表示理解起来有些困难。我觉得在今后的教学中,可以尝试采用更直观的教学手段,如实物演示、动画模拟等,帮助学生更好地突破难点。
-突破方法:通过动态演示或实体模型,展示k、b变化时图像的动态变化。
人教版八年级数学下19.2.2一次函数公开课教学设计

3.导入新课:通过这个问题,我们可以发现费用与行驶公里数之间存在一种线性关系。这种关系就是我们今天要学习的一次函数。
(二)讲授新知
在讲授新知环节,我将通过以下步骤帮助学生掌握一次函数的定义、图像特点及其性质。
1.一次函数的定义:介绍一次函数的一般形式y=kx+b(k≠0),解释k、b的几何意义。
-学生在教师的指导下,运用教育软件辅助学习,提高学习效率。
3.注重学生个体差异,实施有针对性的教学策略。
-教师根据学生的认知水平、学习兴趣等个体差异,设计不同难度的练习题,满足不同层次学生的需求。
-教师关注学生在学习过程中的困惑,及时给予指导和鼓励,帮助学生克服困难,提高自信心。
(三)情感态度与价值观
五、作业布置
为了巩固学生对一次函数知识的掌握,提高学生的应用能力和解决问题的能力,特此布置以下作业:
1.必做题:
-根据教材第19.2.2节的内容,完成课后练习题1、2、3。
-利用描点法绘制y=3x-2的图像,并分析其性质。
-在生活中找到一个一次函数的实际例子,并说明其k值和b值的实际意义。
2.选做题(至少选做2题):
3.培养学生勇于探索、积极进取的精神品质。
-学生在面对数学问题时,敢于尝试,勇于探索,不怕困难,坚持不懈。
-学生在解决问题的过程中,体验成功的喜悦,激发积极进取的精神品质。
二、学情分析
八年级学生经过前期的数学学习,已经具备了一定的数学基础知识和技能,对函数的概念有了初步的认识。在此基础上,学生对一次函数的学习将面临以下挑战:
1.培养学生对数学的兴趣和热爱,树立正确的数学观念。
-学生在学习过程中,感受数学的简洁美、逻辑美,提高数学学习兴趣。
人教版八年级数学下册19.2.2一次函数的概念优秀教学案例

1.通过生活实例引入一次函数的概念,激发学生的学习兴趣。
2.引导学生通过观察、分析、归纳一次函数的性质,加深对一次函数的理解。
3.运用一次函数解决实际问题,提高学生的应用能力。
五、案例亮点
1.生活实例引入:通过生动的打车软件费用计算实例,将一次函数的概念与学生的生活实际紧密联系起来,增强了学生的学习兴趣,提高了学生的课堂参与度。
2.问题导向:本节课以问题为导向,引导学生主动探究一次函数的性质,激发了学生的求知欲和自主学习能力,培养了学生的批判性思维。
3.小组合作:通过小组合作讨论,学生不仅能够共享彼此的知识和经验,还能培养团队合作意识和沟通能力,提高了学习效果。
3.运用一次函数解决实际问题,提高学生的应用能力,培养学生的实践操作能力。
4.采用小组合作、讨论交流的形式,培养学生的团队合作意识和沟通能力。
(三)情感态度与价值观
1.培养学生对数学学科的热爱,激发学生学习数学的兴趣,树立学生学习数学的自信心。
2.通过对一次函数的学习,使学生体会数学的严谨性、逻辑性,培养学生的求真精神。
(三)学生小组讨论
1.设计具有挑战性的问题,引导学生进行小组讨论,探究一次函数的性质。
2.鼓励学生提出疑问,引导学生敢于挑战权威,培养学生的批判性思维。
3.教师巡回指导,及时解答学生在讨论过程中遇到的问题。
(四)总结归纳
1.让学生回顾本节课所学内容,总结一次函数的概念、性质和解法。
2.引导学生通过归纳总结,提高对一次函数的理解和记忆。
在教学过程中,我将注重启发式教学,引导学生主动探究,培养学生的动手操作能力和思维能力。同时,关注学生的个体差异,给予不同程度的学生适当的指导,使他们在课堂上都能有所收获。课后,及时进行教学反思,不断调整教学策略,以提高教学效果。
一次函数教案-数学八年级下第十九章19.2一次函数19.2.2人教版

第十九章一次函数19.2一次函数19.2.2 一次函数1教学目标1.1知识与技能:[1]理解一次函数和正比例函数的图象是一条直线;[2]熟练地作出一次函数和正比例函数的图象,掌握k 与 b 的取值对直线位置的影响。
1.2 过程与方法:[1]经历一次函数的作图过程,探索某些一次函数图象的异同点;[2]体会用类比的思想研究一次函数,体验研究数学问题的常用方法:由特殊到一般,由简单到复杂。
1.3情感态度与价值观:[1]体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣。
[2]在探索过程中体验成功的喜悦,树立学习的自信心。
2教学重点 / 难点2.1教学重点[1]理解掌握一次函数的图象的特征和相关的性质。
2.2教学难点[1]理解一次函数的概念。
3专家建议本节课是以类比的思想方法为主线,研究什么是一次函数这是在学生学习了函数、正比例函数的定义、图象与性质,并初步了解了如何研究一个具体函数〔从定义到图象与性质〕的根底上学习的。
学生原有知识与学习经历对本节课的类比学习奠定扎实的学习根底,在前后知识的类比学习中,学生可以进一步理解函数的知识,体验研究函数的根本思路,促进学生的认知构造的不断的完善,进而开展学生的类比、抽象与概括能力而这些目标的达成必须是在充分发挥学生的主体作用,给予学生足够的活动、探究、交流、反思的时间与空间,让在学生在类比中学习、在类比中思考的前提下才能完成的。
4教学方法启发、引导、类比、发现第1页共1页5 教学用具多媒体课件,教学用直尺、三角板等。
6 教学过程6.1 情境创设【师】前面我们学习了用描点法画函数的图象的方法, 下面请同学们根据画图象的步骤: 列表、 描点、连线,在同一平面直角坐标系中画出以下函数的图象。
( 1) y1 x ; ( 2) y 1 x2 ; 22 (3) y 3x ; (4 )y = 3x 2 =+ . 【师】提示学生要注意在同一个平面直角坐标系中完成以上四个图象。
19.2.2第3课时用待定系数法求一次函数的解析式教案

1. 作业布置:
- 基础巩固题:请学生完成教材第 chapter 页的练习题,重点在于运用待定系数法求解一次函数的解析式。
- 实践应用题:选取生活中的实际问题,要求学生运用一次函数的知识建立模型并求解,如“某商品的成本价与销售价之间的关系”。
- 拓展思考题:针对学有余力的学生,设计一些需要运用一次函数及其图象性质的综合性问题,提高学生的逻辑思维和问题解决能力。
2. 加强基础知识巩固:针对学生对理论知识的掌握不足,可以通过设计前置学习任务、开展小组互帮互学等活动,帮助学生夯实基础。
3. 丰富教学资源:利用信息化手段,如教育平台、在线资源等,为学生提供更多学习材料和拓展阅读,拓宽知识视野。
4. 加强个别辅导:关注学习困难的学生,提供个性化辅导,帮助他们克服学习中的困难,提高学习效果。
(二)存在主要问题
1. 教学评价方式单一:本节课的教学评价主要依赖于课堂提问和课后作业,缺乏多元化的评价手段,不能全面反映学生的学习情况。
2. 部分学生对理论知识的掌握不够扎实:在小组讨论中发现,部分学生对一次函数的基本概念和待定系数法的理解不够深入。
(三)改进措施
1. 多元化教学评价:在今后的教学中,可以引入课堂观察、小组展示、项目作业等多种评价方式,更全面地了解学生的学习进度和掌握程度。
- 着重讲解待定系数法中的关键步骤,如选择合适的点、列出方程组、求解未知系数等。
- 强调求解过程中可能遇到的困难,如方程组求解方法、符号的注意事项等。
3. 巩固练习(15分钟)
- 设计具有代表性的习题,让学生独立完成,巩固待定系数法的应用。
- 分组讨论,让学生相互交流解题思路,培养合作解决问题的能力。
- 观看视频资料时,建议学生关注讲解者对待定系数法的解题思路和技巧,以及如何将一次函数应用于实际问题。
人教版数学八年级下册19.2.2《一次函数》教案2

人教版数学八年级下册19.2.2《一次函数》教案2一. 教材分析人教版数学八年级下册19.2.2《一次函数》是学生在学习了初中数学基础知识后,对函数概念、性质有了初步了解的基础上进行教学的。
本节内容主要让学生掌握一次函数的定义、性质和图像,进一步理解函数的概念,为后续学习其他类型的函数打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了函数的概念,对函数的性质有了初步了解,具备一定的抽象思维能力。
但部分学生对函数图像的识别和理解还有待提高,因此,在教学过程中,需要关注这部分学生的学习情况,通过具体实例和实际问题,引导学生理解和掌握一次函数的性质和图像。
三. 教学目标1.了解一次函数的定义、性质和图像,掌握一次函数的解析式表示方法。
2.能够运用一次函数解决实际问题,提高学生的应用能力。
3.培养学生的抽象思维能力,提高学生的学习兴趣。
四. 教学重难点1.一次函数的定义和性质。
2.一次函数图像的特点和识别。
3.一次函数在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过探究、讨论、总结,掌握一次函数的知识。
2.利用多媒体课件和实物模型,直观展示一次函数的图像,帮助学生理解和记忆。
3.结合实际问题,让学生运用一次函数解决实际问题,提高学生的应用能力。
4.采用分组合作、讨论交流的教学方式,培养学生的团队合作意识和沟通能力。
六. 教学准备1.多媒体课件和教学素材。
2.实物模型和教学工具。
3.练习题和实际问题。
七. 教学过程1.导入(5分钟)利用多媒体课件展示一次函数的图像,引导学生关注一次函数的斜率和截距,激发学生的学习兴趣。
2.呈现(10分钟)介绍一次函数的定义、性质和图像,让学生通过观察、分析、总结,理解一次函数的基本特点。
3.操练(10分钟)让学生分组讨论,分析给定的一次函数实例,判断它们的性质和图像,培养学生的动手操作能力和团队协作精神。
4.巩固(10分钟)利用多媒体课件和实物模型,让学生直观地感受一次函数的图像,加深对一次函数性质的理解。
人教版数学八年级(下册)19.2.2一次函数-教案(5)

用了多媒体,白板。
三、教学过程
请采用下述的表格式描述,尽量采用写实的方式描述教学过程的真实情景,尽量将教学中的关键环节以及教学过程中某些值得注意和思考的现象和事件描述清楚。
教学环节
教师活动
学生活动
对学生学习过程的观察和考查,以及设计意图
创
设
情境、动手操作问题1:我们曾用数形结合的方法研究了正比例函数,大家还能回忆它的有关内容吗?
思考、交流、动手操作画图。
培养学生在实际问题中挖掘有效的数量关系的能力,把实际问题转化成函数问题结合正比例函数图象和性质学习,培养学习在分析问题中渗透数形结合的思想。将与本课要学习的两点作图法比较,为新课的讲解作铺垫。
结
合
图
像
、
探
索
性
质
探究1:在同一坐标系中通过描点法画出下列函数的图像
(每小组分配一道题)
学生猜想,老师几何画板演示,得出结论。
思考:观察这两个函数的图像,类比正比例函数y=kx(k≠0,k为常数)的增减性,探究一次函数y=kx+b (k≠0,k、b为常数)的增减性。(攻破了难点)
学生独自在坐标纸上动手画图后,思考后讨论,合作交流,类比归纳性质。
经历“画图——观察——归纳”探究过程。
经历由“特殊——一般”的认知过程,从“形”的角度感知一次函数的图像是一条直线。由“特殊——一般”,符合学生认知特点,培养学生的归纳概括能力。
二、请你设计一个一次函数y=kx+b要求满足下面的条件:
①函数y的值会随x的增大而减小
②图像与坐标轴围成的面积是4
学生独自做练习后师生共同总结。
巩固落实本节课的知识要点,实现了知识向能力的转化,培养学生运用数形结合思想解决问题的意识和能力。
19.2.2-一次函数第一课时教学设计

19.2.2 一次函数(第一课时)【教学目标】1.结合具体情境理解一次函数的意义,能结合实际问题中的数量关系写出一次函数的解析式;2.能辨别正比例函数与一次函数的区别与联系;【教学重难点】重点:一次函数的概念.难点:含参数的一次函数求参数的值.【课前准备】多媒体、图片【教学过程】(-)新课导入1、什么是正比例函数?能举例说明吗?2、购买一枝钢笔需5.6元,付款总数y(元)随所购枝数x(枝)的变化而变化,用解析式表示为: .3、问题:某登山队大本营所在地的气温为5℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y与x的关系.师生共同分析:从大本营向上当海拔每升高1km时,气温从5℃就减少6℃,那么海拔增加xkm时,气温从5℃减少6x℃.因此y与x的函数关系式为:y=5-6x(x≥0)当然,这个函数也可表示为:y=-6x+5 (x≥0)当登山队员由大本营向上登高0.5km时,他们所在位置气温就是当x=0.5时函数y=-6x+5的值,即y=-6×0.5+5=2(℃).这个函数叫什么函数,它与我们上节所学的正比例函数有何不同?我们这节课将学习这些问题.(二)知识讲解4、下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式,这些函数解析式有哪些共同特征?(1).有人发现,在20~25℃时蟋蟀每分钟鸣叫次数C与温度t(单位:℃)有关,即C的值约是t的7倍与35的差.(2).一种计算成年人标准体重G(单位:kg)的方法是,以厘米为单位量出身高值h,再减常数105,所得差是G的值.(3).某城市的市内电话的月收费额y(单位:元)包括月租费22元和拨打电话xmin的计时费(按0.1元/min收取).(4).把一个长10cm、宽5cm的长方形的长减少xcm,宽不变,长方形的面积y (单位:cm2)随x的值而变化.师生活动:学生先独立思考,然后小组交流,可以得到这些问题的函数解析式分别为:(1).C=7t-35.(20≤t≤25)(2).G=h-105.(3).y=0.1x+22.(4).y=-5x+50(0≤x≤10).教师引导观察后请学生代表归纳:它们的形式与y=-6x+5一样,这些函数都是常数k 与自变量的积与常数b的和的形式.师:确实如此,如果我们用b来表示这个常数的话.•这些函数形式就可以写成:y=kx+b (k≠0)教师出示一次函数的定义:一般地,形如y=kx+b(k、b是常数,k≠0 )的函数,•叫做一次函数.教师引导学生继续思考当b=0时,y=kx+b是什么函数?学生思考后回答:当b=0时,y=kx+b 即y=kx .所以说正比例函数是一种特殊的一次函数.5、同桌合作探究:请写出若干个变量 y 与 x 之间的函数解析式,让同桌判断是否是一次函数;如果是,请说出其一次项系数与常数项.(三)新知应用例1 下列函数中哪些是一次函数,哪些又是正比例函数?师生活动:学生先独立思考,然后小组讨论,教师根据学生讨论情况加以点拨:如(7)和(8)这两种形式需要加以整理,最后根据学生的回答情况得出答案; 解:一次函数:(1)、(4)、(5)、(7)、(8)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十九章第二节一次函数第二课时教案
教学目标
1.使学生理解函数与函数图象之间的关系,会利用两个合适的点画出一次函数的图象,掌握的正负对图象变化趋势和函数性质的影响.
2.通过描点法来研究一次函数图象,在动手绘制一次函数的图象的过程中,让学生经历“动手----比较----讨论---归纳”的数学活动,通过对一次函数图象的分析,归纳的正负对函数图象变化趋势和函数性质的影响,让学生经历知识的探究、归纳的过程,体会数形结合思想方法和分类讨论思想方法的应用,同时培养学生的观察能力和抽象概括能力.
3.通过从具体一次函数的图象特征抽象得到一般形式一次函数的图象特征,进而得到函数的性质,使学生经历从特殊到一般的研究问题的过程,体会从特殊到一般的研究问题的方法.
4.在探究一次函数的图象和性质的活动中,通过动手实践,互相交流,使学生在探究的过程中,提高与他人交流合作的意识,提高学生的动手实践的能力和探究精神.
教学重点和难点
教学重点:
通过描点法来研究一次函数图象,在动手绘制一次函数的图象的过程中,让学生经历“动手----比较----讨论---归纳”的数学活动,通过对一次函数图象的分析,归纳的正负对函数图象变化趋势和函数性质的影响,培养学生的观察能力和抽象概括能力.
教学难点:
通过从具体一次函数的图象特征抽象得到一般形式一次函数的图象特征,进而得到函数的性质,使学生经历从特殊到一般的研究问题的过程,体会从特殊到一般的研究问题的方法.
教学过程
1.画图:用描点法在同一坐标系中画出函数y=-6x与y=-6x+5的图象.
(1)比较上面两个函数的图象的相同点与不同点.填出你的观察结果并与同伴交流.
这两个函数的图象形状都是____,并且倾斜程度_____.
(2)函数y=-6x的图象经过原点,函数y=-6x+5的图象与y轴交于点____,即它可以看作由直线y=-6x向____平移____个单位长度而得到。
(3)比较两个函数的解析式与图象,试由此解释两个函数图象的位置关系。
(4)你得到的结论具有一般性吗?
(5)不画图,你能说出一次函数y=3x-4的图象是什么形状吗?它与直线y=3x 有什么关系?
2.小组合作探究一次函数的性质
(1)所有一次函数的图象都是直线吗?
(2)直线y =k x 与直线y =k x +b 之间存在着怎样的位置关系?
(3)由直线y =k x 可经过怎样的平移得到直线y =k x +b ?
3.师生共同归纳总结
一次函数y=kx+b 的图象是一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到。
(当b>0时,向上平移;当b<0时,向下平移)
4.画出函数y=2x-1与y=-2x+1的图象。
思路1:由于一次函数的图象是直线,故选择其上合适两点即可画出。
思路2:先画直线y=2x 与直线y=-2x,再平移它们,也能得到。
注:
1.让学生思考不同的画图方法。
让学生说出你是怎么做的,再谈谈这个方法你是怎样想到的。
2.学生通过列表、描点、连线画出图象,使用课前准备好的方格子纸(或由教师统一发下)可以节约时间提高效率
3.(1)鼓励学生讨论,形成统一且正确的认识。
(2)鼓励学生用自己的语言归纳、互相补充,发展学生的抽象与概括能力。
(3)本题不再依赖操作与观察而是类比猜想,为最终概括结论的形成再加一个台阶。
5.课堂练习
1.一次函数y =-2x -1,y 随x 的增大而_______,图像从左向右______.
2.已知一次函数y =(2-m )x -1,当m_______时,y 随x 的增大而增大;当m_______时,y 随x 的增大而减小。
3.已知函数y =m x -(2+m ),,当m=_______时,它的图像经过原点;当m=______时,它的图像过点(-1,0).
4. 已知一次函数)12()12(++-=m x m y 。
(1)当m 为何值时,直线过一二四象限?
(2)当m 为何值时,此直线不经过第三象限?
6.课堂评价小结
谈谈在这节课上的收获?
(内容设计1、一次函数图象的形状;2、如何画一次函数图象3、怎样取比较简便?
4、一次函数的图象特点。
)
设计意图
本节课主要是研究一次函数的图象和性质,在此之前学习者已经学习了正比例函数的图象和性质,一次函数的定义.由于授课班级为我校普通班级,学生虽然已经经历了研究正比例函数的图象和性质的过程,但是对于函数的理解还是比较浅显,将函数解析式与函数图象结合起来解决问题的能力较弱,故本节课的教学难点为通过对解析式的比较分析理解一次函数的图象和性质,并能灵活应用.
在本节课的学习中,学生对于通过具体函数图象猜想一次函数图象的形状和的正负对于函数图象的变化趋势和函数性质的影响并不困难,但是学生容易停留在只从“形”的角度认识一次函数的图象和性质,不会用函数和变量去思考问题,即从“数”——解析式的角度
加深理解.所以,我们在进行教学时,有意识地加强对一次函数与正比例函数
解析式的分析与比较,突出数学知识所蕴涵的数学思想和数学方法,以此加深学生对数形结合思想的体会,使学生逐步地增强应用数形结合思想解决问题的意识和能力.
本课数学内容的本质是通过研究具体一次函数的图象特征和函数性质,抽象得到一般的一次函数的图象特征和函数性质,在这个过程中使学生认识到由具体到一般的研究问题的方
法.同时在学生了解了正比例函数的图象和性质的基础上,通过比较一次函数
与正比例函数解析式上的区别,得到一次函数图象与正比例函数图象之间的关系,进而得到一次函数的图象和性质,也使学生体会到当两个函数有密切联系时,可以通过类比以前研究函数的方法来研究新的函数.在“观察图象——分析解析式——归纳结论”的过程中,培养学生的数形结合的能力.
一次函数是中学阶段接触到的最简单、最基本的函数,它在实际生活中有着广泛的应用.一次函数的学习是建立在学习了平面直角坐标系、变量与函数和正比例函数及其图象与性质的基础上的.一次函数的第一课时主要内容是一次函数的有关概念,本节课是一次函数的第二课时,主要研究一次函数图象的形状、画法,并结合图象分析一次函数的性质.它既是正比例函数的图象和性质的拓展,又是继续学习“用函数观点看方程(组)与不等式”的基础.
从数学自身发展过程来看,正是由于变量与函数概念的引入,标志着初等数学向高等数学的迈进,是一种数学思想与观念的融入.无论从一次函数到反比例函数,再到以后的二次函数,
甚至高中的其他各类函数,都是函数的某种具体形式,都为进一步深刻领会函数提供了一个平台.因此,后续学习中对反比例函数、二次函数的研究方法与一次函数的研究方法类似.也就是说,一次函数的学习为今后其他函数的学习提供了一种研究的模式.
教学评价
1.由于本课的教学内容是在学生以往学习了正比例函数的图象和性质以及一次函数的定义的基础上进行的,学生在学习一次函数定义时对于课后的一个实际问题的练习掌握情况不好,因此这节课从这个问题复习开始,起到承接以前学习过内容的目的,同时对这个问题稍作改动,吸引学生的注意力,再引出本课的内容,让学生在复习的过程中感受用函数模型描述实际问题的作用.
2.根据本节课的教材内容特点,为了更直观、形象地突出重点、突破难点,提高课堂效率,采用以实践探索为主、多媒体演示为辅的教学组织形式.在教学过程中,通过设置带有探究性的问题,创设问题情境,引导学生动手实践探索,发现归纳结论.利用计算机的《几何画板》软件增强数与形结合的直观性,并通过学生亲自动手绘制函数图象,让学生亲身体验知识的产生、发展和形成的过程.
3.八年级的学生好奇、好学、好动,所以在教学过程中通过让学生自己动手画图,同学之间交流画法,谈谈想法等活动,充分发挥学生的主体性,进一步激发学生的求知欲,课件中的动画过程使数与形的关系可视化,有利于学生对问题的感知。
4.在由具体函数与函数的图象关系抽象得到一般一次函数
与直线之间的关系的过程中,我们将抽象的过程分成两步完成,第一步
先由函数抽象到正比例函数,函数抽象到一次函数,
第二步由一次函数抽象到函数,同时利用《几何画板》直观演示,有利于学生从具体向一般过渡.
5.在小结的设计上给学生一个充分从事数学活动的机会,也体现了学生是数学学习的主人的理念.学生所发表的见解不一定全都是本节课的重点,只要是学生的观点正确又的确是他的知识收获则教师就给与认可和鼓励.
6.在作业的布置上,通过阅读作业培养学生的数学阅读能力,同时养成学生及时复习、梳理知识的良好学习习惯,通过巩固性作业使学生巩固落实课堂所学的知识,通过探究作业为下节课学习利用待定系数法求一次函数解析式作铺垫,起到与下节课衔接的作用.。